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Abstract

RKIP and LKB1, encoded by PEBP1 and STK11, respectively, have emerged as key regula-
tors of cancer pathophysiology. However, their role in shaping tumor progression through
modulation of the tumor microenvironment (TME) is not yet fully understood. To address
this, we performed a comprehensive pan-cancer analysis using TCGA transcriptomic data
across 33 cancer types, grouped by their tissue of origin. We investigated PEBP1/STK11
co-expression and its association with transcriptomic reprogramming in major TME com-
ponents, including immune, mechanical, metabolic, and hypoxic subtypes. Our results
revealed both positive and inverse correlations between PEBP1/STK11 co-expression and
TME-related molecular signatures, which did not align with classical cancer categoriza-
tions. In a subset of tumors, PEBP1/STK11 co-expression was significantly associated with
improved overall survival and reduced mortality (HR < 1). Notably, we predominantly
observed inverse correlations with pro-inflammatory and immunosuppressive chemokines,
immune checkpoints, extracellular matrix components, and key regulators of epithelial-to-
mesenchymal transition. In contrast, we found positive associations with anti-inflammatory
chemokines and their receptors. Importantly, PEBP1/STK11 co-expression was consistently
linked to reduced expression of drug resistance genes and greater chemosensitivity across
multiple tumor types. Our findings underscore the co-expression of PEBP1 and STK11 as
a promising target for future studies aimed at elucidating its potential as a biomarker for
prognosis and therapeutic response in precision oncology.
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1. Introduction
The tumor microenvironment (TME) represents a highly complex and dynamically

evolving biological system, with distinct compositional differences across various tumor
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types [1]. It primarily consists of cellular elements and non-cellular/structural components
including immune and stromal cells, blood vessels, and the extracellular matrix (ECM) [2,3].
Recently, the TME landscape has been recognized as encompassing distinct specialized
niches that interact and overlap, engaging in dynamic crosstalk [4]. These specialized
microenvironments can be systematically classified into six major types: hypoxic niche,
immune microenvironment, metabolic microenvironment, acidic niche, innervated niche,
and mechanical microenvironment [4–6]. The intricate interplay among the various TME
sub-microenvironments not only regulates and sustains tumor survival and growth, but
also facilitates the acquisition of an invasive phenotype by cancer cells. This, in turn, en-
ables their dissemination from the primary site and migration to distant locations through
a complex, multistep metastatic cascade [3,7]. Furthermore, the TME significantly influ-
ences cancer responses to conventional chemotherapeutics by modulating drug sensitivity,
resistance mechanisms, and immune evasion, ultimately impacting treatment efficacy [8].

Over the years, numerous gene products have been identified as onco- and metastasis-
inducers, with their expression in cancer, immune, and stromal cells being strongly
influenced by TME crosstalk. However, only a few have been recognized as endoge-
nous onco-suppressors that specifically function to suppress metastasis and/or drug
resistance. Among them the Raf kinase inhibitory protein (RKIP), encoded by Phos-
phatidylethanolamine Binding Protein 1 (PEBP1), has been identified by us and others as
a key regulator of intracellular signaling pathways involved in physiological processes
and disease pathogeneses, such as cancer [9,10]. In various cancer types RKIP functions as
a direct suppressor of key signaling pathways including Raf-1/Mek/Erk, NF-κB, STAT3,
GSK3β, and GPCRs signaling. This suppression leads to a reduction in cancer cell prolifer-
ation and survival, as well as attenuation of various stages of the multifaceted metastatic
cascade, including epithelial-to-mesenchymal transition (EMT) [11,12]. One of the most no-
table cancers where RKIP acts as a metastasis suppressor is breast cancer, where it inhibits
angiogenesis, local invasion, intravasation, and colonization [13–15].

RKIP further appears to counteract tumor resistance to chemotherapy, immunotherapy,
and radiotherapy, while enhancing anticancer host immunosurveillance [11] via direct
suppression of the aforementioned signaling pathways [11,12,16,17]. In this context, tumors
exhibiting reduced RKIP expression, are often associated with increased resistance to
conventional chemotherapeutics, thus suggesting that RKIP could serve as a potential
predictive biomarker for chemotherapy responsiveness, while therapeutic strategies aimed
at upregulating RKIP expression may enhance treatment efficacy and improve clinical
outcomes [18]. Accordingly, RKIP levels have been positively associated with improved
clinical outcomes in multiple cancers such as breast, prostate, melanoma, glioma, colorectal,
lung, pancreatic, hepatocellular carcinoma, gastric, ovarian, liver, kidney, and other solid
and hematological malignancies [11,14,15,19–25].

The diminished or even complete loss of RKIP expression has been observed in a wide
range of solid and hematological malignancies [11] while this reduction has been strongly
associated with significantly shorter overall patient survival [26]. Moreover, studies have
established a causal relationship between RKIP levels and several proteins involved in
TME regulation, thus suggesting that RKIP reduction may contribute to the remodeling of
the TME in a way that supports tumor progression [27]. Multiple regulatory mechanisms
have been described in the literature in contributing to RKIP loss, including promoter
hypermethylation via EZH2-mediated histone modifications, transcriptional repression
by BACH1 and Snail1 [11,17,28], post-transcriptional regulation via microRNAs, like miR-
224, and long non-coding RNAs [29–31], as well as post-translational modifications, such
as phosphorylation at serine 153 by protein kinase C, which leads to the loss of RKIP
activity [11,32,33]. Given its critical role in tumor biology, RKIP levels could therefore be
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clinically significant, serving both as a prognostic marker for tumor aggressiveness and a
potential therapeutic target. In this context, strategies aimed at restoring RKIP expression
levels and activity hold promise for improving cancer treatment outcomes.

Liver Kinase B1 (LKB1), encoded by the Serine–Threonine Kinase 11 (STK11) gene,
is another example of a tumor suppressor whose expression and activity are frequently
subject to loss or inactivation in various malignancies, thus contributing to tumorigenesis
and disease progression [34,35]. LKB1 activation is controlled by an allosteric mechanism,
where it forms a heterotrimeric complex with two accessory proteins, the STE20-related
kinase adaptor (STRAD), and mouse protein 25 (MO25), also referred to as calcium binding
protein 39 (CAB39) [36,37]. This protein functions primarily as a key kinase that phospho-
rylates and activates AMP-activated protein kinase (AMPK), a central energy sensor that
responds to changes in nutrient availability and cellular energy stress [34,38]. As such,
LKB1 plays a vital role in regulating essential cellular processes, including cell migration,
proliferation, and metabolism [39]. Furthermore, both LKB1 and AMPK are involved in
maintaining cell polarity, whose disruption is implicated in carcinogenesis [40–42].

Germline mutations in STK11 are predominantly linked to a hereditary, autosomal
dominant cancer predisposition syndrome characterized by gastrointestinal (GI) polyposis,
distinctive mucocutaneous pigmentation, and an elevated risk of malignancy [43,44]. In-
dividuals diagnosed with Peutz–Jeghers syndrome (PJS) exhibit a significantly increased
susceptibility to developing GI neoplasms, including colorectal, pancreatic, and gastric
cancers, along with other non-GI epithelial malignancies, such as breast, uterine, and
cervical cancers, lung cancer, and gonadal tumors affecting the ovaries and testes [45,46].

LKB1 is one of the few serine/threonine kinases frequently inactivated by mutations
during cancer development [40]. Loss of LKB1 function enables tumors to evade cancer
immunosurveillance through several mechanisms [47]. One such mechanism involves the
disruption of LKB1′s role in preventing the epigenetic silencing of STING, a crucial com-
ponent of the innate immune response. Normally, LKB1 inhibits DNA methyltransferase
activity, thereby maintaining STING expression. In LKB1-deficient tumors, increased DNA
methylation leads to STING repression, impairing downstream anti-tumor immune signal-
ing. This inactivation of STING represents a novel immune evasion strategy, particularly in
lung adenocarcinomas harboring co-mutations in KRAS and STK11, where it contributes
to resistance against host immune responses [48–50]. Additionally, LKB1 loss has been
shown to induce complex alterations in the TME, indicating its involvement in angiogene-
sis regulation and potential effects on tumor response to anti-angiogenic therapy [47,51].
Studies also suggest that LKB1 promotes resistance to gemcitabine in the MDA-MB-231
breast cancer cell line, potentially by facilitating gemcitabine breakdown and shielding
cells from DNA damage [52]. Furthermore, other preclinical studies have shown that LKB1
loss reduces the sensitivity of tumor cells to radiotherapy [53,54].

