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Abstract

The rapid development of therapies using oncolytic viruses (OVs) has highlighted their
unique advantages, such as their selective replication in tumor cells and their activation
of a specific systemic antitumor immune response. However, effectively delivering OVs
to tumor sites, especially solid tumor sites, remains a critical challenge. Intratumoral
injections face significant barriers in treating some malignant tumors in internal organs,
while increasing preclinical data support the use of intravenous injections. Nevertheless,
intravenously injected viral particles may be prematurely cleared by circulating antibodies
or complements, resulting in a reduced virus dose effectively reaching the tumor site.
Therefore, developing methods to shield viruses from the neutralizing environment of the
bloodstream while heading toward tumor sites is a must. In this review, we discuss some
of the most promising delivery methods for OVs currently under investigation.

Keywords: oncolytic virus; intravenous injection; delivery methods

1. Introduction

OV therapy for cancer holds significant advantages [1]. Compared to traditional
treatments, including radiotherapy, chemotherapy, and surgery, the primary advan-
tage of OVs lies in their selective replication within tumors. This selectivity is mainly
attributed to two factors: First, OVs can selectively bind to and infect tumor cells by
targeting specific receptors that are highly expressed on the tumor cell surface [2]. For
example, Coxsackievirus CVA21 infects tumor cells by binding to intercellular adhesion
molecule-1 (ICAM-1) and decay-accelerating factor, both of which are overexpressed on
tumor cells. Second, tumor cells often exhibit abnormalities in pathways such as the inter-
feron (IFN), P53, and rat sarcoma/rapidly accelerated fibrosarcoma/mitogen-activated
protein kinase kinase/extracellular signal-regulated kinase (RAS/RAF/MEK/ERK)
pathways, which facilitate viral survival and replication. In contrast, when OVs infect
normal cells, type I IFN production is promoted, and Toll-like receptors are activated,
leading to the activation of protein kinase R (PKR). Phosphorylated PKR inhibits viral
protein synthesis, thereby blocking viral replication [3]. The second major advantage
of OVs is their ability to effectively activate immune responses [4]. Tumor cells are
lysed by OVs, leading to the release of tumor-associated antigens (TAAs) and tumor
neoantigens (TN As), which activate specific immune responses. Additionally, OVs can
induce immunogenic cell death (ICD), leading to the release of damage-associated molec-
ular patterns (DAMPs), while the viral components of OVs trigger the production of
pathogen-associated molecular patterns (PAMPs). The host immune system is activated
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by both DAMPs and PAMPs. Moreover, the infection of tumor cells by OVs can induce
the release of cytokines and chemokines, thereby recruiting and activating additional
immune cells.

Despite the aforementioned advantages of OVs, numerous limitations are associated
with their current applications. The method of administration is a key factor affecting their
therapeutic efficacy. Intratumoral injection is the most commonly used delivery method
for OVs in both preclinical studies and clinical applications. This method allows for
the precise control of OV concentrations in the tumor microenvironment (TME), thereby
achieving better therapeutic outcomes [5]. However, some clinical trials have shown that,
due to the dense structure of tumor tissue and the high interstitial pressure in tumors,
OVs exhibit poor diffusion in tumor tissues after administration, and their antitumor
efficacy is seriously affected [6-8]. In addition, it is difficult to treat tumors deep within
tissues and organs through intratumoral injection [9], and it must be supplemented
with ultrasound, computed tomography, nuclear magnetic resonance imaging, and other
technologies to guide OV delivery. Meanwhile, when using this delivery method, there
are extreme differences in its effectiveness in treating metastatic tumors and inaccessible
tumors, such as those in the brain [10]. The intravenous administration of OVs is a rational
way to treat tumors originating in deep organs, recurrent tumors, and metastatic tumors
because it can deliver OVs to all parts of the body, thereby improving antimetastasis
and antirecurrence abilities [11]. However, many obstacles to clinical application remain:
(1) Once exposed, OVs enter the blood circulation, and the body’s antiviral immune
response is activated to clear the viral particles in the blood [12,13]. The viruses can be
swallowed by antigen-presenting cells (APCs), eliminated by preexisting blood factors
(such as the coagulation factors factor IX (FIX), factor X (FX), and complement protein
C4b-binding protein (C4BP)) [14], and neutralized by preexisting antibodies [15], which
makes it difficult for them to effectively reach target tumors. This result has been observed
with various OVs, including herpes simplex virus (HSV-1) [16] and adenoviruses (Advs)
in preclinical models. (2) Previous research has shown that viruses easily bind to natural
immunoglobulin M (IgM) and activate the complement cascade response, leading to
their sequestration in liver Kupffer cells and splenic macrophages by complement- and
IgM-dependent antiviral mechanisms [17-19]. (3) The intravenous administration of
OVs increases the opportunity to make contact with normal tissues, resulting in the
non-specific entry of OVs into normal tissues, which may lead to extremely severe
toxicity and side effects [20,21]. However, once we can overcome these fatal drawbacks
of the intravenous delivery of OVs, it will remain the most promising delivery method.
Therefore, extending the circulation times of the viruses in blood and improving viral
tropism are key issues in this treatment. There is an urgent need to develop a method
that can effectively deliver OVs via intravenous injection. In this review, several effective
delivery strategies for OVs are summarized, including cell carriers, protein corona, key
capsid protein modification, and nanoparticle (NP) carriers (Figure 1).
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Figure 1. Several effective delivery strategies for OVs, including cell carriers, binding with proteins
and nanoparticle (NP) carriers. (1) Cell carriers: utilizing the intrinsic tumor-homing capacity of
cellular carriers, including inactivating tumor cells, monocytes/macrophages, T cells and MSCs, to
deliver OVs to tumor tissues. Following targeted delivery, OVs infect and lyse tumor cells, releasing
progeny viruses; (2) Binding with proteins: the virus-protein corona replacement strategy forms
an artificial protein corona on OVs to prevent neutralization by antibodies and complement, while
suppressing natural corona formation; The modification of key capsid proteins strategy introduces
mutations on the viral capsid surface to evade recognition in the bloodstream; (3) NPs carriers:
NPs deliver OVs through active targeting mechanisms. Active delivery means specifically binding
and directing the movement of nanoparticles to the target tumor tissue inside the body, including
antibodies, PEG chains, polysaccharides, aptamers, peptides, and small molecules with a strong
affinity and specificity for receptors and excessive molecules on tumor cells.

