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Abstract

Network theory analysis has emerged as a powerful approach for investigating the complex
behavior of dynamic and interactive systems, including proteomic systems. One key
application of these methods is the study of long-range signaling dynamics in proteins, a
phenomenon known as allostery. In this study, we applied computational models using
network theory analysis to explore long-range electrostatic interactions and allosteric
drug rescue mechanisms in the DNA-binding domain (DBD) of the p53 protein, a critical
tumor suppressor whose dysfunction, often caused by missense mutations, is implicated in
over 50% of human cancers. Using heat kernel and Wasserstein distance-based analyses,
we explored the allosteric behavior of p53-DBD constructs with the Y220C mutation in
the presence or absence of allosteric effector drugs. Our results demonstrated that these
network theory-based protocols effectively detected the differential efficacies of small
molecule allosteric effector drug compounds in restoring long-range electrostatic dynamics
in the Y220C mutant. Furthermore, our approach identified key long-range electrostatic
interactions critical to both the nominal and drug-rescued functionality of the p53-DBD,
providing valuable insights into allosteric modulation and its therapeutic potential.

Keywords: networks; kernel; transformations; distance; metrics; allostery; protein;
electrostatics; simulation; p53

1. Introduction

The p53 protein, often referred to as the “Guardian of the Genome” [1,2], plays a
central role in tumor suppression and transcription regulation. As a transcription factor,
p53 regulates the expression of genes critical for numerous cellular processes, including
cell division, differentiation, metabolism, DNA repair, apoptosis, and genomic stability.
These functions position p53 as a master regulator of cell fate [3] and genomic stabil-
ity in unstressed cells [4,5]. Structurally, p53 comprises 393 amino acids organized into
several distinct functional domains. The N-terminal region includes two transactivation
domains (TAD1 and TAD2), which play roles in directing p53 target gene selection and
transcriptional activation [6,7]. A proline-rich domain (PRD) follows, contributing to p53’s
transcriptional activity [8] and structural stability [9]. The central DNA-binding domain
(DBD), a highly conserved region [10], facilitates sequence-specific DNA binding essential
for p53’s function as a transcription factor [11]. The DBD forms its interaction surface using
a loop-sheet-helix motif stabilized by zinc coordination. The C-terminal to the DBD is the
tetramerization domain (TD), which enables p53 to form a functional tetramer, and the
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intrinsically disordered C-terminal regulatory domain (CTD), which inhibits DNA-binding
activity until specific post-translational modifications relieve this inhibition.

Dysfunction of p53 is directly implicated in over 50% of human cancers, with the
remainder often involving disruptions in pathways regulated by p53 [12]. Approximately
75% of cancer-associated p53 mutations are missense mutations [13], with over 97% of
these occurring in the DBD [14,15]. These mutations often lead to structural destabilization
and loss of function, conferring a selective advantage to cancer cells by inhibiting the
tumor-suppressing activities of p53 [13]. Among these, the Y220C mutation is the most
common missense mutation outside the DNA-binding surface, making it a key model
for investigating allosteric modulation [16]. The significant prevalence of p53 mutations
and their central role in tumorigenesis have made mutant p53 a prominent target for
anti-cancer therapeutics.

Allosteric regulation offers a promising strategy for restoring mutant p53 function.
Originally described by Monod et al. [17], allostery involves long-range coupling between
distant binding sites and a protein’s active site through structural and energetic changes.
Recent research expands this concept to investigate shifts in the energetic dynamics of
electrostatics across residue interaction networks [18-20]. Energetic models of protein
allostery emphasize the global role of long-range energetic molecular interactions, initiated
by new contacts at sites distal to the protein’s catalytic domain, in reshaping the protein’s
global energetic landscape [21]. Such long-range energetic changes reorganize residue-
residue interactions at the catalytic site, resulting in functional transitions of the protein [21].
For p53, allostery is particularly valuable because its function relies on an unobstructed
active site for DNA binding. Small-molecule targeting allosteric sites could stabilize the
DNA-binding domain (DBD) and enhance DNA affinity without interfering directly with
the active site.

