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Abstract

Hemorheology is a branch of science that studies and explains the causes of blood flow
disorders. In many vascular disorders whole blood viscosity, plasma viscosity, aggregability,
and deformability of erythrocytes can be a diagnostic factor. In this paper we analyze
whether statin therapy affects hemorheological values in a group of patients with clinically
diagnosed silent ischemic foci of the brain (CSVCL). The study includes an analysis of the
hemorheological parameter values such as whole blood viscosity, plasma viscosity, and
selected biochemical parameters. Aggregability and deformability of erythrocytes were
determined using the mathematical Quemada model. Our results indicate a modifying
effect of statins on hemorheological parameters.

Keywords: hemorheology; blood viscosity; CSVCL; statin therapy; aggregability of
erythrocytes; deformability of erythrocytes

1. Introduction
Studies of hemorheological properties enable the explanation of blood supply disor-

ders based on the determination of the values of physicochemical parameters of whole
blood. Whole blood viscosity depends on the hematocrit value, plasma viscosity, and
the erythrocyte tendency to aggregate and deform [1–3]. Plasma viscosity depends on its
protein and lipid composition [4,5]. In the case of many vascular diseases, such as arterial
hypertension, diabetes, and cardiovascular diseases, the analysis of rheological parameter
values is still underestimated diagnostically [4,6]. Over the last 20 years, the results of
several studies—conducted to determine whether changes in hemorheological parameters
are important for the development of cerebral ischemia and whether they are a causative
factor or only accompany other pathophysiological phenomena of the cerebral ischemia
process [7–9]—have been published. Blood flow disorders are a condition for the occur-
rence of ischemic stroke in both the acute and chronic phase, transient cerebral ischemia,
and the formation of so-called silent ischemic foci of the brain (CSVCL). Abnormalities
in blood rheological parameters are observed in more than 40% of cases of people with
cerebral ischemia [8,10–12]. Many researchers have found increased whole blood viscosity
values in patients with cerebral ischemia compared to healthy controls [7,8,13]. Similarly, in
chronic cerebral ischemia hemorheological changes are observed, such as increased blood
and plasma viscosity, increased plasma fibrinogen concentration, increased hematocrit and
red blood cell aggregability, and changes in erythrocyte deformability [6–8,10,13–16]. In
patients with silent ischemic lesions, depending on the number of ischemic lesions in the
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brain detected in MRI—low-stage disease (0–3) and high-stage disease (>3)—it was shown
that in the group of patients with high-stage disease, fibrinogen values were higher than in
patients with low-stage disease but significantly lower compared to patients with chronic is-
chemic disease [13]. The incidence of clinically silent ischemic lesions in the brain increases
with age, and the risk factors are consistent with the risk factors of cerebrovascular diseases,
the most important of which, apart from age, are arterial hypertension, diabetes, atrial
fibrillation, elevated cholesterol and homocysteine levels, the presence of atherosclerotic
plaques in the carotid arteries, and tobacco smoking [17–19].

Epidemiological studies have shown that abnormal blood lipid levels are an impor-
tant risk factor for atherosclerosis and cardiovascular diseases [20]. Increased triglyceride
values increase blood and plasma viscosity, while high HDL values reduce plasma viscos-
ity [15,20–22]. High lipid levels worsen the rheological properties of blood by increasing the
formation of red blood cell aggregates and increasing plasma viscosity. Hemorheological
disorders participate in the formation of atherosclerotic plaques in the walls of arteries.
Hemorheological deviations such as increased plasma viscosity and erythrocyte aggrega-
tion and their poorer deformability are observed in various pathological conditions that
promote the following atherogenesis: coronary heart disease, atherosclerosis, diabetes, obe-
sity, hypertension, metabolic syndrome, or hypercholesterolemia [3,6,15,23]. Experimental
models of mechanical properties of blood flow show characteristic blood flow disorders
in the places of vessel branching, the so-called geometric parameters of atherosclerosis
risk, predisposing to the formation of atherosclerotic plaques. The change in blood flow
from laminar to turbulent promotes the formation of local secondary flows and causes local
deterioration of hemorheological properties of blood. In the places of vessel bifurcation,
the blood vessel wall is affected by variable shear stress (τ) [24,25].