2. Cell-Mediated OV Systemic Delivery

Cell-based carriers are formed by wrapping OVs with cells or cellular components
such as cell membranes to improve circulation times, targeting, and biocompatibility and
to decrease antiviral immunity in vivo. The susceptibility of viruses to vector cells, the
kinetics of viral replication and release within the vector cell type, the kinetics of vector
cell transport from the bloodstream to the tumor site, and tropism toward tumors must be
considered [22,23]. The following discussion focuses on some of the promising candidate
carrier cells that are being developed (Figure 2).
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Figure 2. Tumor-homing mechanisms of cell carriers. (A) The homing and retention capacity of tumor
cells are associated with the expression of CXCR4 and CD44 on the cell membrane; (B) Macrophages
can specifically recognize VCAM-1 via o431 integrin, enabling targeted homing to tumor tissues.
Additionally, tumor-secreted CCL2 and CCLS5 recruit macrophages into the TME; (C) Tumor-secreted
chemokines recognize GPCRs on T-cell surfaces and trigger downstream signaling pathways, facil-
itating the migration of T lymphocytes to the tumor site; (D) The molecular mechanism of MSCs
homing involves five key steps: (1) Chemokine-receptor interaction; (2) Adhesion molecule-mediated
anchoring; (3) Extravasation; (4) Transendothelial migration; (5) Interstitial migration.

2.1. Tumor Cells

During cancer progression, cancer cells may spread to other parts of the body through
the bloodstream or lymphatic system. Interestingly, some studies have suggested that,
even after cancer cells have disseminated to distant sites, they may retain the ability
to return to the primary tumor. This phenomenon is known as “homing”. “Homing”
appears to be associated with the same receptor molecules involved in metastasis, such
as cell adhesion molecules, chemokine receptors, and integrin ligands [24,25]. Tianyuan
Ci et al. discovered that the bone marrow-homing and retention capabilities of leukemia
cells are related to the expression of the chemokine receptors C-X-C chemokine receptor
type 4 (CXCR4) and cluster of differentiation 44 (CD44) on their cell membranes [26]
(Figure 2A). Kefah Mokbel suggested that the circulating tumor cells (CTCs) of breast
cancer present in the peripheral circulation possess the ability to home to specific sites.
CTCs exhibit the overexpression of CXCR4, while chemokine stromal cell-derived factor-1
(SDE-1, also known as CXCL12), which recruits and retains CXCR4+ cells, shows significant
upregulation at the primary tumor site. Parkins et al. successfully detected systemically
administered iron-labeled CTCs using magnetic particle imaging (MPI) and visualized
tumor self-homing in a human breast cancer mouse model [27]. Although tumor cells
exhibit a high capacity for tumor homing, their innate tumorigenic potential raises safety
concerns. Therefore, using tumor cells as carriers of OVs often requires inactivating or
attenuating them first. Qing Wu et al. developed a cryo-shocked cellular vector for the
systemic administration of oncolytic adenovirus type 11 (Ad11), which was internalized
into tumor cells via cluster of differentiation 46 (CD46)-mediated endocytosis. After
liquid nitrogen treatment (LNT), the pathogenicity of the tumor cells was eliminated.
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When exposed to the bloodstream, the ligands and receptors on the surface of tumor cells,
including CD44 and E-cadherin, along with the enhanced retention in the pulmonary
capillaries due to their micron-sized dimensions, facilitated the accumulation of LNT-Ad11
in lung metastatic lesions. This resulted in the suppression of tumor progression and an
increasing infiltration of CD8" and CD4" T cells in the tumor tissue [28].

2.2. Monocytes/Macrophages

Monocytes/macrophages can sense cancer-related chemokine and cytokine signals, ac-
tively migrate to tumor tissues, overcome various biological barriers, and evade undesired
immune responses [29]. Studies have shown that macrophages can specifically target tumor
tissues through the o431 integrin, binding to vascular cell adhesion molecule-1 (VCAM-1)
on cancer cells [30]. In addition, chemokines secreted at necrotic tumor sites by C-C motif
chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 5 (CCL5) allow for higher
macrophage recruitment and infiltration in tumor tissues (Figure 2B). Maria Bunuales et al.
demonstrated that, as the most commonly used oncolytic virus prototype, adenovirus
type 5 (AdS) infects human acute monocytic leukemia (MMB6) cells, after which these MM6
cells remain capable of sensing CCL2 and CCL5 [31]. Furthermore, preclinical studies
have found that macrophages not only uptake and deliver the oncolytic virus HSV1716 to
tumors but also support HSV1716 replication within macrophages, potentially enhancing
the efficacy of viral therapy [32]. Robert A et al. demonstrated that human monocytes
loaded with reovirus can deliver replicative reovirus to tumor tissues, leading to tumor cell
infection and lysis [33].

Tumor-associated macrophages (TAMs) are a subset of macrophages that are repo-
larized in the TME [34]. Compared to conventional macrophages, TAMs demonstrate
enhanced tumor infiltration capabilities driven by the tumor microenvironment. This is pri-
marily due to TAMs secreting angiogenic factors, such as vascular endothelial growth factor
(VEGF), which promote the formation of new blood vessels in tumors. These newly formed
vessels create pathways for the further infiltration of immune cells such as TAMs [35,36].
SANTOS et al. found a significant infiltration of CD68*CD163"5S100- macrophages in tissue
sections of plasmacytomas in multiple myeloma patients using immunostaining. CD68*
TAMs accounted for 2-12% of nucleated cells, distributed evenly within the parenchymal
tissue [37], demonstrating the effective infiltration of macrophages into tumor tissues. In
another study, macrophages were cotransduced with a hypoxia-regulated E1A /B construc-
tion and an E1A-dependent oncolytic Adv proliferation was also restricted to prostate
tumor cells by prostate-specific promoter elements from the tumor-associated receptor
protein (TARP), prostate-specific antigen (PSA), and prostate-specific membrane antigen
(PSMA) genes. Once these cotransduced macrophages reached hypoxic tumor areas, the
E1A/B proteins expressed by the macrophages activated Adv replication, resulting in a
significant inhibition of both the growth of primary tumors and the formation of pulmonary
metastases [38].

