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Abstract

Chromosomal microarray analysis (CMA) was performed for 40 patients with B-ALL un-
dergoing treatment according to the ALL-2016 protocol to investigate the copy number
alterations (CNAs) and copy neutral loss of heterozygosity (cnLOH) associated with mini-
mal residual disease (MRD)-positive remission. Aberrations involving over 20,000 genes
were identified, and a random forest approach was applied to isolate a subset of genes
whose CNAs and cnLOH are significantly associated with poor therapeutic response. We
have assembled the triple matched healthy population data and used that data as a ref-
erence, but not as a matched control. We identified a recurrent cluster of cnLOH in the
19q13.2–19q13.31 region, significantly enriched in MRD-positive patients (70% vs. 47% in
the reference group vs. 16% in MRD-negative patients). This region includes the pregnancy-
specific glycoprotein (PSG) gene family and the oncogene ERF, suggesting a potential role
in leukemic persistence and treatment resistance. Additionally, we observed significant
deletions involving 7p22.3 and 16q13, often as part of large-scale losses affecting almost the
entire chromosomes 7 and 16, indicative of global chromosomal instability. These findings
highlight specific genomic regions potentially involved in therapy resistance and may
contribute to improved risk stratification in B-ALL. Our findings emphasize the value of
high-resolution CMA in diagnostics and risk stratification and suggest that PSG genes and
other candidate genes could serve as biomarkers for predicting treatment outcomes.

Keywords: acute B-lymphoblastic leukemia (B-ALL); copy number alterations (CNAs);
copy neutral loss of heterozygosity (cnLOH); genes; machine learning

1. Introduction
Despite substantial advances in treatment strategies, including risk-adapted chemother-

apy protocols, a considerable proportion of B-ALL patients still exhibit MRD-positive remis-
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sion after initial therapy, which is a strong predictor of relapse and poor outcome [1,2]. The
genomic underpinnings of this phenomenon remain incompletely understood, particularly
in terms of structural chromosomal abnormalities, which may affect large gene regions and
contribute to therapy resistance.

Chromosomal microarray analysis has emerged as a valuable method for detecting
submicroscopic copy number variations (CNVs) across the genome with higher resolution
than conventional karyotyping or FISH [3,4]. Identifying not only amplifications and
deletions but also regions of cnLOH is essential, as all these types of aberrations can
disrupt gene dosage, alter regulatory networks, or unmask recessive mutations, thereby
influencing disease biology and treatment response [5,6]. While previous studies have
identified recurrent CNVs associated with leukemogenesis [7], less attention has been paid
to their relationship with treatment response, especially in the context of MRD. Moreover,
it remains controversial whether such CNVs represent inherited predispositions or are
acquired somatic events (CNAs), with some studies suggesting a continuum between
germline and somatic alterations [8,9].

In this study, we applied CMA to a cohort of patients with B-ALL treated under the
ALL-2016 protocol, aiming to identify CNAs associated with MRD-positive remission.
Given the high dimensionality of the genomic data—encompassing over 20,000 genes—we
employed machine learning techniques, specifically the random forest algorithm, to assess
the relative importance of these CNAs in relation to treatment response. Random forest is
well-suited for such analyses due to its robustness in handling large feature spaces and its
ability to provide measures of feature importance, facilitating the identification of potential
biomarkers [10,11]. By comparing the prevalence of significant CNAs in our patient cohort
with a matched reference group of healthy individuals, we aimed to discern whether these
aberrations are likely disease-related. Our findings reveal a set of candidate genes whose
aberrations may play a role in resistance to therapy and offer new insight into the genetic
architecture of poor response in B-ALL.

2. Results
CMA was performed for 40 randomly chosen newly diagnosed Ph-negative B-ALL

patients who received treatment from 2019 to 2023 according to ALL-2016/ALL-2016m
protocol and had available tumor DNA material at the onset of the disease. The median
age was 30 (18–55). The male-to-female ratio was 22 (55%) to 18 (45%). According to the
classification of the European Group for the Immunological Characterization of Acute
Leukemias (EGIL), the following are true:

• The B-I variant was diagnosed in five patients, three of whom showed involvement
of 11q23.

• The B-II variant was found in 35 patients, including 1 with t(1;19).

Refractory disease (defined as >5% blasts in the myelogram on Day 70 of therapy) was
diagnosed in 3 (7.5%) of the 40 patients. One patient (2.5%) with a translocation involving
the MLL gene locus at 11q23 showed a shift in immunophenotypic variant during phase I
of induction therapy.

