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Abstract

This study describes the first complete chloroplast genome of Ranunculus cf. penicillatus and
provides new insights into the genetic composition and evolutionary relationships of the
Ranunculus genus. The genome was assembled and characterized using high-throughput
sequencing technologies, revealing a circular structure encompassing 158,313 base pairs.
Comparative analysis with the chloroplast genomes of related species within the Ranunculus
genus highlights notable variations in structural organization, which can elucidate potential
adaptive evolutionary mechanisms. Phylogenetic analyses conducted using the maximum
likelihood approach resulted in the placement of Ranunculus cf. penicillatus within a well-
defined clade, revealing its relationship with other taxa. This study not only enriches the
existing plastid genomic data of the genus Ranunculus but also serves as an additional
resource for future studies on the phylogenetics, systematics, and conservation biology of
this diverse group of aquatic plants. The findings highlight the importance of complete
chloroplast genomes in the Ranunculus section Batrachium, an evolutionarily young group
of aquatic plants, for understanding plant diversity and evolution. The genome can be
accessed on GenBank with the accession number PV690257.

Keywords: Ranunculus penicillatus group; Batrachium; aquatic plants; chloroplast; phylogenetic
analysis

1. Introduction
The genus Ranunculus L. (Ranunculaceae), which includes more than 600 species

worldwide, represents one of the most taxonomically and ecologically diverse lineages of
flowering plants [1,2]. Among its complex taxonomic subdivisions, the section Batrachium
(DC.) S.F. Gray, commonly known as water crowfoot, is one of the most difficult taxonomic
treatment groups of aquatic plants. This group covers aquatic and semiaquatic species
that play essential functions in freshwater ecosystems across Europe and parts of Asia.
However, understanding phylogenetic relationships within this group and, more broadly,
across the genus has long been complicated by phenotypic convergence, hybridization, and
limited genomic data.

Chloroplast genomes provide valuable sources of molecular markers for plant phylo-
genetic analysis because of their relatively conserved structure, uniparental inheritance, and
abundant phylogenetic signals [3,4]. In recent years, complete sequencing of chloroplast
genomes has emerged as a powerful instrument for clarifying evolutionary relationships
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within complex plant groups [5]. Despite this advancement, comprehensive chloroplast
genomic data for the Ranunculus section Batrachium continue to be limited, particularly for
plants of Ranunculus cf. penicillatus, which exhibit not only capillary leaves but also floating
or intermediate leaf forms [2].

In this study, we present the first fully sequenced chloroplast genome of a representa-
tive water crowfoot belonging to the R. cf. penicillatus. We conducted a comparative analysis
with available chloroplast genomes of related species within the Ranunculus genus, high-
lighting notable variations in structural organization, which may be essential in elucidating
potential adaptive evolutionary mechanisms. Phylogenetic analyses carried out using
the maximum likelihood approach locate R. cf. penicillatus within a well-defined clade,
indicating its relationship with other taxa. This study not only enriches the existing plastid
genomic data of the genus Ranunculus section Batrachium but also serves as an additional
resource for future studies on the phylogenetics, systematics, and conservation biology
of this diverse group of submerged macrophytes. This study highlights the importance
of complete chloroplast genomes in the Ranunculus section Batrachium, an evolutionarily
young group of aquatic plants, for understanding plant diversity and evolution.

2. Results
The chloroplast genome of a plant from the Ranunculus cf. penicillatus group is struc-

tured as a typical circular, double-stranded molecule with a length of 158,313 bp (GenBank
accession no. PV690257) and an overall GC content of 36.80% (Figure 1). The large single-
copy (LSC) region is 84,937 bp long, and the short single-copy (SSC) region is 17,635 bp
long. Each of the inverted repeat (IR) regions measures 27,849 bp in length. The reported
Chloroplast genome contains 112 genes, including unique genes and genes that are dupli-
cated in the IRs. The group of 112 unique genes includes 78 protein-coding genes, 30 tRNA
genes, four rRNA genes, and nine conserved chloroplast open reading frames (ORFs).

Figure 1. Map of the chloroplast genome of Ranunculus section Batrachium (Ranunculus cf. penicillatus).
The genes located inside and outside the circle are transcribed in the clockwise and counterclockwise
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directions, respectively. Genes belonging to different functional groups are represented in different
colors. The thick lines indicate the extent of the inverted repeats (IRa and IRb) that separate the
genomes into small single-copy (SSC) and large single-copy (LSC) regions. The innermost darker
gray corresponds to the GC content, whereas the lighter gray corresponds to the AT content.

Phylogenetic reconstruction revealed that the genome of Ranunculus cf. penicillatus is
closest to the genomes of R. mongolicus, R. kadzusensis, and a plant from the R. trichophylus
group, according to the GenBank database (Figure 2). All aquatic Ranunculus form a
separate clade (marked in blue) from terrestrial Ranunculus species (Figure 2).

Figure 2. Phylogenetic tree comprising nine species in the family Ranunculaceae using the maximum
likelihood (ML) method, which is based on complete chloroplast genome sequences. The numbers
above the nodes represent the bootstrap support value for each branch. Aquatic plants are marked
in blue.