2.3. T Lymphocytes
2.3.1. Background

T lymphocytes can freely circulate in the bloodstream and target tumor tissues while
also providing synergistic therapeutic effects through their cytotoxic functions [39]. Addi-
tionally, chemokines, such as the C-X-C motif chemokine ligand 9 (CXCL9), C-X-C motif
chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 11 (CXCL11), and C-X-C
motif chemokine ligand 12 (CXCL12), secreted in tumors can bind to receptors on the
surface of T lymphocytes and initiate downstream signaling pathways. These chemokine
receptors are predominantly G-protein-coupled receptors (GPCRs). Upon the binding of
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chemokines to GPCRs, GDP at the nucleotide-binding site of the G subunit is converted
to GTP, activating the heterotrimeric G protein, which then dissociates into G« and Gfy
subunits. The Ga subunit subsequently activates downstream calcium, ERK, and protein
kinase B (AKT) signaling pathways, facilitating the migration of T lymphocytes to the tu-
mor site [40] (Figure 2C). Because of these characteristics, T cells can serve as ideal delivery
vehicles for OVs. Several different subtypes of T lymphocytes have been studied as cell
carriers, including tumor-infiltrating lymphocytes (TILs) [41-43], cytokine-induced killer
(CIK) cells [44] and chimeric antigen receptor T cells (CAR T cells).

2.3.2. Application of T Lymphocytes as OV Carriers
Tumor-Infiltrating Lymphocytes (TILs)

TILs are immune cells present in the TME, mainly including cytotoxic, helper, and
regulatory T cells. Patients who have TILs in the stroma may have a better response to
chemotherapy and a favorable long-term prognosis [45]. However, the TME is typically
filled with immunosuppressive factors, such as transforming growth factor-beta (TGF-p),
interleukin-10 (IL-10), and programmed death-ligand 1 (PD-L1), which inhibit the activity of
TILs [46]. Nevertheless, some studies have found that the cytokine distribution in the TME
can be altered by the infection and destruction of tumor cells by OVs, reducing the effects of
immunosuppressive factors and relieving the inhibition of TILs [47]. Simultaneously, TILs,
as carriers of OVs, can not only directly participate in the immune attack on tumors but can
also help shield OVs from early detection and clearance by the immune system. This allows
for the efficient delivery of the virus directly to the tumor site, enhancing the oncolytic
activity of the virus and facilitating a dual mechanism of tumor destruction. Consequently,
an increasing number of studies are focusing on utilizing TILs as delivery vehicles for OVs.
Santos et al. designed TILT-123, an oncolytic Adv expressing TNFo and interleukin-2 (IL-2)
in human and hamster tumors. As anticipated, hamster TILs infected by TILT-123 could
deliver TILT-123 to tumors through intravenous injection, further inducing the infiltration of
TILs containing CD4* and CD8" T cells. It was found that TILT-123 worked synergistically
with T-lymphocyte therapy, and 100% of the animals were cured [41]. Additionally, Yuan
Ping’s team developed a delivery technology called ONCOTECH (oncolytic virus—-T-cell
chimera). This approach involves constructing an oncolytic Adv encoding the CRISPR-
associated protein 9 (Cas9) gene-editing system (termed eOA), followed by coating eOA
with tumor cell membranes expressing ovalbumin (OVA) (termed M@eOA). OVA-targeted
CD8* T cells derived from OT-1 mice are then used to carry the membrane-coated M@eOA
(termed T-M@eOA). This anchoring strategy does not impair T-cell function, and once the T
cells carrying the oncolytic virus reach the tumor cells and recognize their specific antigens,
the oncolytic Adv is released and infects the tumor cells. More importantly, both oncolytic
virus therapy and adoptive T-cell therapy often lead to high PD-L1 expression in solid
tumors, allowing them to evade immune surveillance and resist further T-cell-mediated
killing. The Cas9 editor carried by the gene-edited oncolytic Adv can target and knock out
the PD-L1 gene in tumor cells and tumor-infiltrating immunosuppressive cells, reducing
their PD-L1 expression levels. This reverses the immunosuppressive effects of the tumor
microenvironment, a strategy referred to as first-generation ONCOTECH technology [48].

Cytokine-Induced Killer (CIK) Cells

CIK cells are a heterogeneous population of polyclonal CD3*CD56" T lymphocytes
with the phenotypic and functional properties of NK cells, and they are obtained by cul-
turing human peripheral blood single nucleated cells in vitro with a variety of cytokines,
including anti-CD3 monoclonal antibody (CD3McAb), IL-2, IFN-vy, and interleukin-1 alpha
(IL-1ex) [49]. CIK cell cytotoxicity against tumors is exerted in a major histocompatibility
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complex (MHC)-unrestricted manner through the engagement of natural killer group 2
member D (NKG2D) molecules. Additionally, being independent of traditional cytokine
storms and exhibiting lower toxicity, CIK cells offer greater safety when used as a delivery
vehicle for OVs, potentially reducing systemic side effects during oncolytic virus ther-
apy. [50]. At the same time, CIK cells can effectively penetrate tumor tissues and deliver
OVs to the tumor, which aids in increasing the viruses’ diffusion and infectivity in the
tumor, thereby enhancing their antitumor efficacy. Matthias Edinge et al. found that CIK
cells were mainly concentrated at the tumor site 72h after intravenous injection and had a
better tumor-targeting ability [51]. Steve H et al. knocked out the oncolytic vaccinia virus
(VV) thymine kinase (TK) gene and viral growth factor (VGF) to form a mutant vvDD
virus, which replicated only in cells with mutated RAS/mitogen-activated protein kinase
(MAPK)/ERK signal transduction pathways. CIK cells were infected with vvDD virus to
form VVDD-CIK, which did not affect the expression levels of NKG2D, CD3, CD16, or
CD56 or the tumor killing activity of CIK cells. This achieved a favorable antitumor effect
and improved the survival rate of mice [44].