Energetic interactions play a crucial role in protein function [22], stability [23], catal-
ysis [24], and allostery [25]. Electrostatic networks facilitate long-range communication
between residues, enabling allosteric signaling. In p53, understanding how these elec-
trostatic interactions influence DNA binding and stability is key to developing effective
allosteric drugs. Studies show that electrostatic interaction patterns in the p53-DBD are
critical for allosteric control and DNA-binding affinity [26]. Additionally, recent studies
have shown that in model allosteric systems the energetic binding contributions of elec-
trostatic network interactions are a more significant determinant of binding affinity than
other forms of energetic dynamics such as van der Waals [27] with more recent studies
of p53-DNA binding demonstrating similar conclusions [28]. Allosteric mutations such
as Y220C disrupt these networks, causing loss of function, but second-site suppressor
mutations can partially restore activity. This highlights the potential of long-range energetic
modulation as a therapeutic strategy.

In this study, we employ molecular dynamics (MD) simulations and network-theoretic
analyses to demonstrate the utility of a novel protocol for identifying long-range energetic
changes involved in allosteric small molecule binding on p53-DBD functional rescue,
focusing on the Y220C mutation as a model system. We apply our energetic network
theoretic methodologies to the MD simulation data of seven p53 constructs: the wild-
type p53 protein, the Y220C-mutant p53 protein, the Y220C-mutant p53 bound to the
Y220C mutant allosteric reactivator drug compound “PK11000” [29], and four p53 protein
constructs bound to a panel of small molecule effector compounds recently reported by a
MD-based docking study performed by Han et al. [30] (Figure 1). These small molecule
effector compounds were selected specifically because of their demonstrated efficacy in
rescuing the dynamics and function of mutant p53 in prior studies [13].
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Figure 1. (a) Cartoon representation of Y220C mutant p53-DBD bound to DNA and docked effectors.
Docked effector compounds are represented in spheres: PK11000 in green, Effector 8 in red, 20
in violet, 22 in brown, 27 in pink, and the Y220C mutant site represented by an orange mesh.
(b) Table displaying structural data of PK11000 and the four effector compounds, along with their
respective binding affinity data [29], that were identified and allosterically docked to the average
global structures of 1 us WT p53 and Y220C p53 simulations sourced from Han et al. [30].

Many network-theoretic techniques have been created to investigate the role of residue
networks in protein function [31,32], structural flexibility [33], and protein stability [34].
In order to perform network-theoretic analyses to study proteins, data from molecular
dynamics (MD) simulations of proteins are utilized since MD simulations can yield an
ensemble of protein conformations that capture both the backbone and side-chain level
differences in molecular interactions [35]. Rather than protein structure networks (PSNs)
and contact networks, which merely encode edge presence between nodes by a specified
geometric distance threshold, we construct locally thresholded electrostatic interaction
networks [30,36], which embed residues (nodes) connected by weighted edges representing
the level of electrostatic interaction between residues. Such a methodology enables inves-
tigations into longer-range forms of residue connectivity beyond covalent-bond distance
thresholds alone [37].

Utilizing vector transformations to project higher-dimensional patterns into lower-
dimensional spaces offers utility to investigate the often complex long-range dynamical
properties inherent to network dynamics. Kernels embody one such transformation proce-
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dure, and the heat kernel lends itself to this study to capture the organization of residue’s
long-range electrostatic network dynamics across simulation time [27]. By utilizing kernel-
based network transformations and distance metrics, this methodology can characterize
residue-level differences in long-range electrostatic interactions across simulations of wild-
type, Y220C mutant, and small molecule-complexed states of p53. Our study provides
insight into the important role of electrostatics in p53 allostery and the differential efficacies
of allosteric drugs, including the known p53-DBD allosteric reactivator PK11000 [29] and
other small molecules involved in functional rescue of p53. Such findings we hope will
offer a foundation for the development of innovative cancer therapeutics targeting this
critical tumor suppressor protein.

2. Results
2.1. Energetic Network Generation and Electrostatic Heat Kernel PCA Projection

To capture the time evolution of long-range energetic dynamics in the p53-DBD,
energetic interaction networks were computed for each of 152 regularly sampled frames of a
p53-DBD construct’s MD simulation. Each sampled frame’s energetic network captured the
corresponding interaction energy value between each pair of the p53-DBD’s 193 amino acids.
The details of the trajectory sampling and network generation processes are provided in the
Methods Section. The energetic interaction networks were generated for the two unbound
p53-DBD constructs: wild type (WT) and the Y220C-mutant (Y220C-ub), the Y220C-mutant
bound to the known p53 allosteric reactivator PK11000 (Y220C-PK11000), and the Y220C-
mutant bound to four additional small-molecule allosteric effector compounds (Y220C-8,
Y220C-20, Y220C-22, and Y220C-27).

