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Abstract

In recent years, a long list of relevant studies has highlighted the engagement of the ner-
vous system in the fine-tuning of tumor development and progression. Several authors
have shown that different types of nerve fibres (sympathetic, parasympathetic/vagal or
somatosensory fibres) may contribute to tumor innervation affecting cancer initiation, pro-
gression and metastasis. A large presence of nerve fibres is frequently observed in tumors
with respect to the corresponding healthy tissues. In this regard, it is worth noting that in
some cases a reduced innervation may associate with slow tumor growth in a tissue-specific
manner. Current studies have begun to shed light over the role played in this specific
process by Schwann cells (SCs), the most abundant glial cells of the peripheral nervous
system. SCs observed in cancer tissues share strong similarities with repair SCs that appear
after nerve injury. A large body of research indicates that SCs may have a role in shap-
ing the microenvironment of tumors by regulating the immune response and influencing
their invasiveness. In this review, we summarize data relevant to the role of peripheral
innervation in general, and of SCs in particular, in defining the progression of different
tumors: melanoma that originate in the skin with mainly sensory innervation; pancreatic
and liver-derived tumors (e.g., pancreatic adenocarcinoma and cholangiocarcinoma) with
mainly autonomous innervation. We conclude by summarizing data regarding hepato-
carcinoma (with anatomical predominance of small autonomic nerve fibres) in which the
potential relationship between innervation and tumor progression has been little explored,
and largely remains to be defined.

Keywords: peripheral nerve; nervous system; Schwann cells; melanoma; pancreatic ductal
adenocarcinoma; cholangiocarcinoma; hepatocarcinoma

1. Introduction
In vertebrates, peripheral nerves are widespread and distributed to the most diverse

regions of the body thereby providing a bridge between the central nervous system (CNS)
and the peripheral organs. These nerves emerge from the brain through the cranial nerves
and from the spinal cord as spinal nerves. The peripheral nervous system (PNS) is typically
subdivided into the autonomic nervous system (ANS) and the somatic nervous system
consisting of both sensory and motor fibres. The ANS includes the sympathetic nervous
system (SNS), parasympathetic nervous system (PSNS), and enteric nervous system (ENS).
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The ENS forms a reticular structure capable of functioning independently of the rest of the
nervous system and is primarily responsible for regulating digestive processes (Figure 1).

Figure 1. Structural organization of the nervous system.

Each peripheral nerve frequently contains both motor and sensory axons of various
calibres. These axons are enveloped by the most abundant glial cells in the PNS, the
Schwann cells (SCs). The myelinating SCs repeatedly wrap around the large diameter
axons forming the myelin sheath. Between each SC and adjacent ones, the myelin sheath
is interrupted by bare regions of the axon known as nodes of Ranvier. Non-myelinating
SCs include Remak SCs that ensheathe multiple small-calibre axons and terminal SCs
that chemically and physically support neuromuscular junctions. Both myelinating and
non-myelinating SCs play a central role in governing axonal regeneration after injury.

As already anticipated by Rudolph Virchow in the 19th century, tumor progression
exhibits extensive parallelism with the development of inflammatory and regenerative
processes [1]. This initial concept was greatly expanded in later years to the point of
considering tumors as wounds that do not heal [2]. Thus, tumor development has many
points in common with the normal processes that direct and guide the regeneration of
organs and tissues that have been wounded. In this respect, numerous reports linking
innervation with tumor progression have been accumulating in recent years. Notably,
many of these recent data focus on the role played in this process by SCs.

2. Schwann Cells: Master Architect of Peripheral Nerve Regeneration
and Beyond

SCs originate from migratory neural crest cells (NCCs) in a multistep process involving
several intermediate stages. The NCCs form a population of multipotent stem cells of
ectodermal origin which generate an extraordinary variety of cell types that in addition to
SCs comprises other glial cells such as enteric glia and ganglionic satellite glia. In addition,
different populations of neurons of the PNS are originated from NCCs, including sensory
neurons, postganglionic sympathetic and parasympathetic neurons, and enteric neurons.
Melanocytes, some endocrine derivatives and mesenchymal cell types are also descended
from NCCs [3].