Along with RKIP, LKB1 is also considered a key metastatic suppressor in various can-
cer types, including lung, breast, ovarian, colorectal, and prostate cancer [55–60]. Studies
have revealed that low LKB1 expression promotes tumor metastasis by regulating EMT
through the p38 MAPK signaling [61]. In this context, a distinct mechanism for LKB1-
mediated adhesion involves the LKB1-NUAK1 pathway, which regulates cell detachment
and adhesion through myosin light chain 2 (MLC2) and myosin phosphatase (MYPT1).
Inhibition of this pathway disrupts cell detachment and enhances adhesion [62]. Addition-
ally, expression profiling in human lung cancer cell lines and mouse lung tumors revealed
several metastasis-promoting genes, including NEDD9, VEGFC, and CD24, as targets of
LKB1 repression [63].

At a clinical level, previous studies have shown that LKB1 expression is associated
with improved survival in patients with advanced non-small cell lung cancer receiving
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chemotherapy and bevacizumab treatment [64], while the loss of tumoral LKB1 expression
serves as a negative prognostic indicator in patients with operable colorectal cancer [65].
Furthermore, LKB1 expression has been identified as a potential predictor of overall sur-
vival in a subset of HER2-positive patients [66].

The well-established tumor-suppressive functions of RKIP (PEBP1) and LKB1 (STK11)
suggest that their expression, either independently or in concert, may influence cancer
progression through effects on the tumor microenvironment (TME). Given the TME’s struc-
tural and functional complexity—comprising immune, metabolic, hypoxic, and mechanical
components—understanding how these genes might interact with distinct microenviron-
mental niches could inform future studies on tumor behavior and treatment response.
While both genes have been individually implicated in TME modulation, to our knowledge,
their combined expression patterns across cancer types and potential associations with
specific TME features have not been systematically characterized.

In this study, we use a computational, transcriptomics-based pan-cancer approach
to explore whether co-expression of PEBP1 and STK11 is associated with distinct TME
profiles. Rather than asserting causality, our goal is to integrate prior biological knowledge
with public omics data to generate testable hypotheses that can guide future mechanistic
and translational research.

2. Results
Our study employed an integrative bioinformatic and computational framework to

systematically investigate the co-expression patterns of PEBP1 (RKIP) and STK11 (LKB1)
transcripts across 33 distinct malignancies retrieved from TCGA datasets (accessed on
17 May 2025). This analysis was conducted in the context of cancer-type–specific patho-
physiological characteristics and TME features and functions. Through this approach,
we identified several significant positive and negative associations between RKIP/LKB1
co-expression and key clinicopathological parameters, including chemoresistance and
metastatic potential, as well as with cellular and non-cellular components of the TME
spanning various niches. Notably, many of these associations exhibited clear cancer-type–
specific patterns. These integrative findings provide a computationally driven basis for
formulating hypotheses that could be experimentally validated to explore their putative
clinical relevance.

2.1. PEBPI/STK11 Co-Expression Favors Overall Survival in a Cancer-Type Dependent Manner

Overall survival (OS) and Hazard Ratio (HR) analyses were conducted within a
pan-cancer framework to assess the impact and the putative clinical significance of the
co-expression of the PEBP1 and STK11 transcripts. Notably, our findings revealed a
significant positive correlation of PEBP1/STK11 co-expression and OS in pancreatic ductal
adenocarcinoma (PAAD) exclusively, suggesting a potentially distinct role of these genes
in PAAD progression and survival probability (Figure 1A). Similarly, the HR analysis
identified statistically significant associations in both PAAD and clear cell renal carcinoma
(KIRC), with HR values of 0.547 and 0.717, respectively. These findings imply a potential
protective role for PEBP1 and STK11 co-expression in the progression of these cancers,
potentially reducing the mortality risk (Figure 1B).

To further investigate the role of PEBP1 and STK11 co-expression within the tumor
microenvironment (TME), we conducted a comprehensive set of analyses. First, we per-
formed an ESTIMATE score analysis, which quantifies the relative abundance of non-tumor
cellular components, including immune and stromal cells, within the tumor. The results
showed a statistically significant negative correlation between the ESTIMATE score and
PEBP1 and STK11 co-expression patterns across the majority of cancer types. Notably, this
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correlation was absent in cholangiocarcinoma (CHOL), cervical carcinoma (CESC), uterine
carcinosarcoma (UCS), glioblastoma multiforme (GBM), paraganglioma and pheochromo-
cytoma (PCPG), and thymoma (THYM). Additionally, the stromal score, which reflects the
proportion of stromal components within the tumor, also exhibited a negative correlation
with the co-expression of the aforementioned genes. However, no such correlation was
detected in CHOL, CESC, UCS, PCPG, THYM, and uveal melanoma (UVM) (Figure 1C).

 

Figure 1. Impact of PEBPI/STK11 co-expression on clinicopathological characteristics at the pan-
cancer level. (A) Overall survival analysis in pancreatic adenocarcinoma (PAAD), (B) Hazard Ratio
analysis across multiple cancer types, and (C) ESTIMATE score correlation analysis. Color coding:
red denotes a positive correlation and blue denotes an inverse (negative) correlation. * p ≤ 0.05,
** p ≤ 0.01.

2.2. LKB1 Exhibits Broader and Stronger Functional Associations with TME Subtypes Compared
to RKIP Based on a Multiple-UniReD Analysis

To start with, we explored the potential roles of RKIP and LKB1 protein expression
in distinct functional aspects of the TME by utilizing the literature mining tool Multiple
UniReD to assess functional associations, as previously described in [67]. A curated refer-
ence list of proteins known to influence drug resistance, hypoxia, metabolism, and the me-
chanical properties of the TME, was used to represent characteristic sub-microenvironments
(niches), namely, hypoxic, metabolic, and mechanical (Supplementary Figure S1). LKB1
demonstrated strong associations across multiple sub-microenvironments, with a score of
13.5 out of 15 (90%) for drug resistance, 39 out of 50 (78%) for the mechanical TME, 28 out
of 43 (65.1%) for hypoxia, and a moderate score of 20.5 out of 50 (41%) for the metabolic
TME. In comparison, RKIP showed its strongest association with the mechanical TME (33
out of 50, 66%), followed by drug resistance (9.5 out of 15, 63.3%), hypoxia (26 out of 43,
60.5%), and a notably weaker association with the metabolic TME (9.5 out of 50, 19%).

Overall, the UniReD analysis revealed more extensive and robust associations for
LKB1 than for RKIP, particularly in relation to drug resistance and mechanical properties
of the TME.
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2.3. PEBP1/STK11 Co-Expression Associates with the Molecular Remodeling of Distinct
TME Niches

We further investigated in detail the impact of PEBP1 and STK11 co-expression on
the molecular remodeling of distinct TME niches, including the immune, metabolic, hy-
poxic, and mechanical sub-microenvironments, in the context of their cellular and non-
cellular components.