Bone marrow remission was achieved in 36 (90%) patients after completion of
two phases of induction therapy under the ALL-2016/ALL-2016m protocols. MRD per-
sistence was confirmed in 18 (50%) of the 36 patients. Relapse was diagnosed in three
patients, all of whom were MRD-positive on Day 70 of therapy according to the ALL-2016
protocol. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) was performed in
eight patients: two with 11q23 involvement, two with primary refractory disease, one with
t(1;19), one patient due to prolonged MRD persistence, and one patient after achieving a
second remission.
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Nine patients died: one case of early mortality; in two patients, a refractory relapse
occurred after allo-HSCT; one patient died in remission due to infectious complications;
and five patients developed a refractory relapse at various stages of treatment under the
ALL-2016 protocol.

2.1. The Landscape of Gains, Losses, and cnLOH in B-ALL

In our study, CMA identified a total of 46,581 genomic aberrations across 40 adult
B-ALL patients. These included both copy number gains and losses, as well as copy-neutral
loss of heterozygosity (cnLOH), a category of structural variation that is often overlooked
by conventional cytogenetic methods. The distribution of large-scale chromosomal gains
and losses across all chromosomes is illustrated in Figure 1, while the landscape of cnLOH
events is shown in Figure 2.

 

Figure 1. Loss and gain aberrations for B-ALL patients at the onset of the disease. Aberrations
exceeding 500 Kbase are presented. Blue color for gain aberrations, red for loss aberrations.

 

Figure 2. cnLOH for B-ALL patients at the onset of the disease. Aberrations exceeding 5000 Kbase
are presented. Purple color for cnLOH.

The vast number and diversity of these alterations reflect the high degree of interpa-
tient genomic heterogeneity in adult B-ALL, which complicates risk stratification and the
identification of actionable markers.

2.2. Aberrations Associated with MRD+ Remission

For the downstream analysis, we selected data from 35 adult B-ALL patients for whom
complete clinical and cytogenomic information was available. Among them, 17 patients
exhibited MRD-positive remission status following induction therapy. The dataset included
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76,461 variables, each representing a specific gene and its type of aberration—whether it
was a gain, loss, or cnLOH. We also have combined loss and loss mosaic types as loss. This
gene-centric encoding enabled a comprehensive assessment of the relationship between
specific genomic alterations and MRD status.

To identify genomic features most predictive of MRD+ status, we applied a random
forest classifier—a robust ensemble learning method well-suited for high-dimensional
biological data. One of the key outputs of this model is feature importance, which quantifies
how much each variable contributes to improving the model’s prediction accuracy. In the
context of decision trees, importance is typically derived from the reduction in impurity
(e.g., Gini index) attributed to splits involving a particular feature across the entire forest.

Based on feature importance scores, we identified sets of genes whose aberrations were
most strongly associated with MRD remission. The top 100 genes are shown in Figure 3,
ranked by their relative importance to the classification task. The top features include a
few known oncogenes and tumor suppressors, as well as lesser-known genes that may
play a previously unrecognized role in therapy resistance. This highlights the potential
of machine learning not only for predictive modeling but also for biomarker discovery in
complex, heterogeneous diseases like B-ALL.

Figure 3. Top 100 genes with MRD remission-associated aberrations: blue color for MRD+ remission
risk factors, red for favorable MRD aberrations.
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Importantly, we observed that some genomic aberrations were significantly enriched
among MRD+ patients, suggesting a potential role in therapy resistance or disease per-
sistence. In contrast, other aberrations were more frequently found in MRD-negative
individuals, indicating a possible association with favorable early treatment response.

To assess whether the classification performance of our model exceeds what could be
expected by chance, we conducted a permutation test. Specifically, we trained a random
forest classifier on the original data and computed its cross-validated accuracy. We then
generated a null distribution by randomly permuting the class labels 1000 times, training
a new model on each permuted dataset, and recording the resulting accuracies. Since
these permutations break any real dependency between features and labels, the resulting
distribution reflects the range of accuracies attainable under the null hypothesis of no
association. The p-value was calculated as the proportion of permuted accuracies that
exceeded the accuracy obtained on the original (unpermuted) data. This approach provides
a non-parametric estimate of statistical significance and helps ensure that the observed
performance is not simply due to overfitting or chance. In our case, the real accuracy was
0.80, while the entire null distribution lay below this value, resulting in a p-value of 0.001.
This strongly suggests that the model’s performance is statistically significant and unlikely
to be due to random chance. A visualization of the null distribution compared to the real
accuracy is provided in Figure 4.