Beginning at embryonic day (E) 12.5, murine NCCs start giving rise to Schwann cell
precursors (SCPs) [4–7]. SCPs lack a basal lamina, are located proximal to the growing
nerve tip, and contribute in guiding axons towards their targets [5,6]. At later stages of
development (from E14.5 onwards), SCPs give rise to immature Schwann cells (iSCs), a cell
type that is detected up to birth [5]. Shortly before birth, through a process called “radial
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sorting” [8] iSCs that contact large diameter axons, a source of high levels of neurogulin 1
(NRG1), become pro-myelinating and then myelinating SCs. Conversely, iSCs that contact
small-calibre axons, which produce low levels of NRG1, form the non-myelinating (Remak)
SCs [9,10]. Although data on the embryonic origin of SCs in humans are more limited, they
nevertheless suggest a high degree of concordance with those obtained in mice. Nerve
repair SCs are non-myelinating SCs that derive from myelinating and Remak SCs at sites of
nerve damage. Following axonal injury, SCs undergo a process of de-differentiation that
retraces backward some stages of embryonic development resulting in the formation of an
SC repair phenotype that is nonetheless distinct from embryonic progenitors. Repair SCs
proliferate and migrate to form longitudinal alignments of cells (named bands of Büngner),
providing essential guidance for regenerating axons [11,12].

3. Innervation and Tumor Progression
The link between innervation and tumor progression has been described and dis-

cussed in a large number of articles [13–19], and key data have been collected in numerous
reviews, including recent ones [20–23]. Different studies show that solid tumors can induce
neurite extensions and attract peripheral nerves. These processes, known as neurogene-
sis or axonogenesis, lead to aggressive tumor characteristics and are usually associated
with poor clinical outcomes [24–27]. However, data currently available are not entirely
consistent probably due to the variety of tumors, their stage, sampling, and investigation
methods. The positive association between nerve fibre density and tumor recurrence risk
has been established in numerous cancers arising from different organs (prostate, stomach,
colon–rectum, head and neck) [21]. However, other studies have identified an inverse
correlation, identifying certain categories of nerve fibres (sensitive and vagal fibres) as neg-
ative regulators of tumor growth (e.g., in melanoma and pancreatic ductal adenocarcinoma,
PDAC) [28,29]. The difficulty in quantifying fibres by immunohistochemistry may, at least
partly, explain the discrepancy in reported cancer innervation.

The present review attempts to interpret existing data by comparing tumors arising
from organs and tissues with a different underlying innervation (i.e., melanoma, pancreatic
adenocarcinoma, cholangiocarcinoma and hepatocarcinoma).

The autonomic nervous system (ANS) in general and the SNS in particular seem to act
as important elements in the regulation of tumorigenesis. Virtually all organ systems in
humans are influenced by the SNS via the catecholamine neurotransmitters, either through
the release of epinephrine (adrenaline) and norepinephrine (noradrenaline) by tissue-
localised nerve terminals or through the vascular distribution of epinephrine (adrenaline)
secreted by the adrenal gland. A large body of epidemiological and experimental data has
demonstrated that the SNS-induced stress response plays an important role in the early
stages of tumor progression, both through direct effects on malignant cells and indirectly
by helping to create a tumor-promoting microenvironment [30–32].

Conversely, unilateral vagotomy and vagal sensory fibres inactivation through per-
ineural capsaicin treatment increased metastasis of breast carcinoma without altering the
growth rate of the primary tumor, thus indicating a protective role of vagal sensory fibres
against cancer [33,34]. In accordance with these data, in PDAC models, cholinergic sig-
nalling through muscarinic receptors suppresses pancreatic tumorigenesis [28]. On the
other hand, abrogation of the cholinergic input by vagotomy or chemical denervation
inhibits the growth of gastric cancer [15].

As with the ANS, the correlation between sensory innervation and tumor growth and
progression remains to be defined in many respects. Most work on the link between sensory
fibres and cancer has looked at cancer-related pain syndrome and perineural invasion. At
present, the factors responsible for cancer-related pain are poorly understood; however,
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tumor-induced pathological sprouting of sensory nerve fibres and SC abnormalities have
been suggested as possible causes [35–39].

As for the perineural invasion or perineural spread, i.e., the spread of cancer cells
in and along nerve bundles, the protumoral activity of SCs has been observed in some
cases. Contrary to initial expectations, recent studies have demonstrated that SCs play
an active role in guiding malignant cells towards nerves and in facilitating perineural
invasion. Cocultures of cancer cells and dorsal root ganglia (DRG) clearly show that SCs
are responsible for guiding the migration of malignant cells towards nerve fibres [40–43].

Also, sensory fibres appear to be linked to the pathogenesis of cancer. Remarkably,
ablation of sensory neurons of the spinal ganglia has been demonstrated to slow tumori-
genesis and to lead to overall survival in murine models of basal cell carcinoma and
PDAC [35,44]. Conversely, the growth and angiogenesis of melanoma are accelerated
when the activity of sensory neurons is inhibited and an increased expression of sensory
neurons-related genes within human melanomas is associated with improved survival [29].
More evidence is needed to understand how sensory neurons may foster or limit tumor
growth and spread.