2.3.1. Immune Niche
Immune Cell Infiltration: Immune Score

Innate immune cells, including macrophages, dendritic cells, eosinophils, natural
killer cells, neutrophils, monocytes, and mast cells, as well as, adaptive immune cells
like CD8+ T cells, CD4+ naïve and memory T cells, regulatory T cells, gamma–delta T
cells, helper T cells, plasma cells, and naïve and memory B cells, were analyzed to assess
immune cell infiltration patterns in relation to the co-expression of PEBP1/STK11 (Figure 2).
Among the immune cell populations of the innate immunity, macrophages of the M2
phenotype showed a negative correlation with the co-expression of PEBP1/STK11 in several
cancer types, including colorectal adenocarcinoma (COAD), bladder urothelial carcinoma
(BLCA), chromophobe renal cell carcinoma (KICH), KIRC, GBM, and lung squamous cell
carcinoma (LUSC). In contrast, a strong positive correlation was observed in skin cutaneous
melanoma (SKCM). No statistically significant correlation was identified in the other
cancer types analyzed. Natural killer (NK) cells, both in their resting and activated states,
displayed a positive correlation with the co-expression of PEBP1/STK11 across a broad
spectrum of cancers, predominantly within the gastrointestinal tract (excluding CHOL
and gastric adenocarcinoma (STAD)). Additionally, positive correlations were observed in
KIRC, breast ductal carcinoma (BRCA), ovarian serous cystadenocarcinoma (OV), prostate
adenocarcinoma (PRAD), LUSC, mesothelioma (MESO), head and neck squamous cell
carcinoma (HNSC), thyroid papillary carcinoma (THCA), THYM, and sarcoma (SARC).
Neutrophils on the other hand exhibited a negative association with PEBP1/STK11 co-
expression in most cancer types, particularly in gastrointestinal cancers (excluding CHOL
and esophageal carcinoma (ESCA)), BRCA, CESC, PRAD, uterine corpus endometrioid
carcinoma (UCEC), KIRC, lower grade glioma (LGG), lung adenocarcinoma (LUAD),
MESO, HNSC, and acute myeloid leukemia (LAML).

Regarding the infiltration of the adaptive immune cell populations, the presence of
CD8+ T cells within the TME was positively correlated with the PEBP1/STK11 co-expression
patterns in COAD, STAD, KIRC, BRCA, UCEC, LUSC, HNSC, and THCA. However, nega-
tive correlations were identified in PRAD and LUAD, suggesting that the impact of these
genes on cytotoxic T-cell infiltration may vary depending on the tumor type. Similarly, T
helper cells exhibited a positive correlation in COAD, rectum adenocarcinoma (READ),
BLCA, BRCA, UCEC, LUSC, and HNSC, while a negative correlation was observed in
PRAD and THYM. indicating potential immunomodulatory differences across these malig-
nancies. Furthermore, our analysis revealed a complex, state-dependent intra-relationship
between B cell infiltration and PEBP1/STK11 co-expression. This dynamic interaction
appears to vary based on the activation or differentiation status of B cells, with distinct
profiles emerging for naive, memory, or plasma cell subtypes. It suggests that RKIP and
LKB1 may modulate B cell functions differently, potentially influencing immune responses
within the TME. A similar dynamic relationship was also seen in CD4+ T cells, where the
correlation nature also depended on the activation or differentiation state of CD4+ T cells,
with distinct patterns emerging for naive, activated, memory, or resting memory subtypes.
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Figure 2. Heatmap illustrating the transcriptional impact of PEBP1/STK11 co-expression on alterna-
tions in immune cell infiltration across cancer types. Color coding: red, positive correlation; blue,
inverse (negative) correlation. * p ≤ 0.05, ** p ≤ 0.01.

Lastly, resting mast cells demonstrated a strong positive correlation with PEBP1/STK11
co-expression of in multiple cancers, including hepatocellular carcinoma (LIHC), KICH,
KIRC, BRCA, PRAD, LUAD, MESO, THCA, and SARC. However, a significant negative
correlation was found exclusively in COAD and GBM.

Accordingly, the immune score analysis which estimates the level of immune cell
infiltration within a tumor, exhibited a negative trend across most cancers. However, no
significant correlation was observed in CHOL, papillary renal cell carcinoma (KIRP), CESC,
UCS, LGG, LUAD, HNSC, and PCPG cancers (Figure 1C).

Inhibitors of Immune Responses

Immune checkpoints are integral non-cellular components within TMEs that gov-
ern immune cell function via maintaining self-tolerance through activating inhibitory
pathways [68]. Given their significance in immune homeostasis, understanding how
PEBP1/STK11 co-expression influences immune checkpoint regulation is of considerable
importance. Our analysis revealed a widespread negative correlation between the co-
expression of these genes and the expression of genes encoding immune checkpoint
molecules, such as CD274, PDCD1LG2, PDCD1, CTLA4, TIGIT, and CD244, across multiple
cancer types, including gastrointestinal, reproductive, nervous, respiratory, ocular, and
hematopoietic cancers. Among other genes that encode immune inhibitors, IL10, TGFBR1,
and IDO1 exhibited a broadly negative correlation across most cancer types, aligning with
the expression pattern of PEBP1/STK11. This finding suggests that the co-expression pattern
of PEBP1/STK11 may influence immune evasion mechanisms within tumors. However, a
few exceptions were noted, highlighting the potential for context-specific regulatory effects.

In contrast, genes encoding immune inhibitors such as IL10RB, ADORA2A, LGALS9,
CSF1R, and KDR demonstrate a more intricate and variable correlation pattern. Depending
on the cancer type, these inhibitors genes can show either positive or negative correlations,
suggesting a context-dependent regulatory phenotype (Figure 3A).
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Figure 3. Heatmaps depicting the associations between PEBP1/STK11 co-expression and the tran-
scriptional levels of immune modulators. (A) Immune inhibitory genes and (B) immune stimulatory
genes. Color coding: red, positive correlation; blue, negative correlation. * p ≤ 0.05, ** p ≤ 0.01.

Immune Stimulators

Most of the immune stimulators analyzed demonstrated a complex, cancer type-
dependent expression pattern, suggesting that their correlation with PEBP1/STK11 is
influenced by the specific TME of each cancer (Figure 3B). Notably, most of Tumor Necrosis
Factor (TNF) receptor genes including TNFRSF4, TNFRSF14, TNFRSF18, TNFRSF25, as well
as CD276, HHLA2, PVR, and RAET1E, were among the genes encoding immune stimulators
displaying the strongest positive correlations with PEBP1/STK11 co-expression. In contrast,
a uniform negative association with PEBP1/STK11 co-expression was found in most of
the genes encoding TNF ligands (ENFSF13B, TNFSF4, TNFSF9, TNFSF14, TNFSF18, and



Int. J. Mol. Sci. 2025, 26, 7145 9 of 29

TNFSF15) in almost all cancer types. In general, at least one of the genes that encode immune
stimulators exhibited a positive correlation with PEBP1/STK11 expression across all cancer
types, with the exception of CHOL, ESCA, UCS, and diffuse large B-cell lymphoma (DLBC).
The cancer type showing the most positive correlations, particularly with ICOSLG, CD40,
TNFRSF4, TNFRSF14, TNFRSF25, TNFSF13, HHLA2, and RAET1E, was KIRC. Additional
malignancies, including COAD, UCEC, LGG, HNSC, PCPG, and respiratory cancers, also
exhibited numerous positive correlations. In contrast, other genes that encode immune
stimulators, such as CD28, CD80, ICOS, CD40LG, CD27, CD48, IL6, IL2RA, LTA, MICB, and
KLRC1 generally showed a negative correlation with PEBP1/STK11 co-expression across
most cancer types.

These findings underscore the intricate and cancer-specific interactions between im-
mune stimulators and PEBP1/STK11 expression.

Chemokines and Chemokine Receptors

Given the bifunctional nature of both chemokines and their receptors within the
TME, as they can exhibit both pro-inflammatory and anti-inflammatory effects, depend-
ing on the specific physiological context, our analysis revealed a predominantly negative
correlation between the PEBP1/STK11 co-expression pattern and the so-called immunosup-
pressive chemokine receptor genes across most of the analyzed cancer types (Figure 4A).
However, exceptions were observed in certain cancers, including CXCR4 in CESC and
adrenocortical carcinoma (ACC), as well as CCR10 in various malignancies, such as nervous
system cancers, endocrine malignancies (excluding ACC), PAAD, KIRC, BRCA, CESC,
UCEC, and HNSC, where these chemokine genes demonstrated a positive correlation
with PEBP1/STK11 co-expression. Similarly, immune-activating chemokine receptor genes
tended to show a negative correlation with PEBP1/STK11 co-expression across all can-
cer types examined. The notable exception of this trend was observed in COAD, READ,
and STAD, where CXCR3 displayed a positive correlation with PEBP1/STK11 expression,
highlighting the complex and context-dependent interplay between PEBP1/STK11 and
chemokine-mediated immune regulation in the tumor microenvironment.