Figure 4. Permutation test: histogram of permuted model distribution and real accuracy red dot line.

To further validate the findings obtained from the machine learning model, we con-
ducted univariate statistical testing using Fisher’s exact test, followed by correction for
multiple hypothesis testing. A full table containing the frequency of aberrations in the
MRD+ and MRD− groups and in the reference cohort, along with the p-values and odds
ratios for the top genes, is provided in the Supplementary Table S1 (for p < 0.05). Several
of the top-ranked genes identified by the random forest model also showed statistically
significant differences in aberration frequencies between MRD+ and MRD− groups, thereby
reinforcing their potential biological and clinical relevance. We have discovered that among
the top 200 most frequent unfavorable features, there are three clusters of genes with the
same localization and aberration type: cnLOH in the 19q13.2-19q13.31 region, and mosaic
loss in regions 7p22.3 and 16q13.

We identified a cluster of genes affected by cnLOH in the 19q13.2–19q13.3 region
specifically in MRD+ patients. This region includes the PSG gene family, as well as the
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oncogene ERF, both of which may contribute to leukemic progression and treatment resis-
tance. In addition, we observed significant aberrations involving genes located in 7p22.3
and 16q13. However, in most cases, these alterations were part of large-scale deletions
involving nearly the entire chromosome 7 or 16, suggesting widespread chromosomal
instability rather than focal gene loss.

An aggregated list of gene-level aberration frequencies in MRD+ versus MRD− sub-
groups is provided in Table 1.

Table 1. Distribution of aberrant events most strongly associated with MRD status in B-ALL cohort.

Localization Genes Event Type MRD+ (n = 17) MRD− (n = 18)

19q13.2-19q13.31
PSG10P, PSG11, PSG1, PSG2,

PSG4, PSG5, PSG6, PSG7,
PSG8-AS1, PSG8, PSG9, etc.

LOH 13 3

7p22.3

MAFK, MICALL2, MIR339,
MIR4655, PDGFA-DT,

PDGFA, PRKAR1B-AS1,
ADAP1, C7ORF50,

COX19, CYP2W1, etc.

Loss 6 1

16q13

MT1A, MT1B, MT1DP, MT1E,
MT1F, MT1G, MT1H, MT1IP,
MT1JP, MT1L, MT1M, MT1X,

MT2A, MT3, MT4,
NUP93-DT, NUP93

Loss 6 1

Standard cytogenetics did not detect these deletions because they were present only in
a subset of cells and did not reach the detection threshold of conventional karyotyping. In
most patients with deletions of chromosomes 7 or 16, mosaicism was observed—meaning
the deletion was present in a subset of cells smaller than the overall blast population. This
suggests tumor heterogeneity and the presence of a minor subclone harboring monosomy
of chromosomes 7 and 16 in four MRD-positive patients. In one patient, a deletion of chro-
mosome 16 was detected in all analyzed cells, while a deletion of chromosome 7 was present
in 37% of cells, indicating the existence of a subclone with deletions of both chromosomes.

This concordance between multivariate model-based ranking and univariate frequency
analysis underscores the robustness of our findings and suggests that these aberrations
may serve as candidate biomarkers for risk stratification in adult B-ALL.

To further explore the distribution of the most informative aberrations across the
entire cohort, we generated a heatmap visualizing the presence or absence of genomic
alterations in the top-ranked genes (based on feature importance). The resulting heatmap,
shown in Figure 5, highlights both shared and distinct genomic patterns among MRD+ and
MRD− remission.

The heatmap generated for the top-ranked genes across all patients revealed that aber-
rations in three gene clusters frequently co-occur. These findings support the hypothesis
that PSG genes may serve as a central driver of treatment resistance in B-ALL, with other
associated gene alterations potentially reflecting secondary or co-selected events.

To further investigate the biological relevance of the top genes, we performed pathway
enrichment analysis using the Reactome 2024 database [12] to identify signaling pathways
in which these genes are involved. The top 20 enriched pathways, along with their associ-
ated p-values, are presented in Figure 6. Notably, the most significantly enriched pathways
include Metallothioneins Bind Metals (p < 0.0001), Response to Metal Ions (p < 0.0001), and
Cell Surface Interactions at the Vascular Wall (p < 0.0001), among others. A complete list of
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enriched pathways and the corresponding genes involved is provided in Supplementary
Table S2.