In this respect, it is noteworthy that SC-dependent tumor perineural invasion and
tumor-related pain are often associated with a worse prognosis [45,46] indicating pain not
only as an alert symptom, but also as an independent prognosis factor, at least in head and
neck squamous cell carcinoma [47] and in advanced prostate cancer [48].

To further reinforce the role that pain may play in tumor biology, pain relief drugs
such as propranolol (a beta-blocker inhibitor of adrenergic signalling) and botulinum toxin,
relieve cancer-related pain and impair tumor growth [49,50].

4. Schwann Cells and Cancer
In cancer, recent studies have highlighted an active role of SCs in promoting cancer

progression and cancer cell invasion [51–55].
SCs detected in cancer tissues share strong similarities with nerve repair SCs. Non-

myelinating nerve repair SCs are characterized by the re-expression of the transcription
factor c-Jun, followed by the upregulation of markers such as neurotrophin receptor p75
NTR (NGFR), glial fibrillary acidic protein (GFAP), growth associated protein 43 (GAP43),
and Sox2 [42,51,53,56,57]. Tumor-associated SCs have been identified in tumor samples,
with their abundance correlating with disease prognosis. Tumor-associated SCs can be re-
programmed by tumor-derived factors to acquire the repair-like phenotype, enabling them
to express and release cytokines, chemokines, growth factors, neurotrophic factors, matrix
metalloproteinases, and exosomes. These secreted elements and other factors contribute to
tumor microenvironment modulation through three main mechanisms: (i) attracting and
polarizing immune cells toward an immunosuppressive phenotype, recruiting Myeloid-
Derived Suppressor Cells (MDSCs) in the tumor microenvironment and exacerbating the
malignant features of cancer-associated fibroblasts (CAFs); (ii) remodeling the extracellular
matrix (ECM); (iii) directly influencing the functional activity of malignant cells [40,58–61].

Furthermore, SC-derived chemokines have been shown to enhance epithelial-
mesenchymal transition (EMT) in cancer cells, thereby fostering their migratory poten-
tial [62–64].

MicroRNAs from SCs exosomes further promote the proliferation, motility, and in-
vasiveness of cancer cells by targeting and blocking specific mRNA within malignant
cells [63,65–67].

Collectively, tumor-associated SCs have been shown to facilitate tumor growth in vivo
and contribute to the establishment of distant metastases (Figure 2).
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Figure 2. Schwann cell plasticity in cancer pathogenesis. Representation of the main mechanisms
through which Schwann cells, reprogrammed to a repair phenotype by cancer, contribute to its
progression by acting directly on cancer cells or indirectly on the tumor microenvironment.

4.1. Melanoma and Innervation: The Role of Schwann Cells

The skin is innervated by numerous afferent fibres and overall constitutes the largest
sensory organ of the human body. Skin maintenance and healing depend on proper
cutaneous innervation and nerve fibres localized in the skin play a deep regulatory control.
The lack of this control, occurring under pathological conditions such as spinal cord injury
or diabetic neuropathy, leads to ulcers and delayed wound healing [68–72].

In human skin, non-myelinating SCs are arranged in a complex and dense network
located just below the dermo-epidermal junction (200–300 cells/mm2) [73,74]. A specific in-
terplay of melanoma and the nervous system is expected, given the embryological origin of
melanocytes that may derive either directly from neural crests or, alternatively, from neural
crest-derived SC precursors [75,76]. Primary melanoma and primary melanocytic tumors in
CNS are a rare occurrence [77–79], while brain localization of melanoma metastases occurs
frequently. In fact, up to 60% of advanced melanoma may develop brain metastases [80].
Additionally, uveal melanoma is the most frequent intraocular tumor, affecting uvea i.e.,
the highly innervated vascular middle layer of the eye [81]. This may suggest permissive
action of nerve fibres on melanoma growth. On the other hand, genetic ablation or chemical
denervation of sensory nerves in mice accelerates melanoma growth in vivo indicating
that sensory fibres counteract melanoma progression [39]. Consistently, inhibition by a
chemogenic approach of the activity of sensory neurons promotes melanoma growth and
intra-tumoral angiogenesis while their excitation induces melanoma regression [29].

However, recent evidence reveals that high density of intratumor nerves parallels
with poor prognosis in melanoma patients [82,83]. In this regard, it is worth noting that
interaction of melanoma cells with nociceptive neurons promotes axonogenesis leading to
tumor innervation which in turn lowers the immune response to the tumor [84].