Disturbances of the rheological properties of blood affect the slowing down of blood
flow in vessels and, thus, the time of atherogenic particle retention at the vessel branching
point. As a result of local action of variable shear stress (τ) due to mechanotransduction,
an inflammatory response of the vessel wall, mechanical damage to the endothelium,
and local conditions related to increased blood viscosity and increased aggregation of
erythrocytes occur, leading to the formation of atherosclerotic plaques. The key role
of fibrinogen in this phenomenon should be noted [26–31]. Fibrinogen is deposited in
atherosclerotic plaques, transforming into fibrin and fibrinogen breakdown products, which
have an atherogenic effect on the vessel wall, and erythrocytes increase platelet aggregation,
contributing to the accumulation of both thrombocytes and leukocytes, giving rise to the
development of a clot. The effect of erythrocytes on platelet activation is explained by
increased prothrombotic activity of the erythrocyte cell membrane, increased endothelial
adhesion, and decreased red blood cell deformability [26–31].

The lipid composition of the erythrocyte membrane is characterized by a state of
dynamic equilibrium with plasma lipoproteins and reflects the processes occurring in the
extracellular environment. In order to modify the development of atherosclerosis, drugs
lowering the level of lipids in the blood serum are used [32–34]. High whole blood viscosity
can also be reduced after statin therapy, and researchers suggest that drug administration
could have a preventive effect in acute coronary syndrome [35]. Rasyid et al. [36] in their
studies on ischemic strokes point out that the outcome of acute stroke is influenced by in-
creased blood viscosity caused by increased levels of fibrinogen and LDL. In the conclusions
of their work, the authors emphasize that fibrinogen, dyslipidemia, and hype viscosity are
factors that should be controlled in patients with a stroke or at risk of stroke [36].

The aim of this work is to analyze the hemorheological data obtained during the
measurement of the blood flow curve taken from people diagnosed with clinically silent
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ischemic foci of the brain in comparison to the control group—without visualized ischemic
foci in the CNS in neuroimaging studies depending on statin therapy.

2. Results
Tables 1 and 2 present the results of hemorheological and biochemical values for the

group of patients and the control group not taking statins, and Tables 3 and 4 present the
results of hemorheological values for the group of patients and the control group taking
statins. In the obtained results of hemorheological values for the people not taking statins
(Table 1), statistical significance is observed in the group of patients compared to the control
group in terms of the ability of erythrocytes to aggregate (the value of the Quemada model
parameter k0 differed statistically at the level of p < 0.005) and the tendency of erythrocytes
to deform (the level of significance for the Quemada model parameter k∞ p < 0.05). Based
on the analysis of biochemical parameter values for people not taking statins (Table 2),
statistically significant differences were observed for the group of patients compared to the
control group in terms of IgM values (p < 0.0040, ESR (p < 0.049) and the albumin/globulin
ratio (p < 0.009). Analysis of the values of hemorheological parameters obtained in the
control group and the group of patients taking statins (Table 3) indicates statistically
significant differences for the group of patients compared to the control group in terms of
plasma viscosity ηp (p < 0.03). Further differences in statistical significance were observed
among the values of biochemical parameters obtained in the control group compared to
the group of patients taking statins (Table 4) for the following parameters: IgM (p < 0.05),
albumin/globulin ratio (p < 0.046), and cholesterol level (p < 0.04).

Table 1. Values of hemorheological parameters in the control group and in the group of patients with
clinically silent ischemic foci of the brain not taking statins.