Figure 5. Heatmap of aberrations in the top 200 RF-ranked genes across 35 patients. Purple for
cn-LOH, red for loss, blue for gain.

The most enriched pathway, Metallothioneins Bind Metals, involves metallothionein
factors: MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, MT2A, MT3, MT4.
These proteins play critical roles in metal ion homeostasis and detoxification, particularly in
response to heavy metals like zinc and cadmium. Metallothionein factors are also central in
the Response to Metal Ions pathway, reflecting their shared biological function in buffering
oxidative stress and modulating metal-responsive signaling. The Cell Surface Interac-
tions at the Vascular Wall pathway includes multiple pregnancy-specific glycoproteins
(PSG1–PSG11) and adhesion molecules such as CEACAM1 and CEACAM8, suggesting
a role in immune modulation and cell–cell interactions, particularly in the context of in-
flammation or tumor vascular microenvironments. Other enriched pathways include
more general stress and signaling responses. For instance, Cellular Responses to Stimuli
(p < 0.0001) encompasses factors such as PDGFA, GSK3A, PRKAR1B, and several metal-
lothioneins, implicating them in diverse cellular adaptation mechanisms. The Hemostasis
pathway (p < 0.0001), involving PSGs, CEACAMs, and PDGFA, suggests that some of the
deregulated genes may also influence vascular integrity or coagulation-related processes.

Importantly, several pathways point toward regulation by NFE2L2 (also known as
NRF2), a master regulator of oxidative stress responses. Genes such as MAFK, a transcrip-
tional partner of NFE2L2, appear in multiple related pathways, including NFE2L2 Regulat-
ing Tumorigenic Genes, ER-Stress Associated Genes, Inflammation Associated Genes, and
MDR Associated Enzymes. This highlights a potential role of the NFE2L2/MAFK axis in
stress adaptation, drug resistance, and tumor progression.
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Figure 6. Bar chart of top enriched terms from the Reactome Pathways 2024 gene set library [12]. The
top 20 enriched terms for the input gene set are displayed based on the −log10(p-value), with the
actual p-value shown next to each term. The terms that have significant overlap with the input query
gene set are colored in blue.

2.3. Comparative Analysis with Population Reference Data

To evaluate whether the chromosomal aberrations associated with MRD-positive
status in adult B-ALL patients reflect somatic, disease-specific events rather than common
constitutional variants, we compared our findings with data from a cohort of 105 healthy
individuals. These individuals underwent chromosomal microarray testing as part of
preconception genetic screening or genetic counseling, and were not diagnosed with
hematologic or oncologic diseases.

We constructed a triple-matched reference set by aligning individuals based on sex
and age. The median age was 34 (18–58). This approach minimizes confounding and
ensures that any differences in aberration frequencies can be attributed more confidently to
disease status rather than population structure or technical variability. The use of matched
references is known to substantially increase the statistical power and interpretability
of genomic association studies, particularly when working with high-dimensional data.
Methods for performing this matching and the associated statistical benefits have been well
documented [13].

Tools developed specifically for focal CNA analysis, such as the FocalCall 1.4.0 package,
highlight the importance of using matched references to enhance the detection of relevant
copy number events and reduce false positives in high-dimensional genomic datasets [14].
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This approach allowed us to deduce which variants are likely disease-associated
aberrations, strengthening the clinical relevance of our top candidate genes. We found
that our top-ranked cnLOH aberrations in the 19q13.2–19q13.31 region are also present
in the reference group, with an average frequency of 47% (Figure 7). Notably, these
aberrations are significantly more prevalent among MRD-positive patients, occurring in
approximately 70% of cases, highlighting a potential association with poor treatment
response. Notably, aberrations in regions 7p22.3 and 16q13 were virtually absent in the
relatively healthy cohort.

Figure 7. Frequency of 19q13.2–19q13.31 aberrations in patients and reference group: red color for
MRD+ patients, yellow for MRD− patients, green for reference group.

We also compared the size of aberrations, marker count, and gene count in MRD+

group and reference group. There is no difference between these parameters (Table 2).

Table 2. Characteristics of 19q13.2–19q13.31 aberrations in MRD+ B-ALL cohort and reference group.