Chimeric Antigen Receptor T (CAR-T) Cells

Recent studies have shown that using CAR T cells to systematically deliver OVs can
also achieve better therapeutic results [52]. On the one hand, as previously mentioned,
OVs can remodel the local TME and improve T-cell recruitment and effector function. On
the other hand, CAR-T cells can help OVs overcome their limited antitumor effect on
distant metastases [53,54]. The Ningbo Zheng team reported that oncolytic myxoma virus
(MYXV)-infected tumor-specific T (TMYXV) cells, expressing the CAR or the T-cell receptor
(TCR), systemically deliver MYXYV to solid tumors in order to overcome primary resistance.
The tumor eradication by CAR/TCR-TMYXYV cells was attributed to the induction of tumor
cell autophagy. T-cell-derived IFNy-AKT signaling synergizes with the MYXV-induced
molecular target of rapamycin (mTOR)-T5-SKP1-vacuolar protein sorting 34 (M-T5-SKP-1-
VPS34) signaling to trigger robust tumor cell autophagy. Additionally, CAR/TCR-TMYXV-
elicited autophagy functions as a potent bystander killing mechanism to restrain antigen
escape [52].

Moreover, the Mayo Clinic team successfully intravenously injected oncolytic vesicular
stomatitis virus (VSV) and reovirus using dual-specific CAR T cells. This treatment led
to the prolonged survival of mice with subcutaneous melanoma and intracranial glioma
tumors [55]. Furthermore, building on the first-generation ONCOTECH technology and
to further facilitate clinical translation, researchers utilized HEK293 cells (human embry-
onic kidney cells) expressing specific antigens as production cells. After infecting these
production cells with oncolytic viruses, they isolated the microvesicles containing the OVs.
These microvesicles, presenting specific antigens on their surfaces, were then used to bind
to chimeric antigen receptors on CAR-T cells to form second-generation ONCOTECH
technology. This enhanced technology was tested for targeting efficiency and therapeutic
efficacy in mice with a human immune system, including models such as human orthotopic
brain tumors, human orthotopic lung cancer, and human pancreatic cancer patient-derived
xenografts (PDXs). The results demonstrated that ONCOTECH effectively inhibited the
growth of various tumor types [40].

2.3.3. Improvements

Although T cells exhibit high efficiency in tumor homing, two important factors need
to be considered: the limited proliferation capacity of carrier T cells [56] and the various
immunosuppressive mechanisms excluding T lymphocytes in the tumor microenviron-
ment. Erwei Song and colleagues discovered that regulator of G-protein signaling (RGS)
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family proteins, which are GTPase-activating proteins (GAPs), impair T-cell migration
by accelerating the hydrolysis of GTP to GDP on the Go subunit, thereby inactivating
downstream pathways. Additionally, RGS1 inhibits the activation of calcium pathways
downstream of GPCRs by binding to the chemokine receptors C-X-C chemokine receptor
3 (CXCR3), CXCR4, and C-C chemokine receptor 4 (CCR4), which, in turn, suppresses
the ERK and AKT signaling pathways, ultimately hindering T-cell migration to tumor
sites. Consequently, knocking down RGS1 expression can significantly enhance T-cell
infiltration into tumors [40]. Recent studies have also suggested that the expression of
acidity-related genes in TAMs is negatively correlated with T-cell infiltration scores. Extra-
cellular acidification inhibits the expression of methyltransferase-like 3 (METTL3) and its
mediated RNA N6-methyladenosine (m6A) modification, leading to a reduced expression
of its downstream target, integrin 31 (ITGB1). This suppression hampers the formation of
T-cell pseudopodia, thereby weakening T-cell motility and infiltration. Thus, modulating
METTL3 activity or promoting integrin ITGB1 expression could enhance T-cell infiltration
into solid tumors [57]. In short, it is important to develop various approaches to improve
lymphocyte trafficking into tumors.

2.4. Mesenchymal Stem Cells (MSCs)
2.4.1. Background

MSCs, also known as multipotent stromal cells, are a type of pluripotent stem cell
originating from the mesoderm and primarily found in connective tissues and organ stroma.
They offer five major advantages when used to deliver OVs: (1) MSCs can protect OVs
from being recognized and destroyed by the host immune system, thereby enhancing their
spread and persistence. On the one hand, in vitro-expanded MSCs do not express HLA class
II molecules or co-stimulatory molecules such as CD40, CD80, CD83, CD86, and CD154,
thereby blocking the activation of T cells and avoiding immune recognition and attack. On
the other hand, MSCs exert immunosuppressive effects through the release of factors such as
interleukin-6 (IL-6), IL-10, TGF-f3, heme oxygenase-1 (HO-1), indoleamine 2,3-dioxygenase
(IDO), and inducible nitric oxide synthase (iNOS). (2) MSCs can not only carry the viruses
but can also serve as a site for viral replication. Due to their low immunogenicity and unique
microenvironment, MSCs can provide a relatively “safe” niche for viruses, allowing them to
replicate without being targeted by the host immune system. (3) MSCs exhibit high tumor-
targeting potential. Researchers have indicated that, in the TME, tumor cells and immune
cells can release various chemokines and their receptors, which can guide the homing of
MSCs to tumors [58,59], such as SDF-1/ CXCR4, hepatocyte growth factor (HGF)/tyrosine-
protein kinase Met (c-Met), vascular endothelial growth factor (VEGF)/vascular endothelial
growth factor receptor (VEGFR), and monocyte chemoattractant protein 1 (MCP1)/C-C
chemokine receptor type 2 (CCR2) [59]. Adhesion molecules also play a crucial role in MSC
adherence to the tumor vasculature and subsequent tumor homing. Guided by chemokines,
MSCs initially roll in the bloodstream in a selectin-mediated manner, and then they adhere
to vascular endothelial cells via integrin-mediated adhesion [60]. These integrins include
various adhesion molecules, such as intercellular adhesion molecule-1 and -2, vascular cell
adhesion molecule-1, P-selectin adhesion molecule, and integrin 31 [61,62]. Once MSCs
attach to the tumor endothelium, the cytokines in TAMs, particularly the pro-inflammatory
cytokines, induce the expression of matrix metalloproteinases (MMPs) by the attached
MSCs, including MMP-1, MMP-2, MMP-3, MMP-9, and membrane type-1 MMP (MT1-
MMP), which are involved in MSC transendothelial migration [63,64] (Figure 2D). However,
the mechanisms underlying MSC tumor targeting are not fully understood and require
further investigation. (4) MSCs have been shown to possess excellent tumor penetration
capabilities and can successfully deliver oncolytic viruses deep into tumor masses. This
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ability is believed to be closely related to metallopeptidase activity and the high expression
of integrin «3 [65]. Furthermore, MSCs’ involvement in TME formation grants them a
strong affinity for tumor cells, reducing barriers in the high-pressure tumor stroma [66].
(5) MSCs can remain in tumors for an extended period. Zhang et al. found that MSCs
survived in lung metastases for over five days [67]. Li et al. found that MSCs persisted in a
mouse glioma model for up to four weeks after intracranial implantation [68].