Accordingly, pro-inflammatory chemokine genes exhibited a broad negative correla-
tion with PEBP1/STK11 co-expression across cancers of the gastrointestinal, reproductive,
nervous, respiratory, and hematopoietic systems, suggesting that PEBP1/STK11 a poten-
tial role for in dampening inflammatory signaling within these malignancies (Figure 4B).
Notably, endocrine cancers displayed the highest frequency of positive correlations with
pro-inflammatory chemokine genes, particularly with CCL8, CCL11, CXCL1, CXCL5, and
CXCL6, thus indicating a distinct regulatory pattern in this cancer subtype.

In contrast, the correlation patterns between genes encoding anti-inflammatory
chemokines and PEBP1/STK11 co-expression were more variable. CCL18, CCL22, CCL23,
and CXCL12 consistently showed a negative correlation across most cancer types, while
other anti-inflammatory chemokine genes displayed a more complex, context-dependent
relationship, with both positive and negative correlations depending on the specific ma-
lignancy (Figure 4B). Notably, CCL25, CCL28, CXCL14, and CXCL17 were most frequently
associated with positive correlations. The cancers exhibiting the strongest positive cor-
relations between anti-inflammatory chemokine genes and PEBP1/STK11 co-expression
were found in the urinary, respiratory, and endocrine systems. Additionally, CX3CL1, a
gene that encodes a context-dependent chemokine, showed a strong positive correlation
with the co-expression of PEBP1/STK11 in KIRC, KIRP, CESC, LUAD, and GBM, while
CCL16 exhibited a positive correlation only in LIHC and THCA. In contrast, CXCL13 was
negatively associated with PEBP1/STK11 co-expression in almost all cancer types.
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Figure 4. Heatmaps displaying correlations between PEBP1/STK11 co-expression and the transcript
levels of chemokine-related genes. (A) Chemokines receptors and (B) chemokines. Color coding: red,
positive correlation; blue, negative correlation. * p ≤ 0.05, ** p ≤ 0.01.

2.3.2. Metabolic Niche

The metabolic sub-microenvironment (MM) of a TME is one of its major components,
serving as a critical energy source that plays a pivotal role in shaping tumor growth,
progression, and response to therapy. Understanding how PEBP1/STK11 co-expression
may interfere with the function and properties of tumor MM is essential for gaining
deeper insights into tumor metabolism and its potential therapeutic implications. Among
metabolism-related genes, IDO1 and NCOA2, responsible for aggressive tumor characteris-
tics, exhibited consistently negative correlations with PEBP1/STK11 expression across most
cancer types, thus suggesting that these genes may be involved in inhibitory metabolic
pathways that counteract tumor progression in the presence of PEBP1/STK11 co-expression
(Figure 5A). In contrast, genes such as ALDH2, LDHB, SLC7A5, SLC3A2, and HPRT1 dis-
played more complex patterns, with both positive and negative correlations observed
in relation to PEBP1/STK11 co-expression, indicating that these genes might be part of
more dynamic metabolic processes and reprogramming that fluctuate depending on the
tumor type and the PEBP1/STK11 expression levels. Notably, ALDH2, a key metabolic
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reprograming gene, and LDHB, which plays a potential role in lactate metabolism, showed
the strongest positive associations with PEBP1/STK11 co-expression in LIHC, THYM, and
KICH and THCA, respectively.

 

Figure 5. Heatmaps illustrating the effect of PEBP1/STK11 co-expression on the transcriptional
remodeling of the metabolic microenvironment. (A) Expression of general metabolism-related genes,
(B) expression of genes involved in glucose metabolism, and (C) expression of genes associated with
fatty acid metabolism. Color coding: red, positive correlation; blue, negative correlation. * p ≤ 0.05,
** p ≤ 0.01.

Glucose Metabolism

Glucose metabolism-related molecules exhibited a complex and heterogenous pattern
of correlations with PEBP1/STK11 co-expression, with both positive and negative asso-
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ciations observed across various cancer types (Figure 5B). A strong negative correlation
was observed among genes associated with metabolic reprogramming in cancer cells such
as HK2, HK3, and PDK1, which are involved in glycolysis and the co-expression of the
aforementioned genes. More specifically, HK3 displayed predominantly negative correla-
tions across most cancer types, suggesting a widespread involvement of these enzymes in
metabolic pathways influenced by PEBP1/STK11 levels. In contrast, ENO3, IDH2, IDH3G,
and MDH2, genes that encode proteins that generally represses the proliferative, migratory,
and invasive capacities of cancer cells, displayed the strongest positive correlations across
nearly all cancers.

Notably, CHOL and UCS cancers exclusively exhibited negative associations with
all glucose metabolism-related genes that significantly correlated with PEBP1/STK11 co-
expression, highlighting a distinct metabolic phenotype in these cancer types. On the other
hand, OV demonstrated an entirely opposite trend, with strong positive correlations be-
tween PEBP1/STK11 co-expression and the majority of glucose metabolism genes, pointing
to a unique metabolic signature in this cancer type.

Fatty Acid Metabolism

A similar complex and cancer type dependent pattern emerged when analyzing fatty
acid metabolism-related genes, which made clear categorization challenging. Among these,
PEBP1/STK11 co-expression strongly negatively correlates in all cancer types with enzymes
that increase the biosynthesis of fatty acids such as members of the ACSL family (ACSL1,
ACSL3, ACSL4, ACSL5, and ACSL6). Particularly, ACSL4 exhibited the most predominant
negative correlation with PEBP1/STK11 co-expression across multiple cancer types, suggest-
ing an inhibitory role in fatty acid metabolism (Figure 5C). Such negative correlation was
also observed with genes that encode enzymes that are responsible for fatty acid oxidation
like CPT1 family members (CPT1A, CPT1B, and CPT1C). Similarly, a negative association
was also established for the MMUT gene that encodes for methylmalonyl-CoA mutase in
mitochondria, which plays a role in the regulation of energy-producing centers [69]. In
contrast a strong positive association was revealed for ACAA1 and ACAA2, which encode
for enzymes that catalyze fatty acid oxidation, and for DECR family members (DCR1
and DCR2), which encode for reductases that participate in FA metabolism. Additionally,
ACOX3, ACAD9, ACAD10, ACOT1, ACOT8, and DECR2 displayed positive associations
with PEBP1/STK11 co-expression across various cancer types, highlighting a potential
involvement in enhancing fatty acid metabolism in the context of PEBP1/STK11 expression.

These findings underscore the importance of examining the metabolic sub-microenvironment
in greater detail, as it holds critical implications for understanding how PEBP1/STK11 co-
expression impacts tumor biology and could offer new avenues for targeted therapeutic
interventions.

2.3.3. Mechanical Niche

The mechanical microenvironment (MeM) is a critical TME niche as it affects intracellu-
lar signaling events, carcinogenesis, cancer progression, and tumor response to therapy [70].
Laminins, key components of the extracellular matrix (ECM), exhibited predominantly
negative correlations with PEBP1/STK11 co-expression across most cancer types (Figure 6A).
Notable exceptions were observed for LAMA1 in KIRP, LAMA2 in PCPG, LAMA3 in LIHC,
and several laminins in THYM. Similarly, collagens and other ECM structural components
displayed largely negative correlations with PEBP1/STK11 co-expression, with the most
frequent exceptions found in endocrine cancers, particularly in THYM.
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Figure 6. Heatmaps demonstrating how PEBP1/STK11 co-expression modulates the transcriptional
landscape of the mechanical microenvironment across 33 cancer types. (A) Genes encoding basement
membrane components, (B) genes involved in ECM proteolysis, and (C) genes associated with ECM
structure and functions. Color coding: red, positive correlation; blue, negative correlation. * p ≤ 0.05,
** p ≤ 0.01.