Parameter Size (kb)
(MRD+/ref)

Number of
SNP Markers Gene Count

min 1045.83/1013.01 89/94 22/23
max 1949.01/2192.13 313/456 64/69

median 1428.68/1479.25 195/224 41/45

These findings emphasize the importance of comparing patient data with reference
cohorts when prioritizing candidate genomic markers, particularly in diseases with highly
heterogeneous karyotypic profiles such as adult B-ALL. The virtual absence of most candi-
date gene aberrations in the healthy cohort reinforces their potential relevance to leukemo-
genesis and MRD persistence.

3. Discussion
In our previous study, we focused on known genetic drivers of B-ALL and their associ-

ations with MRD positivity, analyzing chromosomal microarray data with an emphasis on
selected candidate genes of established relevance [15]. While this targeted approach yielded
important insights, it left much of the genomic landscape unexplored. In the present study,
by leveraging the full spectrum of CMA data—including 76,461 gene-level features and
various types of copy number alterations—we adopted a machine learning framework to
uncover novel patterns and associations. Our goal was to identify copy number aberrations
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associated with MRD positivity after induction therapy, which is a well-established prognos-
tic factor for relapse and adverse outcomes in B-ALL [16,17]. Through a high-dimensional,
machine-learning-based analysis, we identified a set of candidate genes whose involvement
via copy number changes may contribute to therapy resistance and MRD persistence.

CMA allowed us to comprehensively detect a wide range of structural variants, in-
cluding not only gains and losses but also cnLOH, which can be missed by conventional
cytogenetics [18,19]. The ability of CMA to detect a wide range of aberration types with
high resolution underscores its utility in the comprehensive genomic profiling of hemato-
logic malignancies [20]. This approach revealed 76,461 total aberrations across 40 patients,
emphasizing the complexity and heterogeneity of leukemia-associated genomic alterations
(Figures 1 and 2). Identifying clinically meaningful patterns within this high-dimensional
landscape necessitated the use of machine learning. In our study, random forest modeling
enabled the selection of features (genes and aberration types) most strongly associated
with MRD-positive status, even in the presence of >20,000 variables. Given this complexity,
it is critical to uncover meaningful patterns within this high-dimensional genomic data.
Data-driven approaches, such as machine learning, can be instrumental in identifying
subsets of aberrations associated with clinical outcomes, such as minimal residual disease
(MRD) status, thereby contributing to the development of more precise prognostic tools
and personalized treatment strategies [21].

Our results indicate that the classifier achieved a cross-validated accuracy of 0.80 on
the original, unpermuted data, while the distribution of accuracies under label permutation
remained entirely below this value (p = 0.001). This suggests that the model was able
to capture a statistically significant relationship between features and labels, rather than
fitting to noise or artifacts. Given the relatively small sample size, such validation is
especially important, as high-capacity models like random forests are prone to overfitting.
Permutation testing provides a rigorous, non-parametric method to assess the likelihood
of obtaining a given performance metric under the null hypothesis of no association [22].
Unlike traditional statistical tests that assume specific data distributions, permutation
testing adapts directly to the structure of the data, making it well-suited for complex,
high-dimensional, or small-sample settings commonly encountered in biomedical and
behavioral studies [23].

The final top gene list included both known cancer-associated genes (e.g., ERF) and
genes with previously unknown relevance to leukemia, such as PSG genes. The relevance
of most aberrations involving these genes as risk factors for MRD+ remission was sup-
ported not only by the random forest’s feature importance scores (Figure 3), but also by
Fisher’s exact test with multiple comparison correction, confirming statistical enrichment
of aberrations in MRD-positive patients. The top-ranked genes identified in association
with MRD positivity were mostly distributed across three chromosomes (Figure 8).

PSGs are a family of immunoglobulin superfamily proteins predominantly expressed
by placental trophoblasts. While their physiological role is mainly in immunotolerance
during pregnancy, recent research has highlighted their involvement in cancer progression,
immune modulation, and potentially in chemotherapy resistance.

In several solid tumors, PSGs—especially PSG1 and PSG9—are upregulated and
contribute to a protumorigenic microenvironment. In colorectal cancer (CRC), PSG9 has
been shown to promote angiogenesis through interaction with SMAD4, leading to enhanced
nuclear retention of SMAD4 and activation of angiogenesis-related genes such as VEGFA
and PDGF-AA [24].