2.4.2. Applications of MSCs as OV Carriers

Hence, MSCs are particularly attractive as cell carriers for OVs. Tao Jiang’'s team
created an Adv (Delta-24-RGD) that replicated specifically within tumors and exhibited
high affinity; this was achieved by deleting 24 amino acids from the E1A protein and
mutating the heparan sulfate-binding protein on the virus surface (amino acid sequence
KKT — RGD). Then, bone marrow-derived mesenchymal stem cells (BM-hMSCs) isolated
from human bone marrow using bone marrow aspiration were transfected with Delta-
24-RGD to carry viral particles. Afterward, these virus-loaded BM-hMSCs were injected
into the intracranial tumor model mice via the carotid artery. The results demonstrated
that BM-hMSCs loaded with Delta-24-RGD significantly inhibited tumor progression and
prolonged the survival of the treated animals [69]. McKenna and colleagues utilized
MSCs to systemically deliver a helper-dependent adenovirus (CAd) engineered to express
interleukin-12 (IL-12) and a PD-L1 blocking protein. MSCs infected with CAd were able to
deliver and release functional viruses to infect and lyse lung tumor cells. Simultaneously,
the release of IL-12 and the PD-L1 blocking protein enhanced the antitumor activity of
CAR-T cells. This approach, when combined with human epidermal growth factor receptor
2 (HER2)-specific CAR-T-cell therapy, effectively eliminated 3D-cultured tumor spheroids
in vitro and inhibited tumor growth in in vivo orthotopic lung cancer models [70]. In
addition, MSCs loaded with MYXV [71,72], HSV [73,74], measles virus (MV) [75], and
reovirus [76] have been delivered to tumors in mouse models.

2.4.3. Improvements

Although numerous studies have demonstrated that MSCs loaded with OVs have
better therapeutic efficacy than bare OVs, there are still some unsatisfactory effects. Several
studies have suggested that MSCs play a role in the disincentive immune system. They
may be counterproductive to the antitumor immune response, which OV therapy aims
to induce [77]. In the innate immune system, tumor-associated mesenchymal stem cells
(TA-MSCs) play a role in immune modulation. On the one hand, they secrete prostaglandin
E2 (PGE2) and exosomes, promoting the recruitment and differentiation of immunosup-
pressive M2 macrophages [78]. They also secrete HGF and C-X-C motif chemokine ligand
3 (CXCL3), which recruit myeloid-derived suppressor cells (MDSCs) [79]. On the other
hand, TA-MSCs can secrete TGF-§3, IL-6, PGE2, and microRNAs, which can downregulate
the expression of activating NK cell receptors such as NKp44, NKp30, NKG2D, DNAX
accessory molecule-1 (DNAM-1), and NKG2A, leading to impaired NK cell function [80].
Moreover, the IL-6, PGE2, and microRNAs secreted by MSCs can inhibit the differentiation
of monocytes into dendritic cells (DCs) and the maturation of immature DCs [81]. Fur-
thermore, MSCs can exert potent immunosuppressive effects on v4-T cells through the
production of PGE2 via a cyclooxygenase-2 (COX2)-dependent mechanism [82]. Therefore,
to improve clinical outcomes, a logical next step is to optimize MSCs.
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3. Binding with Proteins
3.1. Virus-Protein Corona Replacement Strategy

Ph.D. Hanwei Huang et al. believed that the key to improving the circulation of OVs
is to prevent the formation of the virus-protein corona rather than to simply prevent the
binding of neutralizing antibodies or complements to the OVs [83]. Consistent with this
conclusion, Kariem Ezzat and his colleagues discovered that respiratory syncytial virus
(RSV) interacts with proteins in the host’s biological fluids, forming a “virus-protein corona”
on the viral surface. This protein coating enhances the infectivity of the virus and promotes
the formation of plaques associated with neurodegenerative diseases, such as Alzheimer’s
disease [84].

Moreover, when the coronavirus disease 2019 (COVID-19) virus makes contact with
mucosal surfaces or enters the host body, it may interact with a variety of dissolved
biomolecules, including proteins, lipids, and sugars, as well as other small molecules, such
as hormones and metabolites, to form one or more layers of biomolecules. These biomolec-
ular layers, acquired from the surrounding environment, are referred to as the “acquired
corona”, also known as the “virus-protein corona.” Scientists believe that the acquired
corona may influence the coronavirus’s spread across different tissues, the penetration of
biological barriers, biodistribution, and immunomodulatory functions [85]. Hanwei Huang
et al. identified the key protein components of the virus-protein corona by quantifying
and conducting a proteomics analysis of the protein corona of OVs, PEGylated (polyethy-
lene glycol) liposome-coated OVs, and PEGylated liposomes. To completely prevent the
interaction of OVs with these key proteins and the formation of the virus-protein corona,
a virus-protein corona replacement strategy using an artificial virus-protein corona was
proposed (Figure 3). In this strategy, an artificial virus-protein corona was formed on
OVs through the electrostatic adsorption of cationic polyethylenimine (PEI)-modified OVs
with serum albumin and stabilized using a PEGylated liposome coating. This strategy
dramatically prolonged the circulation time of the OVs by over 30-fold and increased their
distribution in tumors by over 10-fold, resulting in superior antitumor efficacy in primary
and metastatic tumor models [83]. The protein corona replacement strategy offers a fresh
perspective on the intravenous delivery of OVs, shifting the focus of future research from
preventing the interaction of OVs with neutralizing antibodies and complement to prevent-
ing the interaction of OVs with crucial viral protein corona components in the bloodstream.