Sensory ablation decreased lymphoid and myeloid immunosuppressive cells and
promoted T-effector cell activation within the tumor microenvironment. The modulation of
the immune system appears as the primary mechanism by which sensory neurons support
melanoma growth. Remarkably, CD8a-depletion prevents the denervation-dependent
antitumor effect, leading to reduced populations of T cells (CD8+, CD4+, Treg) [19]. Under
such conditions, melanoma may grow exploiting the immune privilege of the nervous
system to evade immune surveillance [85]. The interplay between nerves and the immune
system in melanoma is also further supported by data showing that melanoma interacts
with nociceptor neurons leading to an increased release of the Calcitonin Gene-Related
Peptide (CGRP) which in turn reduces the cytotoxic activity of CD8+ T cells [84], and by
data indicating the onset of a neuron-dependent immunosuppressive environment [41].
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Within the regulatory action of the nervous system on melanoma, SCs have been
shown to play a key tumor-promoting role; in fact, similarly to what occurs within a heal-
ing wound, SCs exert their nerve-repair and wound-healing action also within the tumor
microenvironment, as a response to the nerve injury reaction activated by melanoma cells.
The melanoma-induced SCs activation leads to melanoma growth promotion, indicating
SCs as key melanoma growth promoters and immune-suppressive players, thus represent-
ing valuable therapeutic targets [53,86]. Another interesting potential therapeutic target is
the Glycoprotein Nonmetastatic Melanoma Protein B (GPNMB), which, in addition to its
immunosuppressive activity, also has the ability to foster peripheral nerve regeneration. It
is overexpressed in melanoma and acts on Erk1/2 and Akt pathways in SCs promoting
their proliferation and migration [87].

An additional aspect to consider is that SC precursors act as an ontogenic source for a
variety of cell types (such as fibroblasts, melanocytes, neurons, parasympathetic ganglia,
the SCs themselves) and that a variety of tumors arise from SCs, i.e., malignant peripheral
nerve sheath tumors, schwannomas, neurofibromas and the Devil Facial Tumor Disease
(DFTD) [40]. Moreover, the rare occurring intracranial melanotic schwannoma and the
rare malignant melanotic nerve sheath tumor (MMNST) require an accurate differential
diagnosis from malignant melanoma, indicating the occurrence of overlapping histological
and clinical characteristics of melanoma with SC-derived tumors [88,89].

As a final observation, sensory symptoms such as pain and itch, often mediated by
SCs, may represent symptoms in non-melanoma [90] as well as melanoma skin cancers [91].

4.1.1. Histopathological Characteristics of Melanoma–Nerves Interplay

Histopathological and immunohistochemical analyses can reveal characteristics of
interaction between melanoma and the PNS which potentially could affect the prognosis
and therapeutic strategies. The cells of cutaneous melanoma could interact with nerves in
different ways reported below.

Perineural Invasion

Perineural invasion describes the ability of tumor cells to infiltrate a nerve by passing
through the layers of its sheath. Doing so, tumor cells find a favourable environment to
travel around the body, contributing to the progression of the disease. Melanoma cells
could invade the perineurium showing small nests architecture or as single cells with
epithelioid or spindle morphology. Although perineural spread of malignant melanoma is
rare, it is associated with a poor prognosis such as an increased rate of local relapse and/or
higher probability of lymph nodes or distant metastasis [53,92,93].

Neuropathic Changes

Melanoma in an advanced stage causes degeneration of nerve fibres, loss of the myelin
integrity and fibrosis that contribute to weakness, numbness and pain. Melanoma cells have
been shown to drive the release of macrophage colony-stimulating factor (M-CSF), which
elicits resident intraneural macrophages expansion. This macrophage subpopulation seems
to be involved in mechanical/cold hypersensitivity and spontaneous nociception [94].

Neural Remodeling

Melanoma cells can remodel their own microenvironment changing the structure and
density of nerves. The new nerves are recognizable histologically as elongated fibres along-
side lesional melanoma cells. This has been demonstrated through immunohistochemical
analyses with markers for nerve fibres such as neurofilaments, S100 protein and protein
gene product 9.5 (PGP 9.5) [95,96]. Metastasizing and low metastatic melanomas display a
different pattern of neural activity in animal models [97].
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Neurogenic Inflammation

The nerve fibres in melanoma can release pro-inflammatory chemotactic factors that
attract inflammatory cells including lymphocytes, mast cells and macrophages that can
be detected by histological examination. This process triggers a neurogenic inflammation
which results in neuropeptide release and rapid plasma extravasation and oedema. The
clinical implication of neurogenic inflammation is tumor progression and can also cause
immune evasion, which can be exploited for target therapy [40,98,99].