In cervical cancer, PSG1 gene amplification and overexpression have been observed.
Its increased levels were associated with an immunosuppressive tumor microenvironment,
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as PSG1 upregulates cytokines such as IL-10 and TGF-β, which can facilitate immune
escape [25].

Figure 8. Localization of top genes associated with MRD-status of B-ALL. Purple for cn-LOH, red for
loss aberrations.

In pancreatic ductal adenocarcinoma (PDAC), PSG1 expression has been detected in
tumor tissues. Its subcellular localization (cytoplasmic vs. nuclear) was found to correlate
with patient outcomes, suggesting a potential prognostic role [26].

Although direct links between PSGs and chemoresistance are still under investigation,
their known roles in angiogenesis and immune modulation may indirectly support tumor
survival in the presence of cytotoxic agents. By promoting regulatory T-cell differentiation
via TGF-β signaling, PSGs may create an immunosuppressive niche that allows cancer cells
to evade both immune surveillance and therapeutic attacks [27].

The role of PSGs in hematologic malignancies is less defined, but given their im-
munomodulatory function, it is plausible they contribute to disease persistence or relapse
in oncohematology. For instance, the induction of FoxP3+ regulatory T-cells through TGF-
β1 by PSGs could impair antitumor immunity, a mechanism relevant in leukemias and
lymphomas where immune evasion plays a key role [28].

PSGs are attractive immunotherapeutic targets because of their limited expression
in normal adult tissues and overexpression in tumors. Therapeutic strategies aimed at
blocking PSGs or their downstream effects could inhibit tumor angiogenesis and restore
immune responsiveness.

The newest 2025 study titled by Jung Hun Oh [29] and colleagues investigates the role
of PSGs in lung adenocarcinoma (LUAD). The study found that elevated expression of
PSG genes—particularly PSG3, PSG7, and PSG8—is significantly associated with poorer
overall survival. These findings were consistent across analyses of The Cancer Genome
Atlas (TCGA) and were validated using data from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC). Pathway analysis indicated that high PSG expression in female
patients correlates with alterations in the KRAS signaling pathway. Given that KRAS
mutations are common in LUAD and associated with aggressive tumor behavior, this link
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suggests that PSGs may contribute to tumor progression through modulation of KRAS-
related pathways.

PSGs are known to regulate immune responses during pregnancy, promoting tolerance
to the fetus. In the context of cancer, their expression may similarly suppress anti-tumor
immunity, facilitating tumor immune evasion. This immunosuppressive effect could
be particularly detrimental in female patients, potentially due to interactions with sex
hormones or differences in immune system dynamics.

Deletions in the short arm of chromosome 7, particularly 7p22.3, have been identified in
various hematologic malignancies, including B-ALL. Although more commonly associated
with myeloid malignancies, recent genomic profiling studies in B-ALL have revealed
recurrent submicroscopic deletions at 7p22.3, encompassing genes involved in DNA repair,
apoptosis, and lymphoid development [30].

The IKZF1-like gene family is frequently disrupted in this region, leading to altered
transcriptional regulation of lymphoid differentiation and contributing to resistance to
corticosteroids and other chemotherapeutic agents [31]. In pediatric B-ALL, 7p22.3 deletion
has been associated with minimal residual disease (MRD) positivity post-induction, which
is a strong predictor of relapse [32].

The 7p22.3 region includes several candidate tumor suppressor genes such as USP42,
a ubiquitin-specific protease involved in p53 stabilization. Loss of USP42 may lead to
impaired p53-mediated apoptosis and reduced chemosensitivity [33].

Our approach to analyzing the association between the “gene-event” marker and
therapy response highlights the deletion of genes in the 16q13 region, which encode met-
allothioneins (MT1A, MT1B, MT1DP, MT1E, MT1F, MT1G, MT1H, MT1IP, MT1JP, MT1L,
MT1M, MT1X, MT2A, MT3, MT4, NUP93-DT, NUP93), as one of the most significant
markers. Metallothioneins (MTs) are small, cysteine-rich proteins that play a key role in
metal homeostasis, protection against heavy metal toxicity, DNA damage, and oxidative
stress. In humans, there are four main isoforms (MT1, MT2, MT3, MT4), encoded by genes
on chromosome 16q13, with MT1 comprising eight functional subtypes. MTs are involved
in carcinogenesis by influencing tumor growth, progression, and therapy resistance. Their
expression varies depending on tumor type, differentiation stage, mutations, and envi-
ronmental factors. Differences in the expression of specific MT isoforms may be used for
cancer diagnosis and treatment.