Nanoparticle-protein
-

- . -
corona formation

Figure 3. Preparation of binding with protein carriers. Protein corona formation and modification of
key capsid proteins.
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3.2. Modification of Key Capsid Proteins

One of the major challenges in the targeted systemic delivery of OVs is the presence
of IgM and complement factors in the bloodstream. When human species C adenovirus
HAdv-C5 is delivered intravenously, HAdv-C5 is rapidly opsonized by IgM antibodies and
coagulation factor X, leading to virus sequestration in tissue macrophages [86]. Previous
research has shown that IgM can bind to viruses through “unspecific” low-affinity—high-
avidity interactions with regularly structured multifunctional proteins on the virion surface.
Ritu R. et al. suggested that natural IgM antibodies can bind to the hyper-variable region 1
(HVR1) of the main HAdv-C5 capsid protein hexon [87]. Svetlana Atasheva and colleagues
introduced mutations into the IgM binding site of human adenovirus to prevent the virus
from being inactivated in the bloodstream or captured by liver macrophages (Figure 2).
Additionally, they replaced some of the adenovirus proteins that interacted with human
cell integrins with a sequence from another human protein, laminin-«1, to target the virus
to tumor cells. This engineered oncolytic adenovirus was named Ad5-3M. Ad5-3M can
avoid inactivation and capture when administered systemically, and it does not induce
liver toxicity.

The therapeutic efficacy of Ad5-3M has also been validated in a mouse model of
metastatic lung cancer [86]. In addition, Luis Alfonso Rojas et al. inserted an albumin-
binding domain (ABD) into the hexon, a major adenovirus capsid protein. The ABD-
modified adenoviruses could bind to human and mouse albumin and maintain the in-
fectivity and replication capacity in the presence of neutralizing antibodies (Nabs) [88].
Additionally, scientists are also attempting to replace the natural viral envelope glycopro-
tein with a glycoprotein that exhibits relative resistance to complement [89,90], as well as
incorporating complement-inhibitory proteins into viral particles [91] (Figure 3).

4. Nanoparticle (NP)-Based Delivery Systems

NP-based delivery systems have been proven to be an important means of cancer
therapy. NPs can target solid tumors through active or passive mechanisms. In terms
of passive mechanisms, first, growth-induced solid stress causes a reduction in tumor
blood flow and the collapse of lymphatic drainage in the core of the tumor, which is
usually accompanied by a decrease in extracellular pH and an increase in necrosis. This
is because the active proliferation of cancer cells leads to the compression of blood and
lymphatic vessels, especially in its inner regions. Additionally, the poorly organized and
leaky vasculature network in tumors, in combination with the increased hematocrit and
viscosity of tumor blood, also reduces blood flow rates [92]. In addition, tumor vascular
endothelial cells are defective, poorly arranged, and permeable to each other [93]. Due to
the large fenestrations in the disorganized tumor endothelium, the slowing of blood flow,
and the lack of lymphatic drainage, nanoparticles are retained at the tumor site once they
enter. This phenomenon is called the “enhanced permeability and retention” (EPR) effect.

Since it was reported in the late 1980s, the EPR effect has been recognized as a major
factor in the enrichment of nanoparticles at tumor sites. Recently, however, some scientists
have questioned the mechanism by which nanoparticles enter solid tumors. They sug-
gest that transcytosis may be the main mechanism of nanoparticle enrichment at tumor
sites. Phagocytosis is an active metabolic process that requires the reorganization of the
endothelial cell cytoskeleton and membrane, including the formation of vesicles capable
of engulfing nanoparticles, the formation of transmembrane structures called pore walls,
or transport through the cytoplasm. Shrey Sindhwani et al. prepared three sizes (15 nm,
50 nm, and 100 nm) of gold nanoparticles (AuNPs), and the vesicles involved in transport-
ing AuNPs were clearly observed in transmission electron microscopy (TEM) images. The
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AuNPs exhibited significant interactions with tumor vascular endothelial cells and were
absorbed by them, providing direct evidence of phagocytic uptake [94].

Active delivery means specifically binding and directing the movement of nanopar-
ticles to the target tumor tissue inside the body [95], including antibodies, PEG chains,
polysaccharides, aptamers, peptides, and small molecules with a strong affinity and speci-
ficity for receptors and excessive molecules on tumor cells (Figure 1) [96]; the aim of this
is to maximize the OV concentrations in cancer tissues with minimal side effects. In most
cases, active and passive delivery occur simultaneously and are not contradictory [97].
Alessandra Iscaro et al. encapsulated an oncolytic adenovirus (Ad[I/PPT-E1A]) into CCL2-
coated liposomes to exploit the recruitment of CCR2-expressing circulating monocytes into
tumors. The intravenous administration of the nanomedicine resulted in a significant re-
duction in tumor size and pulmonary metastasis in prostate cancer-bearing mice, whereby
a 1000-fold less virus was needed when compared to Ad[I/PPT-E1A] alone [98].