Neurotrophic Factors and Receptors Expression

Melanoma cells can express neurotrophic factors, such as the nerve growth factor
(NGF) and brain-derived neurotrophic factor (BDNF), and their corresponding Tyrosine
kinase receptors (TrkA and TrkB) that can be detected by immunohistochemistry. The
neurotrophic factors and their receptors are associated with the progression of melanoma
and can be used for new therapeutic strategies. In brain-metastatic melanoma cells, NGF
has been shown to promote invasion by increasing the production of extracellular matrix-
degrading enzymes, suggesting that tissues rich in NGF and other neurotrophins, such as
the brain, support melanoma invasion and survival through a potent chemotactic activity.
Melanoma exploits the immune privilege inherent in its developmental origin and induces
immunosuppression impairing the formation of the tumor-specific T cell memory. The
NGF drives immune cell exclusion in the melanoma tumor microenvironment. Inhibiting
the NGF renders melanomas susceptible to immune checkpoint blockade therapy and
fosters long-term immunity by activating memory T cells with low affinity [85,100].

4.2. Innervation in Liver and Pancreas

Nerve fibres in the liver and pancreas belong to the visceral autonomic sympathetic
nervous system (SNS) and parasympathetic nervous system (PSNS). Innervation by SNS
occurs via the splanchnic nerves, and innervation by the PSNS occurs via the vagus nerve.
Both nerve divisions contribute efferent (motor) fibres (for instance, to the walls of the
blood vessels, the pancreatic ducts, and the pancreatic acini) and visceral afferent (such as
for pain) fibres. In the liver, the afferent fibres provide the CNS with information about the
metabolite composition of the portal vein. On the other hand, the efferent fibres control the
metabolism, blood flow and bile secretion [101,102]; to note, autophagic processes are also
key actors in regulating liver metabolism [103]. The biliary tree is highly innervated via
the ANS: the SNS activates and increases the proliferation of hepatic stellate cells (HSCs)
while PSNS cholinergic fibres regulate cholangiocyte secretion and proliferation. In fact,
α-adrenoblockers have been shown to be promising among strategies able to reduce HSC
activation and fibrosis [104,105] and inhibitors of the SNS are potential candidates for the
treatment of cirrhosis [106,107].

4.2.1. Pancreatobiliary Tract Cancer: The Role of Nerves Fibres and Schwann Cells
Perineural Invasion

Both PDAC and cholangiocarcinoma (CCA) are aggressive cancers, and they share
many biological features including neurotropism, which results in frequent perineural
invasion [108]. It has been reported that almost all PDAC lesions, as well as about 75%
of CCA, undergo perineural invasion. Both in PDAC and CCA, perineural invasion
is associated with a worse prognosis and shorter survival. SCs guide the migration of
cancer cells towards nerves and have been shown to promote perineural invasion in
PDAC [62,108–110].
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Neuropathic Changes

SCs not only play a key role in cancer progression, but also in cancer-related pain.
In PDAC, in the early stages of cancer, interleukin-6 (IL-6) secreted by SCs was linked to
analgesia since activated SCs exhibited a transcriptomic profile with anti-inflammatory and
anti-nociceptive features. IL-6 blockades inhibited SCs activation. The initial activation of
SCs therefore suppresses the activity of microglia and astrocytes within the spinal cord, thus
inhibiting afferent pain fibres. In PDAC, patients with more SCs experience less pain and
the transient initial state of analgesia may result in a possible diagnostic delay [111–113].
Conversely, as the tumor progresses, SCs secrete several pain-related molecules, such as the
NGF, that promote the activation of primary sensory neurons, thus increasing nociceptive
activity [37,38,48,114].