The review by Si et al. [34] discusses the mechanisms through which MTs influence
tumor growth, angiogenesis, metastasis, microenvironment remodeling, immune evasion,
and drug resistance. It emphasizes the potential of MTs as biomarkers for diagnosis and
prognosis and explores approaches for targeted cancer therapy through modulation of
MT isoforms. In particular, it notes decreased MT expression in acute leukemia, which is
significantly associated with clinical outcome.

Another study focuses [35] on the dysregulation of MT1 metallothionein subtypes in
TCF3::PBX1 pre-B-cell acute lymphoblastic leukemia (ALL). The goal of the study was to
identify genes whose regulation is specifically disrupted by the TCF3::PBX1 translocation.
It was shown that the expression of metallothioneins is significantly reduced.

Additionally, MT3, a tumor suppressor gene, is frequently inactivated in pediatric
AML through promoter hypermethylation [36].

However, we found very limited information regarding the association of 16q13
deletion with clinical outcomes in B-ALL. We found only one mention of a 16q13 deletion
between positions 57,275,940 and 57,331,381 (two OMIM genes are located in this region:
ADP-ribosylation factor-like 2 binding protein (ARL2BP) and plasmolipin (PLLP)) in young
adults with B-ALL [37].
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In our study, the 16q13 deletion is not a standalone event in most patients. Instead,
the loss of the 16q13 locus occurs as a result of the loss of the entire chromosome 16 (see
Figure 8).

Deletions of 7p22.3 and 16q13 are newly identified markers of poor prognosis and
therapy resistance in B-ALL. Their presence may indicate genomic instability, defective
apoptosis, and impaired immune signaling, which are critical for effective leukemia clear-
ance. Recognizing these cytogenetic abnormalities may aid in developing risk-adapted
treatment strategies and new therapeutic approaches.

Altogether, our findings underscore the potential of CMA data, when combined with
machine learning and matched-reference comparisons, to uncover novel genomic predictors
of treatment response in adult B-ALL. Further functional validation of the implicated genes
is warranted, especially in the context of PSG-driven regulatory networks. Our study
also highlights the value of integrating multiple types of genomic variation (e.g., cnLOH,
deletions, duplications) and supports a broader implementation of high-resolution CMA in
adult leukemia diagnostics and risk stratification.

4. Materials and Methods
The study cohort consisted of 40 adult patients diagnosed with B-cell acute lym-

phoblastic leukemia (B-ALL), all of whom were treated under the ALL-2016 protocol.
Inclusion criteria required that patients had measurable disease and underwent induction
chemotherapy, with post-induction bone marrow samples collected for analysis. Since there
is very limited information on population-level frequencies of LOH in public repositories,
we turned to the local repository of the “Genomed” laboratory. Additionally, 105 healthy
individuals were included as a reference cohort. These individuals underwent chromo-
somal microarray analysis (CMA) as part of preconception genetic counseling and were
matched for sex and age. Written informed consent was obtained from all participants, and
the study was approved by the local ethics committee.

Genomic DNA was extracted from bone marrow samples of B-ALL patients using
standard extraction protocols [38]. All patients included in the protocol underwent im-
munophenotyping, cytogenetic and molecular tests of bone marrow samples at the onset
of the disease. MRD was assessed at the end of induction (day 70) using 6- or 10-color flow
cytometry of the bone marrow specimens.

CMA was conducted using the CytoScan™ HT-CMA 96F array platform (Thermo
Fisher Scientific, Santa Clara, CA, USA) following the manufacturer’s recommended pro-
tocol. Experimental procedures were carried out at the Molecular Pathology Laboratory
“Genomed” (Moscow, Russia). Genomic DNA was extracted from bone marrow samples
collected from B-ALL patients prior to initiation of therapy. Each sample met quality control
thresholds, with DNA input ranging from 100 to 200 ng and an A260/A280 ratio of ≥1.8.
A reference male DNA sample of matched concentration (Thermo Fisher Scientific, USA)
was used as control. Data acquisition and analysis were performed using the Multi Sample
Viewer Software (v.1.1.0.11) and Chromosome Analysis Suite (ChAS v.4.3.0.71) provided by
the manufacturer. At the pre-analytical stage of the study, DNA quality was assessed. The
following quality criteria were established for inclusion in the analysis: non-degraded DNA,
fragment length of at least 10,000 base pairs on electrophoresis, concentration of at least
3 ng/µL, and a minimum volume of 30 µL. For LOH detection, the marker-count threshold
was set at 50. The validity of LOH regions was evaluated using the ChAS software. The
marker-count threshold was also set at 50 for duplications and 20 for deletions. The validity
of CNVs was determined based on the Mean log2Ratio value: greater than 0.25 or less
than −0.25.
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All DNA samples were verified using the STR method [39], and the detected CMA-
selected aberrations were confirmed by allelic imbalance relative to the STR profile of
matched non-tumor tissue samples from each patient (Figure 9).