4.1. Microbial Nanocomposites

With the continuous advancement of gene sequencing technology, researchers have dis-
covered that microbial communities are present in and an integral part of the TME [99,100].
In 2020, Nejman D et al. [101] conducted a systematic study on 1526 samples obtained
from seven different types of tumors and their adjacent tissues, confirming the presence
of bacteria in various tumors. Compared to healthy tissues, the special conditions in the
tumor microenvironment, such as angiogenesis, hypoxia, nutrient reorganization, and
immune suppression, made bacteria more likely to accumulate in tumor tissues [102].
Although the specific mechanisms underlying the natural ability of bacteria to specifi-
cally colonize tumors need further investigation, previous reports have shown that both
obligate and facultative anaerobes can accumulate and proliferate extensively within tu-
mors after systemic administration. Zheng et al. [103] found that, three days after an
intravenous injection of S. typhimurium, the number of bacteria at the tumor site reached
10'° CFU/g, a quantity 10,000 times higher than that in normal tissues. Some studies
have suggested that this phenomenon occurs because large numbers of bacteria colonize
areas further from the normal vasculature in tumor tissues, attributing the accumulation
to the disorganized vascular system within tumors, leading to hypoxia, thus creating an
environment more suitable for anaerobic bacteria [104]. Given the tumor-homing ability
and growth suitability of bacteria within tumors, researchers have proposed the concept of
“microbial nanocomposites” (Figure 4A). Encapsulating oncolytic Adv into biomineralized
calcium phosphate (CaP) camouflaged and pyranose oxidase (P,O) engineered bacterial
outer membrane vesicles (OMVs) can achieve autophagy cascade-enhanced antitumor
immunotherapy. The CaP shell protects the OVs from clearance by the innate immune
system after intravenous injection, enhancing intratumoral accumulation. Once inside the
tumor cells, the microbial nanocomposite-constructed P,O converts endogenous glucose in
situ into H,O,, increasing oxidative stress levels and triggering tumor autophagy. On the
one hand, the in situ synthesis of autophagosomes induced by autophagy provides a site
for viral replication during Ads infection, increasing the production of viral particles. On
the other hand, Ads-activated autophagy may trigger immunogenic cell death, releasing
damage-associated molecular patterns and tumor-associated antigens, thereby activating
antitumor immune responses [105]. Zhenning Wang et al. [106] combined liposome-coated
oncolytic adenoviruses (OAs) with tumor-homing Escherichia coli BL21 (E. coli-lipo-OAs)
to enhance cancer immunotherapy.
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Figure 4. Preparation of NPs carriers. (A) The surfaces of OVs were encapsulated by NP layers
to retain the activation of OVs during systemic circulation. The “microbial-OV conjugate” was
then constructed by combining tumor-homing microbial with NP-OA through a biocondensation
reaction, named microbial NPs-OVs; (B) OA carries a negative charge at physiological pH because of
carboxyl-rich anionic peptides on its surface. Adding MnClI2 and CuCI2 causes Mn?* and Cu®* to
adsorb onto OA. Subsequent sodium carbonate addition under physiological conditions stops ion
polymerization, spontaneously forming a moderately thick mineral shell around OA; (C) Preparation
of BCMNs@OA.

4.2. Biomineralization

Previous research suggests that metal ions can also be used in cancer treatment. A
study by Tsvetkov et al. [107], published in Science, proposed a novel form of cell death
induced by copper ions, termed “copper death.” Copper death is closely associated with
the tricarboxylic acid cycle (TCA), where ferredoxin 1 (FDX1) acts as an upstream regula-
tor of protein lipoic acidification, promoting the lipoic acidification of dihydrolipoamide
acetyltransferase (DLAT) and dihydrolipoamide succinyltransferase (DLST). When intra-
cellular copper ions are present in excess, this protein lipoic acidification modification is
reduced. Simultaneously, excess Cu™ binds to lipoic acidated DLAT, leading to oligomer-
ization and the formation of polymers, which are insoluble and toxic to cells [108]. The
oligomerization of DLAT, which constitutes pyruvate dehydrogenase, results in the loss
of pyruvate dehydrogenase activity, inhibiting the conversion of pyruvate to acetyl-CoA
and ultimately affecting the TCA cycle. Additionally, some research suggests that cop-
per ions can promote the degradation of PD-L1 in tumor cells, although the mechanism
remains unclear [109]. Tong Ge et al. [110] developed a multifunctional oncolytic virus
(OA@CuMnCs) using bimetallic ions copper and manganese (Figure 4B). These metal
cations formed a biomineralization coating on the surface of Adv, effectively preventing
Ads from being cleared by the body after intravenous injection, while the copper ions
promoted the degradation of PD-L1, further activating the immune system.
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Furthermore, in this study, Mn?* served as an activator of the stimulator of interferon
genes (STING) in the innate immune system. Once the cytoplasmic cGAS-STING pathway
(cyclic GMP-AMP synthesis-stimulator of interferon genes) was activated, it induced the
production of cytokines, such as IFN-y [111], thereby activating the immune system. How-
ever, after accumulating at the tumor site, OA@CuMnCs released Mn?*, which can reduce
hydrogen peroxide to oxygen. The increased oxygen content enhanced OA’s replication
ability, significantly improving the antitumor effect [112].

4.3. Cell Membrane Nanovesicles

Extracellular vesicles (EVs) are nano- to micron-sized lipid membrane-bound vesicles
that are secreted into the extracellular environment and transport proteins, lipids, and
nucleic acids from cell to cell [113]. They are naturally occurring cargo delivery agents with
the potential to be used as vehicles for OVs [114,115]. By using a mouse cancer cell line
grown in an immunocompetent syngeneic NFkB-luc2 reporter mouse model and a fluores-
cent dye to track EVs, the biodistribution and effects of EV-forming stimulants carrying
OVs on the immune system were assessed. It was found that EVs enhanced the systemic
delivery of the OVs, resulting in improved tumor-selective delivery, a peritumoral immune
response associated with the targeted delivery of the virus, enhanced immunogenicity, and
the infiltration of CD4* and CD8* T cells [114].

Additionally, Peng Lv et al. developed a type of biotechnological cell membrane
nanovesicle expressing PD-1 (PD1-BCMNs) and encapsulating Adv, achieving cancer treat-
ment through immunotherapy checkpoint blockade and oncolytic virus therapy within a
single nanoparticle. This study demonstrated that PD1-BCMNs can mask the viral epitopes
recognized by neutralizing antibodies, thereby protecting OAs from serum neutralization.
Moreover, compared to naked OAs, PD1-BCMNs@OA secrete less TNF-a and IL-6, reduc-
ing virus-induced inflammation and toxicity [116] (Figure 4C). Additionally, red blood
cells (RBCs) possess characteristics such as natural biocompatibility, low immunogenicity, a
high loading capacity, and a prolonged circulation time. Therefore, the use of RBCs for OV
delivery has yielded unexpected results [117]. Liu et al. developed a therapy for delivering
OVs using RBCs (ELeOVt), where OVs were assembled on the surface of red blood cells
using cationic polyethyleneimine (PEI) to link the OVs and RBCs through electrostatic in-
teractions. Experimental results showed that ELeOVt significantly extended the circulation
time of OVs, increased their pulmonary distribution by more than tenfold, and markedly
improved their therapeutic efficacy against lung metastasis while also reducing organ and
systemic toxicity [118].