Neural Remodeling

Nerve fibres are present in the tumor microenvironment in both PDAC and CCA. Their
presence, together with that of different nonmalignant cells such as fibroblasts, immune
cells, and blood or lymphatic vessels, plays an important role in carcinogenesis. For
instance, SCs with a repair phenotype may aid tumor growth through a direct interaction
with cancer cells and ease the onset of an immunosuppressive microenvironment. In vitro
SCs induce an M2-phenotype in macrophages, thus possibly leading to worse clinical
prognosis in malignancies [20,115–119]. In PDAC, neurogenesis is a novel studied biological
phenomenon since cancer cells may induce nerve growth and innervation through multiple
mechanisms, including secretion of neurotrophic factors such as NGF, BDNF, and the
glial cell-derived neurotrophic factor (GDNF). In PDAC, cancer-related neurogenesis via
the “proangiogenic vessel guidance factor placental growth factor” has been recently
demonstrated; this promotes neurite outgrowth and attracts tumor cells towards nerves.
In addition, it has been proposed that cancer cells might recruit neural progenitors to
facilitate their maturation into adrenergic infiltrating nerves which in turn may stimulate
angiogenesis. Interestingly, the cancer stem cell pool seems to be expanded via intratumoral
PSNS nerves which can induce Wnt-β-catenin signals [120–122].

It is not known whether cancer-related neurogenesis also occurs in CCA. Remarkably,
in CCA small nerve fibre density may be considered a novel prognostic biomarker. Nerve
fibre density is different from perineural invasion since it describes the density of small
nerve fibres without cancer invasion. It has been reported both in perihilar CCA and in
intrahepatic CCA patients that high nerve fibre density is associated with better patient
survival and high CD8+PD-1+ expression within the tumor microenvironment. This
underlines how the cellular and molecular immune and nervous constituents may synergize
within the tumor microenvironment [123]. In PDAC, a high density of PSNS nerve fibres
correlates with tumor budding and poor survival rates [124], while in a metastatic PDAC
mouse model, vagotomy fosters accelerated tumorigenesis [28]. Conversely, ablation of
sensory innervation has been shown to be effective to slow initiation in the early stages
of cancer [108] making the role of nerve fibres in tumor progression particularly complex
to interpret.

Regarding the role of SCs in PDAC, they have been shown to actively migrate toward
cancer cells. The presence of SCs has been demonstrated in precancerous PDAC tissues.
More in detail, SCs secrete proteins, such as matrix metalloproteinase 2 (MMP-2), cathepsin
D, plasminogen activator inhibitor-1 or tansforming growth factor (TGF), thus promoting
pancreatic cancer cell aggressive properties, proliferation and invasion. SCs can contact
cancer cells, and recruit macrophages that degrade the perineurium promoting perineural
invasion [37,112]. Regarding the role of SCs in CCA, we recently demonstrated that SCs as-
sist in promoting cancer aggressiveness. In fact, we observed increased migration/invasion
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and survival/proliferation of CCA cell lines exposed to the secreted factors of SC primary
cultures. We also found EMT as well as upregulation of key oncogenes and downregulation
of tumor suppressors in CCA cells after co-culture with SCs. It emerged that many of the
regulated proteins are under the control of TGFβ and that a TGFβ receptor antagonist is
able to block the Schwann-cell-induced migration/invasion of CCA cells [62].

Neurotrophic Factors and Receptors Expression

SCs make up approximately 90% of the endoneural space in peripheral nerves. They
produce a variety of growth factors such as the NGF, BDNF and GDNF. The NGF is also
broadly expressed by tumor cells, inflammatory cells and immune cells. Activation of
NGF/TrkA signaling therefore induces tumor progression and either the NGF or TrkA may
be a therapeutic target against PDAC [37].

4.2.2. HCC and Innervation
Perineural Invasion and Neural Remodeling

The role of the PNS in hepatocellular carcinoma (HCC) remains unclear and poorly
investigated. The cause may stem from HCC low neurotropic tendencies, with respect to
PDAC and other gastrointestinal cancers, or to its uncommon use of perineural invasion as a
primary metastatic route [82,92]. However, it is worth noting that perineural invasion might
be just one of the many phenomena in which the PNS is involved in tumor progression.
Low neurotropic tendencies can partly be attributed to the anatomical predominance of
small ANS fibres over major nerve branches within the liver parenchyma [102,125,126].
Ueda and colleagues were the first to describe neural invasion in the portal tract of the
liver in an HCC patient [126]. Subsequently, Kanda et al. identified dense S-100 and
synaptophysin positive nerve fibres in the capsule of HCC [127]. Remarkably, in 2024,
Mandal and colleagues revealed a large abundance of intratumoral nerves in an orthotopic
HCC mouse model [128].