Rheological Parameters Control Group
(Without Statins) n = 14 p Patient Group (Without

Statins) n = 50

Hematocrit [%] 41.3 ± 0.9 0.44 42.0 ± 0.4

Plasma viscosity ηp [mPas] 1.42 ± 0.04 0.73 1.41 ± 0.01

Relative viscosity of whole blood at a shear
rate of 0.1 [s−1] 28 ± 4 0.49 26 ± 1

Relative viscosity of whole blood at a shear
rate of 1 [s−1] 14 ± 1 0.64 13.4 ± 0.6

Relative viscosity of whole blood at a shear
rate of 10 [s−1] 5.7 ± 0.2 1 5.7 ± 0.1

Relative viscosity of whole blood at a shear
rate of 100 [s−1] 3.32 ± 0.08 0.44 3.43 ± 0.07

Queamada model parameter k0 4.33 ± 0.04 0.005 4.17 ± 0.03

Queamada model parameter k∞ 1.79 ± 0.02 0.05 1.69 ± 0.03

Queamada model parameter γ’c 6.2 ± 0.9 0.35 5.6 ± 0.3

Comparison of hemorheological and biochemical parameter values in the group of
patients divided into the group taking and not taking statins, with the statistical significance
of differences indicated, is presented in Tables 5 and 6. The observed differences were
statistically significant in the case of plasma viscosity values (p < 0.007) and erythrocyte
deformability (p < 0.01) (Table 5) and cholesterol level (p < 0.002) (Table 6).
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Table 2. Biochemical parameter values in the control group and in the group of patients with clinically
silent ischemic foci of the brain not taking statins.

Parameters Biochemical Control Group (Without
Statins) n = 14 p Patient Group (Without

Statins) n = 50

fibrinogen 4.1 ± 0.3 0.34 3.7 ± 0.2

IgM 1.4 ± 0.1 0.004 1.01 ± 0.07

IgG 9.4 ± 0.5 0.11 10.7 ± 0.4

IgA 2 ± 1 0.6 2.3 ± 0.1

ESR 8.4 ± 1.1 0.049 12 ± 1

Albumins/globulins 1.83 ± 0.12 0.009 1.56 ± 0.04

Total protein 70.3 ± 1.5 0.39 71.8 ± 0.8

Glucose 5.08 ± 0.09 0.22 5.46 ± 0.15

Cholesterol 5.7 ± 0.3 0.47 5.45 ± 0.16

Table 3. Values of hemorheological parameters in the control group and in the group of patients with
clinically silent ischemic foci of the brain taking statins.

Rheological Parameters
Control Group

(Statins)
n = 3

p
Patient Group

(Statins)
n = 19

Hematocrit [%] 39.5 ± 0.9 0.21 41.6 ± 0.6

Plasma viscosity ηp [mPas] 1.54 ± 0.05 0.03 1.34 ± 0.03

Relative viscosity of whole blood at a shear rate
of 0.1 [s−1] 22 ± 7 0.42 29 ± 3

Relative viscosity of whole blood at a shear rate
of 1 [s−1] 11 ± 1 0.27 14 ± 1

Relative viscosity of whole blood at a shear rate
of 10 [s−1] 5.7 ± 0.2 0.64 6.2 ± 0.4

Relative viscosity of whole blood at a shear rate
of 100 [s−1] 3.32 ± 0.08 0.48 3.7 ± 0.2

Queamada model parameter k0 4.33 ± 0.14 0.72 4.27 ± 0.06

Queamada model parameter k∞ 1.75 ± 0.05 0.56 1.86 ± 0.07

Queamada model parameter γ’c 6.2 ± 0.9 0.39 5.0 ± 0.5

Table 4. Biochemical parameter values in the control group and in the group of patients with clinically
silent ischemic foci of the brain taking statins.

Parameters Biochemical Control Group (Statins)
n = 3 p Patient Group (Statins)

n = 19

Fibrinogen 4.8 ± 0.8 0.07 3.6 ± 0.2

IgM 1.4 ± 0.1 0.05 0.95 ± 0.08

IgG 9.4 ± 0.5 0.88 9.7 ± 0.5

IgA 2 ± 1 0.65 2.4 ± 0.2

ESR 8.4 ± 1.1 0.76 11 ± 2

Albumins/globulins 1.83 ± 0.12 0.047 1.58 ± 0.04

Total protein 70.3 ± 1.5 0.9 71 ± 1

Glucose 5.08 ± 0.09 0.6 5.7 ± 0.3

Cholesterol 5.7 ± 0.3 0.04 4.5 ± 0.2
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Table 5. Comparison of hemorheological values in the group of patients divided into those taking
and not taking statins.