To further explore the impact of PEBP1/STK11 co-expression on MeM properties, we
analyzed ECM proteases and ECM protease inhibitors (Figure 6B). ECM proteases generally
showed a widespread negative correlation with PEBP1/STK11 co-expression across all
cancer types, with the exception of MMP15 and SPG7, which displayed positive correlations
in most of the cancers analyzed. Similarly, most ECM protease inhibitors exhibited negative
correlations with PEBP1/STK11 co-expression, with only a few exceptions, including TIMP2
in SKCM and TIMP3 in KIRC and THCA, where positive associations were observed.

Further analysis of additional ECM molecules, including VTN, EMC1, THBS3, and
CLEC3B revealed a positive correlation trend with PEBP1/STK11 co-expression in endocrine
cancers, while correlations in other cancer types varied, suggesting a context-dependent
relationship (Figure 6C). Furthermore, CCN2, TNC, VCAN, THBS2, HAS1, SPP1, and TGFB1
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gene expression was also analyzed, showing a predominantly negative trend in accordance
with PEBP1/STK11 co-expression, with the exceptions of CCN2, VCAN, and TGFB1 in
THYM and HAS1 in LGG.

2.3.4. Hypoxic Niche

A key aspect to consider within the TME is the hypoxic niche, which plays a critical
role in tumor progression, metastasis, and therapeutic resistance. In this context, a total
of 42 hypoxia-related genes (hypoxia-buffa signature) were analyzed, revealing complex
correlation patterns across different cancer types, with variations influenced by context-
dependent factors (Figure 7). Each cancer type displayed a mix of positive and negative
correlations among the analyzed molecules, complicating the ability to draw broad, uniform
conclusions. Nevertheless, in several cancers, hypoxia-related molecules generally showed
a negative correlation with the co-expression of PEBP1/STK11, including CHOL, LIHC,
PAAD, BLCA, BRCA, UCS, LUAD, and SARC.

 

Figure 7. Heatmap depicting the effects of PEBP1/STK11 co-expression on the transcriptional re-
modeling of the hypoxic microenvironment. Color coding: red, positive correlation; blue, negative
correlation. * p ≤ 0.05, ** p ≤ 0.01.

Conversely, in other cancer types such as COAD, ESCA, READ, STAD, KICH, KIRC,
KIRP, LUSC, MESO, HNSC, SKCM, and UVM, as well as cancers of the reproductive
(excluding BRCA and UCS), nervous, endocrine, and hematopoietic systems, hypoxia-
related molecules predominantly exhibited positive correlations with PEBP1/STK11 co-
expression. Among the hypoxia-related molecules, MRPS17, CDCHD2, PSMA7, and MIF
consistently demonstrated a positive correlation with PEBP1/STK11 co-expression across
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all cancer types in which a significant association was observed. In contrast, SHCBP1
gene that exhibits a dysregulated expression across a broad spectrum of malignancies
and contributes to multiple hallmarks of cancer, including enhanced cellular proliferation,
resistance to apoptosis, and increased invasive and metastatic potential, which displayed
a predominantly negative correlation in most cancer types. This indication suggests the
potential role of PEBP1/STK11 co-expression in tumor suppression or altered metabolic
regulation in hypoxic conditions.

Genes like PGK1, PFKP, HK2, and LDHA, that are involved in metabolic reprogram-
ming of cancer cells by enhancing glycolysis have a negative correlation with PEBP1/STK11
co-expression. Accordingly, ANLN, KIF20A, and KIF4A, involved in the regulation of cy-
toskeletal dynamics for cell migration and division, seem to display a negative correlation
with the co-expression of the metastasis inhibitors as well. Similarly, a negative correlation
was also observed with LSC transporters genes (SLC16A1, SLC2A1, and SLC25A32), which
are primarily involved in metabolite transport across cell membranes. However, a posi-
tive correlation was identified in molecules that promote tumor progression like VEGFA,
ALDOA, and GPI.

These findings emphasize the heterogenous nature of the TME and the differential
regulatory roles of hypoxia-related molecules across various cancer types, as well as the
context-specific interactions between hypoxia, PEBP1, and STK11 that may provide insights
into tumor biology and potential therapeutic strategies, emphasizing in reprogramming of
hypoxic niches.

2.4. PEBP1/STK11 Co-Expression Modulates TME Properties and Therapeutic Responses
2.4.1. EMT

Oncogenic EMT, known as a precursor event to cancer cell metastasis, is a dynamic
process which is regulated by both molecular alterations in cancer cells towards and
the mechanical properties of the TME, which facilitate local cancer cell invasion [71].
Our analysis revealed that genes that encode molecules that are commonly up-regulated
during EMT such as FOXC2, SNAI1, SNAI2, TWIST1, ZEB1, FN1, WNT5A, MMP2, MMP9,
SERPINE1, and ITGA5 generally exhibit a negative correlation with the co-expression of
PEBP1/STK11 across most cancer types, with a few exceptions (Figure 8). Endocrine cancers,
however, display a more complex pattern, with both positive and negative correlations
observed between the up-regulated EMT-associated molecules and the co-expression of the
studied genes. Conversely, genes that encode molecules that are down-regulated during
EMT such as CDH1, OCLN, and DSP, tend to show stronger positive correlations than the
up-regulated ones. A mixed phenotypic pattern emerges, characterized by both positive
and negative correlations, with the most statistically significant positive correlations found
for MST1R and KRT19 in COAD, READ, BRCA, and MESO. Those genes act as regulators
of cellular signaling networks that drive tumor development and support cancer cell
survival [72,73]. Notably, SPP1, which facilitates cancer cell chemoresistance [74] and
CAV2, which facilitates cellular invasion and migration while suppressing the expression
of tumor-suppressor genes [75], exhibited a consistent negative correlation with the co-
expression of PEBP1/STK11 in most cancer types where a statistically significant correlation
was observed, suggesting a broader, potentially universal relationship. Contrastingly, the
gene encoding e-cadherin (CDH1), a well-established tumor suppressor protein, displayed
a positive correlation with PEBP1/STK11 co-expression in STAD, BLCA, KIRC, OV, UCEC,
LUSC, and THCA.
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Figure 8. Heatmap illustrating the impact of PEBP1/STK11 co-expression of EMT-associated genes
across cancer types. Color coding: red, positive correlation; blue, negative correlation. * p ≤ 0.05,
** p ≤ 0.01.

2.4.2. Predictive Response to Chemotherapy

The TME confers to cancer chemoresistance, with the individual niches within the
TME contributing in distinct ways. Given the interplay between PEBP1/STK11 and TME
niches, as we demonstrated above, it is essential to further investigate how drug resistance
may be influenced by the co-expression of these genes. Several genes associated with
drug resistance, particularly those involved in drug efflux, such as members of the ATP
binding cassette (ABC) transporter family, including ABCC1, ABBC2, ABBC3, ABCC5,
ABCB1, and ABCG2, displayed a general trend of significant negative associations with
PEBP1/STK11 co-expression across the majority of cancer types, with a few exceptions
observed mainly in LIHC and GBM (Figure 9A). Similarly, MVP and genes encoding
for Type I and Type II topoisomerases, such as TOP1, TOP2A, and TOP2B—known to
contribute to cancer chemoresistance—showed the same negative association pattern.
Other genes such as the pro-apoptotic gene BAX, as well as the tumor suppressor TP53,
showed strong statistically significant positive correlations in most cancer types, while
the antiapoptotic BCL2L1 and BCL2 genes presented a more intricate pattern, exhibiting
both positive and negative correlations with PEBP1/STK11 co-expression on a cancer type
dependent manner. On the other hand, the tumor suppressors TP53 and RB1 exhibited
contrasting correlation patterns with PEBP1/STK11 co-expression, with TP53 generally
showing a positive correlation, while RB1 was the only gene that consistently exhibited a
negative correlation across the majority of cancer types analyzed.