Regarding the prognostic implications of both perineural invasion and nerve fibre
density in HCC patients, recent literature presents uneven information, likely due to
differences in patient cohorts, selected parameters and methodologies, as well as divergent
operational definitions of neural involvement within the tumor microenvironment [129].
In the study of Liebl et al., perineural invasion was reported among 6% of HCC subjects,
where its sole presence did not show any prognostic power. However, HCC patients with
an increased neural invasion severity, defined with a deeper cancer cells invasion into nerve
connective tissue, exhibited significantly worse survival [129]. Concerning smaller nerves
not invaded by cancer cells, the group of Bednarsch et al. explored the impact of nerve fibre
density on oncological survival in a cohort of HCC patients undergoing liver resection for
curative intent; unlike other types of cancer (i.e., gastric and colorectal adenocarcinomas,
PDAC) in which the presence and density of nerve fibres in the tumor microenvironment is
known to have an important prognostic value, nerve fibre density did not predict long-term
outcomes in HCC patients [130]. Contrasting data comes from the study of Zhang et al., in
which the authors found that HCC, with respect to non-cancerous liver tissues, presented
higher levels of tyrosine hydroxylase (TH), correlated with worse clinical features, thus
suggesting a link between ANS fibre density and poorer prognosis [131]. According to
Wang et al., perineural invasion could partially explain HCC spread to bone tissues, since
a significantly higher nerve density was found in HCC bone metastases compared with
primary tumor tissues [132]. However, the idea of a link between peripheral nerves and
bone metastases is mainly based on histopathological observations, so a functional study is
needed for confirmation.
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PNS and Liver Chronic Inflammation

Liver cancer often arises in the context of chronic inflammation and fibrosis [133,134].
It therefore seems crucial to understand the direct connection between the hepatic nervous
system and processes paving the way for hepatocarcinogenesis. SNS hyperactivity relates
to liver damage [135] and fibrogenesis [107], primarily acting on HPC [136], and promotes
an inflammatory milieu that supports tumor growth. Noteworthy, in an induced-HCC
rat model, SNS denervation decreased both fibrosis and tumor formation [137]. On the
other hand, PSNS neurons protect from hepatic damage and inflammation [138] and have
been proven to support liver regeneration [139]. Surgical resection still stands as one of the
primary curative treatments for HCC, yet its recurrence rates reach up to 70% in patients
following surgery [140]. Therefore, future studies must investigate the role that the ANS
might play in post-operative repair processes.

PNS and Tumor Growth

Cholinergic receptors are highly expressed in HCC cells, where they foster prolif-
eration, EMT, invasion, and resistance to apoptosis, pointing out a potential therapeutic
target [131,141]. On the other hand, acetylcholinesterase, the enzyme responsible for acetyl-
choline inactivation, has been characterized for its role as a tumor suppressor, providing
novel therapeutic insights [142]. Numerous studies have documented the important role
of adrenergic transmission in the pathogenesis of HCC. The expression of β2- Adrenergic
Receptors (AR) is significantly upregulated in HCC liver tumor tissues and cell lines, and
it is highly associated with poor prognosis in patients [131,143]. β2-AR have been shown
to sustain HCC cells proliferation, survival and chemoresistance [144]; hence, the use
of β-AR blockers or sympathetic denervation represents a promising therapeutic strat-
egy [137,145,146]. Additionally, non-tumor tissue from HCC livers showed an increased
density of α1-AR compared to healthy livers, suggesting that adrenergic transmission
might predispose hepatocytes to aberrant proliferation [143].

The hyperactivation of the SNS is furthermore responsible for hepatocarcinogenesis
in the context of chronic inflammation, as the stimulation of α1-AR on Kupffer cells
promotes IL-6 and TGFβ production and maintains a pro-inflammatory microenvironment
favourable for tumor development [137]. Additionally, HSCs in HCC tissues present
elevated levels of β2-AR, which contribute to their activation and, consequently, to the
malignancy of cancer cells [147]. A different perspective comes from the work of Liu et al.,
demonstrating that the activation of SNS neurons and β-AR protected from liver cancer
mice kept in stressful environments, via reducing inflammation and enhancing anti-tumor
immunity [148].

Neurotrophic Factors and Receptors Expression

A recent study published by Wang et al., notably pointed out eight key neurotransmitter-
related genes strongly linked to HCC pathogenesis. Based on this finding, the authors
provided a prognostic model that accurately forecasts the severity of HCC. Their layout
revealed significant alterations in processes involved in cellular metabolism and immune
response in high-risk HCC cases [149]. Furthermore, the group of Zhang et al., 2022, catego-
rized HCC into two subtypes based on the expression of neural-related genes, which vary in
terms of prognosis, clinical stage, immune regulation and critical signalling pathways [150]
emphasizing the critical crosstalk between the nervous system and cancer in HCC.