Rheological Parameters
Patient Group

(Statins)
n = 19

p
Patient Group (Without

Statins)
n = 50

Hematocrit [%] 41.6 ± 0.6 0.6 42.0 ± 0.4

Plasma viscosity ηp [mPas] 1.34 ± 0.03 0.007 1.41 ± 0.01

Relative viscosity of whole blood at a shear rate
of 0.1 [s−1] 29 ± 3 0.23 26 ± 1

Relative viscosity of whole blood at a shear rate
of 1 [s−1] 14 ± 1 0.61 13.4 ± 0.6

Relative viscosity of whole blood at a shear rate
of 10 [s−1] 6.2 ± 0.4 0.1 5.7 ± 0.1

Relative viscosity of whole blood at a shear rate
of 100 [s−1] 3.7 ± 0.2 0.11 3.43 ± 0.07

Queamada model parameter k0 4.27 ± 0.06 0.1 4.17 ± 0.03

Queamada model parameter k∞ 1.86 ± 0.07 0.01 1.69 ± 0.03

Queamada model parameter γ’c 5.0 ± 0.5 0.3 5.6 ± 0.3

Table 6. Comparison of biochemical values in the group of patients divided into those taking and not
taking statins.

Biochemical Parameters
Patient Group

(Statins)
n = 19

p
Patient Group (Without

Statins)
n = 50

fibrinogen 3.6 ± 0.2 0.l78 3.7 ± 0.2

IgM 0.95 ± 0.08 0.63 1.01 ± 0.07

IgG 9.7 ± 0.5 0.17 10.7 ± 0.4

IgA 2.4 ± 0.2 0.63 2.3 ± 0.1

ESR 11 ± 2 0.63 12 ± 1

Albumins/globulins 1.58 ± 0.04 0.77 1.56 ± 0.04

Total proteins 71 ± 1 0.58 71.8 ± 0.8

Glucose 5.7 ± 0.3 0.44 5.46 ± 0.15

Cholesterol 4.5 ± 0.2 0.002 5.45 ± 0.16

3. Discussion
The mechanisms of blood flow disorders in cerebrovascular diseases, and, in particular,

clinically silent ischemic changes in the brain, despite many studies conducted so far,
still conceal many unknowns [17,18,37]. The formation of these changes is associated
with circulatory disorders at the level of capillaries, where the condition for maintaining
the flow is maintaining the balance of hemorheological parameters. Hemorheological
disorders contributing to the formation of silent ischemic foci of the brain are associated
with poorer deformability of red blood cells [17]. In the work of Marcinkowska-Gapińska
et al., a correlation was found between the parameter of the Quemada model k∞ and
plasma viscosity ηp. Furthermore, it was also observed that in the group of patients and
the control group, the decrease in the ability of erythrocytes to deform coexist with the
intensification of plasma viscosity [17]. These parameters are independent quantities, but
they have an impact on the viscosity of whole blood. Plasma viscosity depends on its
lipid and protein composition [4,5], and the deformability of erythrocytes is determined by
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a number of internal factors (erythrocyte internal viscosity) and external factors (surface
area to volume ratio and erythrocyte membrane deformability) [23,38].