Energetic networks were generated for both electrostatic and Van der Waals (VDW)
interactions. However, VDW edge weights across all seven constructs were consistently
near zero in value, aligning with expectations that VDW forces predominantly affected
short-range, localized interactions [38]. Due to the insignificant edge weights for the
VDW networks, our subsequent analyses focused exclusively on the constructs” generated
electrostatic networks, which were more relevant for investigating long-range energetic
dynamics in the DBD. Complete data on the interaction energy edge weights for both the
electrostatic and the VDW networks can be found in the supporting materials.

For each construct, each of its 152 electrostatic networks was transformed into a corre-
sponding heat kernel matrix and projected into a shared R® embedding space across the
first three principal components (PC!, PC2, and PC) of the mean-centered heat kernel. The
resulting embeddings, visualized in Figure 1a,b, represented the electrostatic associations
of the p53-DBD’s 193 residues (excluding C182 and C220) across the 152 sampled frames
of simulation. Each of the construct’s 193 residues thus had 152 representative node em-
beddings in the shared R® PC space reflecting its electrostatic covariance with all other
p53-DBD residues across simulation time. Closer proximity between residue embeddings
indicated higher covariation and stronger electrostatic connectivity.

The R3 heat kernel projections revealed key trends in electrostatic connectivity across
the seven investigated p53-DBD constructs. Residues with higher numbers of electrostatic
interactions were reflected by node embeddings with values > 0.0105 along PC! (Figure 2).
These embeddings” higher values correlated to more “hub-like” behavior in organizing
the network’s organization of energetic connectivity. In contrast, residues with lower
connectivity (heat kernel values < 0.0095) had a more peripheral role in the structuration of
constructs’ energetics. Shifts in the distribution of node embeddings between the constructs
indicated how Y220C mutation and/or the presence of allosteric drugs modulated the
global energetic landscape of the p53-DBD. While changes were evident across all three
principal components, most positional variations occurred along PC! and PC?, justifying



Int. J. Mol. Sci. 2025, 26, 6884

50f21

PC2

PC2

0.002

0.001

0.001

0.002

0.002

0.001

0.001

0.002

0.002

0.001

0.001

0.002

the simplified visualization of the embedded networks across two dimensions in Figure 2a,b.
These findings highlight that the Y220C mutation and allosteric drug binding influenced
p53-DBD’s electrostatic network organization. By modulating residue connectivity, these
factors reshaped the protein’s global energetic landscape, providing insights into the
mechanisms of functional disruption and potential rescue.
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Figure 2. Electrostatic heat kernel principal component (PC) projections of all 193 residues for each
of the seven investigated p53 DBD constructs’ 152 sampled frames of simulation. In total, there are
152 x 193 = 29,336 embedded points in R3 principal component space for each construct. (a) The
projection of the wild-type construct’s 152 heat kernels in R3 across PC!, PC?, and PC3 (left) and R2
across PC1 and PC2 (right) are displayed. (b) While calculated in R3, the projections of the remaining
six constructs: Y220C, Y220C-8, Y220C-20, Y220C-22, Y220C-27, and Y220C-PK11000 are only shown
across R2 for clarity. A Y220C construct bound to the effector drug compound j is denoted as Y220C-j.
Color mapping indicated by the heat value legend represents the degree of node connectivity in the
protein system. The more yellow the node embedding, the higher that node embedding’s degree of
connectivity. The solid box on the legend indicates ranges of node embedding connectivity values at
or above 0.0105. The dotted box surrounding the WT heat kernel demonstrates how the projection of
these corresponding high connectivity values distributes across the latent PC space.
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2.2. Embedding Error Analyses

To assess the impact of allosteric drug binding and the Y220C mutation on p53-DBD
dynamics, we performed Wasserstein embedding error analyses on the electrostatic heat
kernel projections in PC space. This analysis captured how the organization of each
residue within the DBD’s energetic network varied between pairs of the seven investigated
p53-DBD constructs, providing a comparative view of significant reorganizations in the
electrostatic dynamics between wild-type, unbound Y220C-mutant, and drug-bound Y220C
p53-DBD constructs. The embedding error (EE) value of each residue quantifies the degree
of positional variance in its 152 R®> embeddings between two constructs. We denote this
residue-wise distribution of EE values calculated between pairs of constructs U and V
as U_V.