Furthermore, a predictive drug sensitivity analysis was conducted, to evaluate the
impact of PRBP1 and STK11 transcript levels on drug responsiveness. A predominantly neg-
ative correlation was identified between the mRNA expression of both genes and sensitivity
to a wide range of anti-cancer agents, including chemotherapeutics (e.g., Chlorambucil),
targeted therapies (Panobinostat), and experimental inhibitors (e.g., GSK461364) [76], across
a pan-cancer dataset (Figure 9B). This negative correlation indicates that the higher ex-
pression levels of PEBP1 and STK11 are associated with increased drug sensitivity across
various cancer types. Notably, while the individual contribution of each gene may vary,
the overall trend remains consistent across all tested agents, reinforcing a potential shared
modulatory effect on therapeutic resistance

Overall, it appears that the co-expression of PEBP1 and STK11, in conjunction with
specific drug resistance-related molecules within the TME and particular therapeutic agents,
may critically influence therapeutic responses.
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Figure 9. Analysis of the PEBP1/STK11 expression signature in relation to therapeutic response.
(A) Heatmap depicting associations with genes linked to drug resistance, (B) predictive value of
PEBP1 and STK11 expression levels for drug sensitivity across various cancer types, and (C) regulator
prioritization clustering heatmap showing the associations between PEBP1/STK11 transcript levels
and T-cell dysfunction, as well as responses to ICBs. Color coding: red, positive correlation; blue,
negative correlation. * p ≤ 0.05, ** p ≤ 0.01.

2.4.3. Predictive Response to Immunotherapy

PEBP1 and STK11 transcript levels were associated with immunosuppressive proper-
ties and responses to immune checkpoint blockade (ICB) therapies, such as anti-PD1 and
anti-CTLA4, particularly in melanoma, kidney, and lung cancers. The regular prioritization
analysis using the TIDE framework highlights distinct immunogenomic profiles for PEBP1
and STK11 across multiple datasets (Figure 9C). Both genes show variable normalized
Z-scores derived from Cox proportional hazards regression and T-cell dysfunction scoring.
Specifically, PEBP1 displayed moderate to strong inverse associations with T-cell dysfunc-
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tion, while showing elevated scores in datasets associated with specific immunotherapy
cohorts using different ICBs. In contrast, STK11 presented a more heterogeneous profile,
with mixed associations across datasets showing potential involvement in responses to ICBs
but with less consistent prioritization compared to PEBP1. Notably, both genes seem to be
linked to M2 macrophage and CAF-associated expression profiles, suggesting a potential
role in immune evasion and tumor microenvironment remodeling.

These results indicate that PEBP1 may be a stronger candidate for immunotherapy
effectiveness prediction, while STK11 may contribute to immune modulation in a more
context-dependent manner.

2.4.4. Pathway Analysis

An integrated analysis was further conducted to assess the regulatory impact of the
PEBP1/STK11 co-expression signature on ten major cancer-associated pathways across
diverse cancer types. The results indicate that PEBP1 mRNA levels are strongly associated
with suppression of the apoptosis inhibition (22%) and EMT (25%) pathways across the
pan-cancer landscape (Figure 10). This suppressive effect appears to be further enhanced
by STK11 expression, which contributes an additional 6% and 9% reduction, respectively.
Interestingly, both PEBP1 and STK11 were also found to induce the androgen receptor (AR)
activation pathway by 19% and 6%, respectively.

Figure 10. Impact of PEBP1 and STK11 expression on the activity of 10 cancer-related pathways. The
heatmap and linked numbers display the percentage of tumor types in which PEBP1 and STK11
mRNA expression is significantly associated with either activation or suppression of each pathway.
Color coding: red, pathway activation; blue, pathway inhibition.

Regarding oncogenic signaling pathways with key roles in regulating cancer cell
growth, proliferation, survival, and metabolism, including PI3K/AKT, RAS/MAPK, RTK,
and TSC/mTOR, a consistent pattern emerged. PEBP1 expression was distinctly linked to
the inhibition of all four pathways, with additionally inhibitory contributions from STK11
expression, especially in the RTK and TSC/mTOR pathways. Although we also observed a
minor activating impact of PEBP1/STK11 on the aforementioned pathways, the inhibitory
effect was substantially stronger than the activating effect, suggesting that PEBP1/STK11
co-expression mainly influence negatively the molecular context examined.

3. Discussion
This study aimed to explore the co-expression of RKIP and LKB1 transcripts across

human cancers included in the TCGA database (accessed on 17 May 2025), hypothesizing
that their joint expression may define a common molecular signature that shapes key
TME niches. Rather than drawing definitive conclusions, we concentrated on combining
existing biological knowledge with publicly available multi-omics data to produce testable
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hypotheses regarding the potential modulation of TME characteristics and the impact of
these genes on clinically relevant outcomes. The computational framework described here
is meant to support hypothesis-driven investigation of crucial biomarkers and guide future
experimental validation.

Both RKIP and LKB1 are widely recognized as tumor-suppressing proteins, with
established, yet largely non-redundant functions in tumor biology [11,77]. RKIP primarily
modulates signaling pathways such as RAF/MEK/ERK, NF-κB, and STAT3, affecting
inflammatory responses, EMT, and apoptosis resistance. In contrast, LKB1 regulates
metabolic homeostasis and energy stress via AMPK, while also influencing immune eva-
sion by preventing the epigenetic silencing of STING and modulating cytokine production.
Despite their protective functions, both proteins are frequently downregulated or even
lost in a wide range of malignancies, often correlating with more aggressive tumor char-
acteristics, poor prognosis, and therapeutic resistance. Recent studies present evidence
suggesting that RKIP and LKB1 independently influence the TME through distinct, yet
complementary, mechanisms. Together, their co-expression may represent a convergence
of metabolic regulation and immunomodulatory signaling that synergistically suppresses
tumor progression and reprograms the TME toward an anti-tumor phenotype.

RKIP’s role in remodeling the immune TME has been increasingly recognized, partic-
ularly through its regulation of immune cell infiltration—most notably macrophages—and
its control over the secretion of pro-metastatic factors [78,79]. Similarly, loss-of-function
mutations in LKB1 have been associated with reduced PD-L1 expression in tumor cells,
as well as decreased infiltration of cytotoxic CD8+ T cells [80]. In line with these findings,
our current analysis provides further evidence that the combined expression of PEBP1 and
STK11 may favor an immune-permissive TME at a cancer type specific context; however,
these findings merit further attention and deeper examination. More specifically, their co-
expression was negatively correlated with M2 macrophages, which are generally associated
with immunosuppression, and positively correlated with CD8+ T and NK cell infiltration
across most cancer types.

RKIP has been further reported to suppress the expression of pro-inflammatory cy-
tokines and chemokines by inhibiting NF-κB signaling, thereby limiting chronic inflam-
mation, tumor invasion, and metastatic dissemination [27,78,81]. Similarly, LKB1 has
been implicated in the regulation of chemokine signaling pathways, contributing to im-
mune regulation within the TME [82]. In the present study, co-expression of PEBP1/STK11
was predominantly negatively correlated with several pro-inflammatory chemokines and
immunosuppressive chemokine receptors, while showing positive correlations with anti-
inflammatory chemokines in a cancer type dependent manner. This expression pattern
suggests a synergistic role for these tumor suppressors in both mitigating chronic inflamma-
tion and enhancing immune surveillance against cancer cells, providing clear indications
of potential clinical significance that warrant experimental investigation. In the context
of immune inhibitory signals, molecules such as PD-L1 and PD-L2 that are known to
contribute to an immunosuppressive TME, have been previously reported to be inversely
associated with RKIP and LKB1 expressions [83–85]. Consistent with these findings, our
analysis revealed uniformly negative associations between PEBP1/STK11 co-expression
and the expression of genes encoding immune checkpoint molecules across all cancer
types examined, suggesting that their co-expression may contribute to the development
of a more immunocompetent and less suppressive TME. Furthermore, in line with prior
studies demonstrating that both RKIP and LKB1 individually suppress TNF-α expres-
sion [30,86–88], our data show a negative correlation between TNF ligand expression and
PEBP1/STK11 co-expression. These preliminary findings further underscore the poten-
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tial role of these tumor suppressors in limiting constitutive, inflammation-driven tumor
progression that can be leveraged to formulate biologically meaningful predictions.