Primary and secondary prevention of vascular diseases is currently the basic weapon
in the fight against stroke and heart attack [28,39,40]. Among the drugs used, an impor-
tant role is played by preparations lowering the level of lipids in the blood, including
statins. Analysis of the values of hemorheological and biochemical parameters conducted
in the study showed that the value of the Quemada model parameter k0, describing the
tendency of erythrocytes to aggregate and the parameter k∞ expressing the susceptibility
of erythrocytes to deformation in the group of patients not taking statins, has lower values
compared to the control group (Table 1). In the group of patients with silent ischemic foci
of the brain not taking statins, the IgM concentration and the albumin/globulin index
value are lower, but the ESR value is higher (Table 2). The lower value of IgM and albumin
globulin ratio in this group of patients corresponds with literature data [41–43] as a marker
of an increased risk of vascular disorders, including ischemic foci of the brain. A low
value of the albumin/globulin ratio indicates an increased content of globulins in the blood
serum in the group of patients not undergoing statin therapy, and a reduced value of IgM
may indicate a higher content of fibrinogen in the plasma, contributing to increased plasma
viscosity [4,5]. A higher ESR value in this group of patients may be related to a higher
plasma viscosity ηp caused by a higher concentration of globulins resulting from a reduced
value of the albumin/globulin ratio [4,44,45].

Analyzing the data obtained in this study, it can be stated that in the group of patients
with clinically silent ischemic foci of the brain who were not treated with statins, compared
to the control group also not subjected to statin therapy, red blood cells demonstrate
better deformability and form shorter rolls, which may be an expression of the occurring
autoregulation processes associated with the increase in plasma viscosity ηp [6,7,46,47] in
order to maintain blood flow in the microcirculation in the conditions of the formation of
ischemic foci of the brain.

Based on the analysis of the results obtained in the study for the group of patients with
ischemic brain lesions compared to the control group undergoing statin therapy (Table 3), it
was found that in the group of patients there was a reduced plasma viscosity ηp, as well as
a lower concentration of IgM and cholesterol and the albumin/globulin index (Table 4). The
reduced value of plasma viscosity in the group of patients with ischemic brain lesions may
result from the dependence of plasma viscosity on factors such as the type and duration of
the disease, comorbidities, and medications taken [3,4,11,15,17,18,35]. The change in the
value of plasma viscosity may also result from the development of mechanisms regulating
hemorheological properties. This mechanism is not yet fully understood [5,7,9,17,48,49].

The decreased IgM concentration observed in the group of patients treated with
statins and the lower albumin/globulin ratio (Table 4) in comparison to the control group
treated with statins are similar to those observed in the comparison of the group of patients
and the control group not taking statins (Table 2). On the other hand, the decreased
cholesterol concentration observed in the group of patients taking statins in comparison
to the control group also taking statins (Table 4) may be related to the implementation of
other hypolipidemic procedures, such as a more restrictive diet [50–53]. Lower total serum
cholesterol concentration, mainly LDL fraction, results in lower plasma viscosity [22,54].
The lower plasma viscosity value observed in the study correlates with lower serum
cholesterol concentration in the group of patients with clinically silent ischemic foci of the
brain treated with statins compared to untreated patients. These results are confirmed in
the literature [50,55].

The ability of erythrocytes to deform results from external viscosity related to the
mechanical properties of the erythrocyte cell membrane, its internal viscosity resulting
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from the concentration of hemoglobin, pH, and osmolarity of blood, and disorders in
electrolyte transport [38]. Moreover, the deformability of red blood cells depends not only
on mechanical properties but is also related to their metabolism [21,24,56]. The results
obtained in the study, in the group of patients with clinically silent ischemic foci of the
brain with implemented statin therapy, indicate increased stiffening of erythrocytes in
this group of patients with a simultaneous decrease in cholesterol values (Tables 5 and 6).
High cholesterol content in the plasma worsens the elasticity of erythrocytes [50], but
the implementation of statin therapy improves the cholesterol/phospholipids ratio of the
erythrocyte cell membrane and causes increased deformability in the group of patients with
familial hypercholesterolemia [57–59]. The cholesterol/phospholipids index value reflects
the cholesterol content in the red blood cell membrane. Increased cholesterol content in
the membrane causes erythrocyte stiffening [22,50]. The results presented in this paper
indicate that statin therapy used in some patients with clinically silent ischemic foci of
the brain did not improve erythrocyte elasticity. The differences in the results obtained in
this paper in relation to the literature data [21,58,59] may result from coexisting diseases
that modulate the rheological properties of blood in the deformability of erythrocytes.
The deformability of red blood cells is the end result of the action of many factors, both
structural and metabolic [60,61], which were not analyzed in this paper.