All Ranunculus species exhibit a typical quadripartite chloroplast genome structure,
comprising a large single-copy (LSC) region, a small single-copy (SSC) region, and two
inverted repeats (IRs) (Figure 1).

The lengths of all the compared chloroplast genome sequences of Ranunculaceae
ranged from 155,973 bp (R. monophyllus) to 158,314 bp (R. trichophyllus), with overall GC
contents ranging from 36.7 to 41.22% (Table 1). In the chloroplast genome sequences of
samples from the genus Ranunculus, a total of 112 genes were identified, 78 of which were
protein-coding genes. The chloroplast genome of Ranunculus cf. penicillatus shows identical
results, also featuring 112 genes, including 78 that are protein-coding (see Table 1).

In the samples from the genus Ranunculus, all the chloroplast genome sequences
contained an LSC region measuring between 84,937 and 85,840 base pairs (bp), an SSC
region ranging from 17,635 to 19,956 bp, and a pair of IR regions measuring between
25,302 and 27,853 bp. This structure is typical among angiosperms (Table 1). Notably, four
species from the genus Ranunculus–R. mongolicus, R. trichophyllus, R. kadzusensis, and R. cf.
penicillatus, presented an extended IR region (Figure 3).
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Table 1. Chloroplast genome features of the nine samples of Ranunculus [2,6].

Species/Features Genome
Size (bp)

LSC Length
(bp)

SSC Length
(bp)

IR Length
(bp)

Total GC
Content (%)

Total Number
of Genes

Protein
Encoding

Ranunculus cf. penicillatus 158,313 84,937 17,635 27,849 36.80% 112 78
R. trichophyllus 158,314 84,945 17,635 27,853 36.80% 112 78
R. mongolicus 158,309 84,974 17,637 27,849 36.80% 112 78

R. bungei 156,082 85,430 19,948 25,352 36.70% 112 78
R. kadzusensis 158,301 84,973 17,638 27,845 37.83% 112 78
R. monophyllus 155,973 85,345 19,790 25,419 36.80% 112 78

R. polyrhizos 156,000 85,414 19,677 25,455 36.80% 112 78
R. tanguticus 156,186 85,627 19,785 25,387 36.80% 112 78
R. sceleratus 156,329 85,840 19,885 25,302 41.22% 112 78

Figure 3. IR scope analysis of the nine Ranunculus chloroplast genomes.

In these species, a large portion of the ycf1 gene (3986 bp + 1666 bp) is duplicated
within both IR regions, indicating a significant IR expansion into the SSC region. In contrast,
species such as R. tanguticus, R. polyrrhizos, R. monophyllus, and R. sceleratus exhibited much
shorter ycf1 or ndhF segments at the IR boundaries, suggesting no substantial IR expansion
(Figure 3). R. bungei also shows evidence of IR expansion, though it to a lesser extent
compared to R. kadzusensis, R. trichophyllus, R. cf. penicillatus, and R. mongolicus.

3. Discussion
The Ranunculaceae family exhibits remarkable diversity, encompassing approximately

650 species with a global distribution [7]. Among them, the genus Ranunculus is one of the
most taxonomically complex groups and is often characterized by convergent evolution,
polyploidy, and frequent hybridization, particularly within aquatic lineages such as the
section Batrachium [8–12]. These complexities have challenged taxonomists for decades and
have hindered the establishment of a stable classification system for many species in the
group [13–19].

Our study contributes to addressing these challenges by presenting the complete
chloroplast genome of Ranunculus cf. penicillatus, a taxon widely recognized for its phe-
notypic plasticity and complex hybrid origin [1,20]. The availability of a complete plastid
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genome provides a stable molecular framework for investigating evolutionary relationships
in a taxonomically difficult group and enables a more refined understanding of plastid
genome structure and conservation within the genus.

The chloroplast genome of R. cf. penicillatus exhibits a typical angiosperm quadripar-
tite structure, with conserved gene content and organization, including 112 genes, 78 of
which encode proteins. These values are consistent with previous findings in Ranunculus
and broader Ranunculaceae lineages [6,20–22]. Despite overall conservation, our com-
parative analyses revealed subtle structural differences, particularly in the expansion of
inverted repeat (IR) regions in aquatic taxa such as R. trichophyllus, R. mongolicus, and R.
cf. penicillatus. Such IR expansions, although not universal across the genus, appear more
frequently among aquatic species, suggesting a possible association with environmental
adaptation or genomic plasticity in response to aquatic habitats [23].

IR expansion may hold phylogenetic relevance, as it reflects lineage-specific ge-
nomic events that potentially influence gene stability and expression patterns. In plastid
genomes, the IR regions are known to contain genes involved in core cellular functions,
including rRNA and tRNA genes. The expansion of these regions might, therefore, con-
tribute to enhanced functional robustness or adaptive potential under fluctuating aquatic
conditions [23–25]. While the evolutionary drivers of IR length variation in Ranunculus
remain speculative, this feature could be explored further in relation to environmental
gradients, reproductive strategies, or life-history traits.