5. Conclusions and Future Perspectives

Many researchers are currently dedicated to finding the optimal delivery system for
OVs. In this article, we primarily reviewed three OV delivery systems: cell-mediated OV
systemic delivery, protein-mediated OV systemic delivery, and nanoparticle-based delivery
systems, which had been summarized in Table 1. These delivery systems play varying roles
in enhancing antitumor immunity, protecting OVs from clearance by the body, increasing
the tumor-targeting specificity of OVs, and promoting viral replication in the hypoxic
tumor microenvironment. In particular, the concept of cell-based biological vector-targeted
delivery systems has rapidly developed, showing unique advantages in targeted OV
delivery to tumors, such as naturally evading immune surveillance and actively targeting
tumors. However, the harsh microenvironment of tumor tissue can cause the rapid death
and clearance of cell carriers. Studies have shown that most exogenous MSCs infused
into the body undergo rapid apoptosis due to the harsh microenvironment of diseased
tissues, thus failing to exert long-term therapeutic effects through mechanisms such as
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cell differentiation and paracrine signaling [119]. Nanoparticle-based delivery systems
are the most extensively studied tumor-targeting OV delivery systems, demonstrating
promising development prospects in preclinical and clinical studies of various tumors.
However, nanoparticle-based delivery systems also face a series of challenges in tumor-
targeted therapy, such as the following: (1) Passive tumor targeting mechanisms based
on the EPR effect have recently been found to have limited targeting efficiency for some
tumor tissues, and they lack effective targeting for metastases. (2) Some nanoparticles are
easily phagocytosed and cleared by macrophages, affecting the delivery efficiency of OVs.
(3) The formation of a protein corona on nanoparticles in the bloodstream may affect the
targeting efficiency of nanoparticles based on active targeting mechanisms. (4) The dense
structure and high interstitial pressure in tumor tissues limit the further drug delivery of
nanoparticles into the deep layers of the tumor.

To enhance the preclinical research on targeted delivery of OVs, research on cell carriers
should focus on genetically modified OVs and engineered tumor-specific cells to improve
the efficacy and safety of targeted therapy. For example, engineered carrier cells can be
designed to recognize tumor-associated antigens and sense specific microenvironmental
changes. Upon detecting tumor signals, these carrier cells can autonomously activate genes
that initiate OV replication, thereby preventing premature OV release, which may not
only hinder OVs from reaching the intended tumor site but also cause systemic toxicity.
Additionally, OVs can be genetically engineered to achieve stable replication under hypoxic
conditions, thereby enhancing their survival and replication capacity within tumor tissues.
For nanoparticle-based delivery systems, research should prioritize combination strategies
with other therapeutic modalities, such as coupling nanoparticles with tumor-homing cells
or bacteria to improve their tumor-targeting capability. This approach aims to optimize OV
delivery while minimizing off-target effects and systemic toxicity.

The most critical challenge in clinical research on OV delivery strategies is translating
preclinical findings into safe clinical trials. Currently, two clinical trials (NCT03896568 and
NCT02068794) are underway, both utilizing MSCs as delivery carriers. Successfully translating
these therapies into clinical practice depends on overcoming numerous technical, economic,
and regulatory challenges. First, systematic optimization of infection parameters—including
viral concentration and in vitro incubation time—can enhance viral load and therapeutic
outcomes. Second, combining delivery carriers with other treatment modalities may generate
synergistic effects that amplify the overall antitumor response. Third, ensuring the stability
and consistency of manufacturing processes is a key challenge, directly impacting treatment
reliability and efficacy. Finally, comprehensive adverse event monitoring protocols must be
implemented to guarantee patient safety throughout the therapy.

Table 1. Key features of each delivery strategy.
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ov oncolytic virus

ICAM-1 intercellular adhesion molecule-1

IFEN interferon

RAS rat sarcoma

RAF rapidly accelerated fibrosarcoma

MEK mitogen-activated protein kinase kinase
ERK extracellular signal-regulated kinase
PKR protein kinase R

TAAs tumor-associated antigens

TNAs tumor neoantigens

ICD immunogenic cell death

DAMPs damage-associated molecular patterns
PAMPs pathogen-associated molecular patterns
TME tumor microenvironment

APCs antigen-presenting cells

FIX factor IX

C4BP C4b-binding protein

HSV-1 herpes simplex virus
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Adv adenoviruses
IgM immunoglobulin M
NPs nanoparticles
CXCR4 C-X-C chemokine receptor type 4
CD44 cluster of differentiation 44
CTCs circulating tumor cells
SDF-1 stromal cell-derived factor-1
MPI magnetic particle imaging
Adll adenovirus type 11
LNT liquid nitrogen treatment
VCAM-1 vascular cell adhesion molecule-1
MMé6 human acute monocytic leukemia
TAMs tumor-associated macrophages
VEGF vascular endothelial growth factor
TARP tumor-associated receptor protein
PSA prostate-specific antigen
PSMA prostate-specific membrane antigen
GPCRs G-protein-coupled receptors
AKT protein kinase B
TILs tumor-infiltrating lymphocytes
CIK cytokine-induced killer
CART chimeric antigen receptor T cell
TGF- transforming growth factor-beta
PD-L1 programmed cell death protein 1
ONCOTECH  oncolytic virus—T-cell chimera
NKG2D natural killer group 2 member D
\'A% vaccinia virus
TK thymine kinase
VGF viral growth factor
MAPK mitogen-activated protein kinase
VSV vesicular stomatitis virus
PDX patient-derived xenograft
MSCs mesenchymal stem cells
RSV respiratory syncytial virus
COVID-19 coronavirus disease 2019
HVR1 hyper-variable region 1
EPR enhanced permeability and retention
EVs extracellular vesicles
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