 

(a) 

 
(b) 

Figure 9. An example of verification of CMA-identified molecular karyotype aberrations (a) using
STR analysis of paired tumor and normal DNA samples from a patient. (b) Duplications of chromo-
somes 10 and X are evidenced by allelic imbalance of the STR markers D10S1248 and Amelogenin
(highlighted with blue frames).

STR profiles for each sample were assessed by PCR with primers to 19 STR loci
and amelogenin locus available in COrDIS Plus multiplex kit (Gordiz Ltd., Moscow, Rus-
sia). Following markers were studied: D1S1656 (locus 1q42), D2S441 (2p14), D3S1358
(3p21.31), D5S818 (5q23.2), D7S820 (7q21.11), D8S1179 (8q24.13), D10S1248 (10q26.3),
D12S391 (12p13.2), D13S317 (13q31.1), D16S539 (16q24.1), D18S51 (18q21.33), D21S11
(21q21.1), D22S1045 (22q12.3), CSF1PO (5q33.1), FGA (4q31.3), SE33 (6q14), TH01 (11p15.5),
TPOX (2p25.3), VWA (12p13.31), amelogenin X (Xp22.1–22.3), and amelogenin Y (Yp11.2).
For fragment analysis of PCR products, a Nanophore-05 genetic analyzer (Institute of
Analytical Instrumentation, Saint Petersburg, Russia) was used. STR profiles were then
analyzed using GeneMapper Software (v. 4-0).

To identify key genomic features associated with MRD positivity, we employed a
random forest model using Python 3.12. The scikit-learn library (version 0.24.0) was used to
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implement the model. Feature selection was performed using the RandomForestClassifier
with 10-fold cross-validation (cross_val_score function). The top 10 genes most strongly
associated with MRD positivity were selected based on feature importance scores. Statistical
analysis of the feature importance was performed using Fisher’s exact test with multiple
comparison corrections, using the statsmodels package (version 0.12.2). Heatmap analysis
and clustering of aberrations were performed using seaborn (version 0.11.2) and matplotlib
(version 3.4.3) libraries in Python.

To validate the disease-specific nature of the identified genomic alterations, we com-
pared the aberrations found in the B-ALL patients to those observed in the healthy reference
cohort. We specifically examined the top 200 genes identified from the random forest anal-
ysis for aberrations in the reference group, and statistical significance was assessed using
Fisher’s exact test.

There are several limitations to our study that should be acknowledged. In the first
part, the primary endpoint was treatment response, focusing on the distinction between
responders and non-responders among B-ALL patients. In the second part, we expanded
our analysis by incorporating data from a healthy population to compare the genomic
profiles of ALL patients with those of individuals without hematological malignancies.
However, the definition of the “healthy reference group” is not entirely aligned with the
clinical endpoints of the patient cohort. While the patient analysis was based on therapeutic
response, the comparison with healthy subjects reflects a broader contrast between disease
and non-disease states. As such, the reference group should be interpreted as a reference
population rather than a strictly matched reference in terms of clinical outcomes.

5. Conclusions
Our findings highlight a distinct genomic signature associated with MRD-positive

B-ALL. The recurrent cnLOH in the 19q13.2–19q13.31 region—encompassing the PSG gene
family and ERF oncogene—may contribute to leukemic cell survival and resistance to
therapy. Furthermore, the frequent detection of broad deletions involving chromosomes
7 and 16, including critical regions 7p22.3 and 16q13, suggests a pattern of chromosomal
instability linked to adverse clinical outcomes. These aberrations may serve as important
biomarkers for refining prognostic models and guiding treatment strategies in B-ALL. Fur-
ther functional validation is needed to explore the role of these genes in therapy resistance.
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