Phylogenetic reconstruction based on complete chloroplast genome sequences po-
sitions Ranunculus cf. penicillatus in a strongly supported clade with R. trichophyllus, R.
kadzusensis, R. mongolicus, and R. bungei taxa that share morphological and ecological sim-
ilarities. This result not only corroborates earlier hypotheses based on morphology and
molecular markers but also reinforces the idea that aquatic Ranunculus species represent
a distinct evolutionary lineage within the genus [6,21,26]. In contrast, terrestrial species
cluster separately, underscoring the ecological and genetic divergence between aquatic and
terrestrial clades.

These findings also have important implications for understanding the evolutionary
origins of Ranunculus cf. penicillatus. As suggested by Cook (1966) [1] and later supported by
Lansdown (2007) [27], this taxon likely represents a segmental allopolyploid derived from
multiple hybridization events involving species such as R. fluitans, R. trichophyllus, and R.
aquatilis. The chloroplast genome, which is typically maternally inherited in angiosperms,
provides a useful window into maternal lineage history. The phylogenetic placement
of Ranunculus cf. penicillatus alongside R. trichophyllus, R. kadzusensis, and R. mongolicus
suggests that these species may share a common maternal ancestor, or that recurrent
hybridization has resulted in cytoplasmic homogenization within this clade.

Furthermore, the conservation of genome size, structure, and gene content across
aquatic taxa may reflect recent divergence or a high degree of genetic cohesion, which is
consistent with the idea that the Batrachium section is an evolutionarily young group [1].
However, despite such genomic similarities, the presence of complex morphological varia-
tion and frequent hybridization indicates that speciation processes in aquatic Ranunculus
are ongoing and likely influenced by both ecological factors and reproductive dynamics.
Future studies integrating chloroplast data with nuclear and epigenomic markers could
further elucidate the reticulate evolution and speciation patterns in this group.

From a conservation perspective, our findings underscore the value of plastid genomes
for taxonomic clarification and biodiversity assessment. Aquatic plants are particularly
vulnerable to habitat fragmentation, eutrophication, and hydrological alterations [28–31].
Misidentification or taxonomic ambiguity can hinder conservation efforts by obscuring
the true distribution and genetic distinctiveness of taxa. This study provides a genomic
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reference sequence for Ranunculus cf. penicillatus and highlights its evolutionary position,
creating a foundation for future conservation strategies. These strategies may include
genetic monitoring as well as in situ or ex situ management of declining populations. The
availability of organelle genomic resources for species provides the opportunity to develop
new markers that can be used to evaluate biogeographical hypotheses and assess how
species respond to changing environments [32].

In conclusion, the complete chloroplast genome of Ranunculus cf. penicillatus enriches
the genomic resources available for the genus Ranunculus and offers new insights into the
phylogenetics, taxonomy, and evolutionary biology of aquatic species within the section
Batrachium. Our findings highlight the importance of integrating structural genome features
with phylogenomic analysis to resolve complex taxonomic groups and to support effective
biodiversity conservation in freshwater ecosystems.

4. Materials and Methods
Fresh leaf material was collected from a natural population of Ranunculus cf. penicil-

latus. in the Skroblus River (Lithuania) (54◦00′48.0” 24◦17′23.7”) in July 2021, identified
morphologically according Cook, 1966 [1] and verified by sequencing (NCBI GenBank No.
PV690257). The voucher specimens were deposited at the Vilnius University herbarium
(WI) (No. P33603). Approximately 100 mg of fresh leaf tissue was ground manually in
a mortar with liquid nitrogen, and DNA was extracted using the CTAB method as de-
scribed previously [33]. The DNA samples were initially checked with 1.0% agarose gel
electrophoresis before being sent to Thermo Fisher Scientific Baltics in Vilnius, Lithuania,
for library preparation and sequencing through next-generation methods.

Whole-genome sequencing was performed using the Illumina NovaSeq (Ilumina,
Inc., San Diego, CA, USA) platform. Approximately 9.0 GB of raw data were generated
from the paired-end reads of 150 bp. The raw reads were filtered to remove adapters
and low-quality sequences with Qualimap v. 2.3 [34]. Clean reads were assembled de
novo using the same software with default parameters, and assembly quality was assessed
through read mapping and coverage analysis using Qualimap. The coverage of Ranunculus
cf. penicillatus was 2271×. The complete chloroplast genome was annotated using GeSeq
v. 2.03 [35], with manual curation in Geneious Prime v. 2025.0 to verify gene boundaries
and pseudogenes. Circular genome maps were generated using CPGAVAS2 (accessed on 2
July 2024) [36]. To assess structural variation and evolutionary relationships, we compared
the assembled genome to other publicly available chloroplast genomes from the genus
Ranunculus. We selected 4 other taxa that are aquatic and 4 terrestrial Ranunculus species to
compare the chloroplaste genome and to make the same analysis. Phylogenetic analyses
were performed using maximum likelihood (ML) based on whole-chloroplast genome
alignments. Maximum likelihood trees were built with 1000 bootstrap replicates.
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