In addition to the transcriptional remodeling of the immune niche within the TME,
PEBP1/STK11 co-expression was also associated with significant alterations in metabolic
and hypoxic TME subtypes. Specifically, co-expression was negatively correlated with
transcripts involved in metabolic reprogramming, particularly those related to fatty acid
biosynthesis and oxidation. This pattern provides early-stage evidence of a potential
reduction in energy availability within cancer cells, possibly contributing to mitochondria
destruction, metabolic stress, and decreased cell survival, requiring experimental validation.
However, despite the complexity and inconsistencies observed in the context-dependent
associations across different cancer types—especially regarding particular genes with
reported role in fatty acid metabolism—a notable exception was the positive association
between PEBP1/STK11 co-expression and ACAA1 levels. This observation aligns with
recent studies identifying ACAA1 as a favorable prognostic marker, linked to apoptosis
induction and enhanced T-cell infiltration [89], thus further linking metabolism to immune
regulation within the TME and highlighting the role of PEBP1/STK11 co-expression on
this interplay.

PEBP1/STK11 co-expression was further shown to modify the mechanical and struc-
tural components of the TME across human cancers. A particularly strong and uniform
negative correlation was evidenced between the co-expression of these genes and the
transcription of several major matrix metalloproteinase (MMPs) and PEBP1/STK11 levels,
indicating a suppressive effect on local tumor invasion. This observation is in line with
previous reports showing that RKIP and LKB1 can individually downregulate MMP’s ex-
pression levels through multiple signaling pathways (e.g.: Raf/MEK/ERK, NF-κB) [27,90].
Moreover, our epithelial-to-mesenchymal transition (EMT) analysis revealed a consistent
inverse association between PEBP1/STK11 co-expression and EMT marker genes, including
SNAI1, SNAI2, FOXC2, ZEB1, and FN1, across most cancer types examined, thus under-
scoring a uniform anti-EMT signature. Additionally, genes like SPP1 and CAV2 that are
involved in drug resistance and cellular invasion and migration, respectively, were also
found to have a negative association with the co-expression of the examined genes. While
RKIP is recognized as an EMT inhibitor [11,12,17,91,92], the precise mechanisms of its regu-
latory role remain unclear. Likewise, LKB1 inactivation has been implicated in promoting
EMT [12,93]. Overall, our findings provide new evidence supporting the hypothesis that
high PEBP1/STK11 co-expression may be involved in suppressing EMT-related features of
cancer cells within the TME, which opens new avenues for hypothesis-driven research for
the remodeling of the TME.

In parallel, LKB1 silencing has been reported to enhance cancer cell adhesion to ECM
components, such as laminin, collagen IV, and fibronectin [94]. On the other hand, RKIP
has been shown to promote the expression of epithelial markers and adhesion molecules,
such as E-cadherin, laminin, and EPCAM [12,91,95]. Additionally, it has been shown
that locostatin-mediated RKIP inhibition leads to a decrease in ECM components [96]. In
our analysis, PEBP1/STK11 co-expression was negatively correlated with multiple genes
encoding ECM components, suggesting a shift towards a less rigid and more permeable
TME that may facilitate easier immune cell infiltration. Collectively, our data support
a shared expression signature between RKIP and LKB1 in restructuring the mechanical
properties of the TME in a way that limits local invasion of cancer cells while promoting
immune cell accessibility. The presented evidence aligns with current research trajectories
and strengthens the rationale for clinical exploration.

Beyond its established role in EMT and metastasis suppression, RKIP has also been
reported to sensitize tumor cells to conventional chemotherapy, radiotherapy, and en-
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dogenous immune-mediated cytotoxicity [11]. Similarly, loss of LKB1 function has been
associated with aggressive tumor behavior and resistance to multiple therapies, includ-
ing chemotherapy, targeted treatments, and immune checkpoint inhibitors [97]. In line
with these observations, our TME-focused analysis further implicates PEBP1/STK11 co-
expression in modulating therapy resistance. Specifically, these findings indicate that high
levels of co-expression were associated with lower expression of genes enhancing drug
resistance (e.g., ABC transporters and topoisomerases of Type I/II), thus suggesting a po-
tential prognostic value in predicting a favorable response to conventional chemotherapies.
Collectively, these early-stage, integrative bioinformatic insights offer a strong foundation
for generating testable hypotheses in the context of cancer therapy.

Consistently, drug sensitivity prediction analysis revealed a robust, uniform associa-
tion between high expression of both genes and increased sensitivity to all major classes of
chemotherapeutic agents, across all tumor types examined. This consistent pattern sug-
gests that the coordinated expression of these tumor suppressors enhances tumor efficacy.
Mechanistically, these findings are supported by previous reports indicating that high
RKIP expression dampens pro-survival signaling pathways, such as RAF/MEK/ERK and
NF-κB, while it disrupts oncogenic feedback loops, thus making cancer cells more prone to
drug-induced apoptosis [98,99]. Likewise, high STK11 expression contributes to therapeutic
vulnerability by activating AMPK and inhibiting mTOR signaling, which together enhance
cellular stress responses, attenuate survival pathways, and increase apoptosis [84,100].
These observations were further corroborated by pathway enrichment analysis, which
demonstrated that concurrent high expression of both genes was associated with suppres-
sion of apoptosis inhibition, EMT, and several key oncogenic signaling pathways such
as PI3K/AKT, RAS/MAPK, RTK, and TSC/mTOR. Altogether, these findings point to a
synergistic role of RKIP and LKB1 in sensitizing tumors to chemotherapy by reshaping the
TME towards a more therapeutically responsive state. In contrast the synergistic effect of
both genes in predicting immune activation and responses to immunotherapy agents such
as ICBs, it was more heterogenous and less conclusive across certain cancers. However,
compared to STK11, the PEBP1 expression signature appears to be a more reliable predictor
of T-cell function and immunotherapy outcomes in the context of ICB treatment. Hence,
these initial findings outline a promising direction that should be substantiated through
rigorous experimental and clinical validation.

Despite these promising findings, several limitations of our study must be acknowl-
edged. First, the bifunctional nature of chemokines and their receptors within the tumor
microenvironment (TME) presents a significant interpretive challenge. Chemokines are
highly context-dependent; a single molecule can exert either pro- or anti-inflammatory
effects depending on tumor type, immune landscape, and temporal dynamics. Additionally,
the promiscuity of chemokine receptors, where one receptor may bind multiple ligands,
can lead to overlapping or even antagonistic functional outcomes, complicating the precise
characterization of immune signaling within the TME.

A second major limitation is the exclusive reliance on transcriptomic data from TCGA,
which, while rich and comprehensive, does not account for post-transcriptional regulation
or post-translational modifications. As such, our conclusions should be interpreted as
correlative and hypothesis-generating. In addition, while our findings strongly suggest
functional links, they remain purely correlative, highlighting a clear need for in vitro and
even in vivo validation using functional assays, protein-level measurements, and spatial
profiling to confirm the biological relevance of the observed associations. In this context,
several experimental approaches could be applied to selected patterns of interest. For
example, as noted above, our in silico analysis revealed a robust pan-cancer negative
correlation between the co-expression of RKIP and LKB1 and a range of immune inhibitory
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genes, including key immune checkpoint molecules (Figure 3). One would select human
cancer cell lines (e.g., lung or pancreatic adenocarcinomas or melanomas) characterized
by low to moderate endogenous expression of RKIP and LKB1. These lines would then
undergo genetic manipulation: individual or combined gene overexpression (via CRISPRa)
or knockdown/suppression (via CRISPRi). Subsequently, transcriptomic profiling—using
RNA-seq or selected qPCR panels—would measure expression of those immune-inhibitory
genes that displayed inverse associations in silico, alongside other relevant genes. These
transcriptional changes would be validated at the protein level using CyTOF or classical
flow cytometry to assess expression not only the tumor cells but also in relevant surface
markers on immune cells (e.g., CD8+ T cells or dendritic cells) co-cultured with the modified
cancer cells. In the co-culture system, we would also measure functional immune readouts,
such as proliferation, cytokine release (e.g., IFN-γ, IL-2), and indicators of cytotoxicity:
Granzyme B levels, LDH release, etc. Moreover, mechanistic experiments would probe
phospho-signaling events and downstream pathways identified by our in silico analysis as
mediators of RKIP and LKB1’s regulatory effects on immunomodulatory gene expression.
These mechanistic insights underscore the value of moving beyond correlative pan-cancer
associations to targeted experimental validation of RKIP and LKB1’s roles in regulation of
immunosuppressive molecules and signaling pathways.