Besides neurotransmitters, several neurotrophic factors have been recently recognized
as contributors to HCC, with reference to the BDNF and NGF. The BDNF and its receptor
TrkB have been found to be specifically expressed in HCC cell lines and tumor tissues and
to induce neovascularization and cancer cell survival/invasion [151,152]. Kishibe et al.
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found the NGF to be highly expressed in focal hepatocytic lesions from early stages of
carcinogenesis and regeneration, but not in adult and developing livers. Moreover, NGF
TrkA receptors and nerve fibres were particularly abundant in the walls of tumor-associated
arteries, indicating a possible role for the NGF in angiogenesis [153]. The NGF is reported to
be elevated in tumor cells of HCC, while both types of its receptors (TrkA and p75NTR) are
present in Kupffer cells, endothelial cells and hepatic stellate cells, only in the liver cancer
tissue [154,155]. According to Yuanlong et al., however, the expression of p75NTR decreased
significantly in HCC tissues, as compared with their adjacent non-cancerous counterparts,
and in various human HCC cell lines, making this receptor a potential candidate as a tumor
suppressor [156]. Given controversial evidence, it is crucial to carry out more detailed
studies on the role of different neurotransmitters in HCC progression; it would also be
intriguing to explore the role of glial cells and SCs, as it remains entirely unexplored.

5. Conclusions
The role of PNS in cancer has not been completely clarified, making its impact on

tumor biology and patient outcomes across common cancer types not fully understood
(Table 1).

Table 1. Summary of studies regarding the role of innervation in different types of tumors (melanoma,
PDAC, CCA, HCC). The pro-tumoral role of Schwann cells, relevant neurotrophic factors regulating
tumor innervation and possible therapeutic targets are indicated for the different tumors.

Pro-Tumural
Role of SCs

Sympathetic
Fibres

Parasympathetic
Fibres Sensory Fibres

Relevant
Neurotrophic

Molecules

Potential
Drugs References

Melanoma + promote tumor
growth undefined promote/inhibit

tumor growth NGF β-blocker
drugs

[29,39,53,82,83,
86,100,146]

PDAC + inhibit tumor
growth

promote tumor
growth

promote tumor
growth

BDNF; GDNF;
NGF

NGF
inhibitors

[35,37,38,61,108,
109,112,120–122]

CCA + promote tumor
growth undefined undefined TGFβ undefined [62,108,110]

HCC undefined promote tumor
growth

promote tumor
growth undefined BDNF; NGF β-blocker

drugs [131,137,145,147]

It is conceivable and plausible that a direct relationship exists between the neurotrophic
capabilities of SCs in fostering regeneration after injury and their ability to aid tumorigen-
esis. The molecular mechanisms activated in the two other events could be very similar
(Figure 3). Therefore, SCs traditionally known for their support of axonal regeneration after
injury are now also being considered for their potential involvement in tumor progression.

This could lead to new therapeutic strategies that target the interactions between SCs
and the tumor microenvironment, as well as novel diagnostic and prognostic approaches
assessing nerve density. It is interesting to note that perineural invasion is a common
finding in melanoma (especially desmoplastic subtypes), PDAC and CCA, being a marker
of aggressiveness and poor prognosis, while in HCC it is a rare and less relevant finding.
The role of PNS in HCC remains unclear and poorly investigated and further research is
needed to understand possible involvement of SCs in HCC.

While the gene and protein profiling of SCs derived from malignant peripheral nerve
sheath tumors as compared to normal SCs has been reported [157], the genomic and
proteomic analysis of these glial cells within the context of different tumors remains to be
investigated. It would be of interest to determine whether SCs occurring in solid tumors
share common features or are instead related to the tumor type and stage. In this context,
as already mentioned, SCs appear to have an analgesic effect in the early stages of tumor
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growth, while increasing nociceptive activity in the later stages. The specific characteristics
of SCs present in the early/late stages of tumor progression remain to be determined.

 

Figure 3. Key molecular pathways and secreted factors of activated SCs that potentially contribute to
both nerve regeneration and tumor progression in PDAC, CCA and melanoma.

It is notable that recent research has convincingly demonstrated the SCs’ active involve-
ment in modulating immune responses in a variety of pathological conditions, including
neuropathic pain as well as cancer. Chemokines and cytokines secreted by SCs attract and
influence immune cells. Specifically, SCs produce signals that attract M2-type macrophages
(which suppress immune activation) and recruit MDSCs, thereby enhancing their capacity
to inhibit T-cell proliferation. SCs can also directly suppress effector T cells, which in turn
can push them towards a regulatory or exhausted state [158]. The immunosuppressive
activity of SCs certainly constitutes a potential new therapeutic target to be explored in
future studies.
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