It is well established in the literature that statins, beyond lowering serum cholesterol,
can also alter membrane cholesterol composition, thereby affecting the integrity and func-
tion of lipid rafts. These microdomains play a key role in modulating cellular signaling,
inflammation, and even viral entry. In erythrocytes, changes in lipid raft structure may
influence membrane fluidity and deformability, which are relevant to hemorheological
properties [62,63]. These analyses indicate the great importance of these processes and
require further in-depth analysis in future studies (Figure 1).

Figure 1. The scheme of changes in hemorheological parameters affected by the studied disorders
and their reaction to statins.

4. Materials and Methods
The study was conducted in a total group of 69 patients, including 45 women and

24 men aged 25 to 83, hospitalized at the Neurology Department of the Municipal Hospital
in Poznań for diagnostics due to ailments related to the nervous system and risk factors
for cerebrovascular diseases. Written consent was obtained from patients in accordance
with the decision of the bioethics committee No. 1012-1009. When including patients
in the study, the results of neuroimaging studies, i.e., magnetic resonance imaging and
64-row computed tomography were taken into account, which confirmed the presence
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of patterns of changes in these patients that were characteristic of focal ischemic brain
lesions. Computed tomography of the head was performed in 24 patients; the remaining
part, i.e., 45 patients, underwent magnetic resonance imaging of the head. The changes
found in the brain in the abovementioned studies met the radiological criteria for ischemic
changes [64]. All patients routinely underwent blood count, sugar, urea, serum creatine
levels, thyroid tests, liver function tests, lipid profiles, fibrinogen tests, general urine tests,
and chest X-rays. The control group consisted of patients diagnosed in the department due
to nervous system complaints; however, the condition for including a patient in the control
group was a neurological examination in which no deficits were found and the presence
of ischemic brain foci was excluded in neuroimaging studies performed in these patients.
The control group included 17 people aged 25 to 77. All patients had their neurological
condition checked several times. Similarly to the patients in the study group, the control
group was burdened with risk factors for cerebrovascular diseases. The exclusion criterion
for the study was a history of ischemic stroke and transient ischemic attack. The patients in
the study group had the following concomitant diseases: hypertension (29 people), pre-
cranial artery atherosclerosis (23 people), ischemic heart disease (14 people), and diabetes
(9 people). In the control group, 6 people suffered from hypertension, 1 from diabetes, and
2 people had confirmed pre-cerebral artery atherosclerosis.

In order to check whether statin therapy affects hemorheological properties, two
subgroups were distinguished among patients as follows: patients taking statins (n = 19)
(zocor-simvastatin 10 or atorvasterol 20)—average age of 64 years; and those not taking
statins (n = 50)—average age of 62 years. In the control group only 3 persons took statins.
The average age in the control group not taking statins (n = 14) was 57 years.

Hemorheological tests were performed using the Contraves LS40 oscillation–rotation
rheometer. Whole blood viscosity was measured at a decreasing shear rate γ’ in the range
from 100 s−1 to 0.01 s−1 over 5 min. Plasma viscosity was measured using the linear
regression method based on measurements and using the equilibrium curve in the range
from 30 to 100 s−1. The hematocrit value was determined for each sample using the
centrifugation method. The period between blood collection and the examination did not
exceed four hours. The analysis of the erythrocyte aggregation and deformation tendency
was performed by the indirect method using the Quemada rheological model [17,65].

5. Conclusions
In the group of patients treated with statins, a decrease in plasma viscosity and

deterioration of erythrocyte deformability were demonstrated, which may suggest a dual
effect of statins on hemorheological properties in patients with clinically silent foci of
cerebral ischemia.
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