Third, the PEBP1/STK11 co-expression signature used in this analysis captures the
combined effect of the two genes but does not disentangle their individual contributions or
the mechanistic basis of their interplay. It remains unclear whether their apparent synergy
reflects convergent regulation of shared pathways or distinct, complementary functions
acting on different components of the TME. Furthermore, while we report associations with
survival and therapy response, these are based on retrospective analyses, and no causal
inference can be made. Finally, although this study draws from a large pan-cancer dataset,
the heterogeneity of the TCGA samples, including uneven sample sizes across tumor types,
potential batch effects, and missing clinical annotations, may influence the statistical power
and generalizability of certain findings. Moreover, the use of correlation-based frameworks
such as GSVA assumes primarily linear relationships and may not capture more complex,
nonlinear regulatory dynamics. In light of these limitations, the primary value of our study
lies in its ability to integrate prior biological knowledge with large-scale multi-omics data
to generate testable hypotheses.

Concluding, the co-expression of PEBP1/STK11 appears to play a central role in
remodeling the TME by regulating immune cell infiltration, ECM structure, metabolic
reprogramming, and therapy response. Their synergistic expression promotes an immune-
permissive, anti-inflammatory, and less invasive TME, potentially improving prognosis and
therapy outcomes. These findings highlight PEBP1/STK11 co-expression as a promising
therapeutic axis and prognostic marker. Importantly, this work illustrates how prior
knowledge and curated datasets can be leveraged to formulate biologically meaningful
predictions. Hence, further experimental validation and mechanistic studies are required
to clarify their interplay and assess their translational potential in clinical oncology.

4. Materials and Methods
4.1. Protein Functional Analysis by the Multiple UniReD Tool

To identify potential functional relationships between RKIP and LKB1 proteins and
proteins with an established role in drug resistance, hypoxia, metabolic, and mechanical
tumor microenvironments, we employed the text-mining tool multiple UniReD [101].
Multiple UniReD utilizes the published biomedical literature to associate proteins of interest
(query list) with a list of reference proteins known to be involved in a specific condition or
disease (reference list) [102]. Each protein in the query list is assigned a score indicating its
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level of association with the reference list proteins. A maximum score of 1 is assigned when
both query and reference proteins are found within the same UniReD cluster, indicating
a strong functional connection. If a paralogue of the query protein has been found in the
same cluster with a reference protein or an association was found between orthologues of
the query and reference proteins, a score of 0.5 is given. A score of 0 indicates no detectable
relationship in the literature. The higher the total score the higher the functional association
of the proteins of interest to the reference list proteins.

4.2. Data Acquisition and Preprocessing

To study the effects of PEBP1 and STK11 co-expression and their role in shaping the
TME in a pan-cancer setting we leveraged the TCGAplot R package (v8.0.0) to assemble
and preprocess pan-cancer transcriptomics data from The Cancer Genome Atlas Project
(TCGA). As stated in the original paper’s gene expression profiles (transcripts per million,
TPM) for 33 TCGA tumors and normal tissues were downloaded from the GDC portal
using the TCGAbiolinks R package (v2.28.4). Duplicate samples were removed and genes
with no measurable expression (TPM = 0 in all samples) were filtered out, yielding an
expression matrix restricted to protein-coding genes. Expression values were then log-
transformed (reported as log2TPM + 1) and annotated with the corresponding cancer type
and sample group (tumor or normal). All datasets were combined with sample meta-
information (including clinical data and cancer type labels) for each TCGA case to enable
comprehensive integrative pan-cancer analyses.

4.3. Exploring PEBP1 and STK11 Expression Signature

To assess the functional impact of PEBP1 and STK11 activity across multiple cancer
types, we constructed a two-gene signature comprising these genes and performed Gene
Set Variation Analysis (GSVA) using the transcriptomics data and core TCGAplot functions.
GSVA scores were calculated using the GSVA function from the GSVA R package (v.2.0.5),
with the PEBP1/STK11 gene set supplied as a custom input. These enrichment scores
reflected the relative activity of the two-gene module on a per-sample basis across all
cancer types. Samples with high GSVA scores tend to have high expression of both
genes, while those with low scores show low or discordant expression. Subsequently,
we used the cor.test function (Pearson correlation) in R to examine associations between
GSVA scores and various tumor microenvironment (TME) features, including immune cell
infiltration, stromal content, and expression of immune regulatory genes. To characterize
the tumor immune microenvironment, immune cell infiltration ratios were integrated from
the TCGA Immune Landscape of Cancer study (downloaded via the GDC API). In addition,
immune contexture scores (ESTIMATE, immune, and stromal scores) were calculated using
the ESTIMATE algorithm (estimateR package v1.0.13) based on the log2TPM expression
matrix. The resulting correlations were visualized and interpreted in a cancer-type specific
context, revealing diverse interactions of the PEBP1/STK11 module with immune, metabolic,
mechanical, and hypoxic niches within the TME.

To facilitate reproducibility and support methodological transparency, we have pro-
vided a fully annotated R script as Supplementary Material (correlations.R). This script
implements the core computational workflow used in our study, including GSVA score
calculation, pan-cancer correlation analysis with immune/genomic/proteomic features,
and heatmap visualization, enabling readers to reproduce our analyses or adapt them to
their own gene sets and datasets.

4.4. Pathway Activity Analysis

We further explored the difference between ten cancer-related pathway activities
(activation or inhibition) and PEBP1/STK11 expression. To assess this pathway activity
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score (PAS), data of reverse phase protein array (RPPA) for 7876 samples across 32 cancer
types was extracted from the TCPA portal (https://www.tcpaportal.org/tcpa, retrieved on
15 November 2023). Standard deviation was used to normalize these median-centered data
of all samples. Subsequently, the PAS was computed as previously described [103].

The disparity in PAS between low and high expression groups was determined
through the student’s t test. Subsequently, the p values were corrected for FDR, with the sig-
nificance threshold set at 0.05, following the methodologies outlined previously [104,105].
When the sample displays increased gene expression, and simultaneously significantly
elevated pathway activity (FDR ≤ 0.05), it is implied that the gene has potential stimulating
activity on the pathway, and vice versa.

4.5. Correlation of PEBP1/STK11 Expression with Drug Sensitivity

To analyze the anti-cancer drug sensitivity, initially half maximal inhibitory concentra-
tion (IC50) data of 481 small molecules in 1001 cell lines was collected from the Genomics of
Therapeutics Response Portal (CTRP) [106–108]. These data were then merged separately
with their corresponding mRNA expression data for Pearson correlation analysis, offering
the association between gene expression and IC50 of a particular drug. The p-values were
also FDR-adjusted.

Univariate analysis was performed using the Pearson’s correlation between the PEBP1
or STK11 expression and Topotecan drug activity in different kidney, pancreatic, and lung
cancer cell lines, using CellMinerCD [109].

Furthermore, the TIDE algorithm was further employed to identify the correlation
between PEBP1 and STK11 mRNA expression and ICB therapy outcomes (https://tide.
dfci.harvard.edu/ accessed on 21 May 2025) [110,111].
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