In the first set of six EE distributions between the wild-type construct and each of the
six possible Y220C mutant p53-DBDconstructs (Figure 3a), residues with high EE values
were predominantly localized in loop and helical motifs of the p53-DBD. Residues in
the EE distribution demonstrated prominently higher EE values between the wild-type
and unbound Y220C mutant construct, WT_Y220C-ub across the L1 loop (residues L114-
K120), L6 loop (residues P222-C229), and L3 loop (residues N247-R249). In contrast, the
EE distributions involving the wild type and each of the five Y220C mutant drug-bound
constructs (WT_Y220C-8, WT_Y220C-22, and WT_Y220C-PK11000) exhibited lower EE
values in these corresponding L1, L6, and L3 loop regions.

A second set of five EE distributions between the unbound Y220C mutant and each of
the mutant effector drug-bound constructs (Y220C-8, Y220C-20, Y220C-22, Y220C-27, and
Y220C-PK11000) revealed regions of high EE value overlapping with those found in the
distributions between the wild type and the unbound Y220C mutant (Figure 3b). High EE
values were consistently identified in the S6-57 loop (residues N207-R211), particularly at
R209. Among the drug-bound constructions, Y220C-22 displayed the highest embedding
error values in this region, while Y220C-8 and Y220C-PK11000 exhibited comparatively
moderate values, suggesting differential effects of the drug compounds on the electrostatic
dynamics of residues in this loop region.

To further quantify the extent of electrostatic divergence and restoration, minimal
embedding error analysis (MinEEa) and maximal embedding error analysis (MaxEEa)
were performed.

MinEEa (Figure 4a,b) identified residues with the smallest embedding error values
across the distributions between the wild type and each of the six Y220C constructors
investigated, highlighting regions where drug binding restored wild-type-like dynamics
(Figure 4a). The results, shown in Figure 4b, revealed that the Y220C-PK11000 construct
accounted for the largest proportion (41.45%) of residues with minimal embedding error
values, particularly in regions spanning S3 (residues C141-W146), 54 (residues T155-Y163),
L2 (residues S183-1.194), and L6 (residues E221-T230). Constructs Y220C-22 and Y220C-8
ranked second and third, with proportions of 24.35% and 21.76%, respectively. Conversely,
the unbound Y220C construct exhibited the smallest proportion of residues with minimal
embedding errors (1.55%), followed by Y220C-27 (4.66%) and Y220C-20 (6.22%).

In MaxEEa (Figure 4c,d), the residues with the largest embedding error values were
identified across the EE distributions between the unbound Y220C mutant DVD construct
and the five Y220C mutant drug-bound constructs. MaxEEa highlighted regions where
electrostatic dynamics in the mutant drug-bound constructs were most divergent from
those in the unbound Y220C mutant DBD construct. The constructs Y220C-22, Y220C-
PK11000, and Y220C-8 exhibited the highest proportions of maximal embedding error
values, particularly in regions such as the L1, L3, and the H2 helix. In contrast, Y220C-27
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and Y220C-20 showed the lowest proportions, indicating reduced electrostatic divergence
from the unbound Y220C construct (Figure 4d).

To better understand the directional redistribution of residue embeddings, embedding
error difference (EED) analysis was performed (Figure 5).
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Figure 3. Embedding error analysis. A single 193-residue-long EE distribution consisting of each
residue’s Wasserstein EE value calculated between the pair of heat kernel R? projections correspond-
ing to p53-DBD constructs U and V is referred to as U_V. (a) The six Wasserstein EE value distributions
calculated between the wild type (WT) and each of the six Y220C-mutant constructs: (Y220C-ub,
Y220C-27, Y220C-20, Y220C-22, and Y220C-PK11000) across all 193 p53-DBD residues. (b) The five
Wasserstein EE value distributions calculated between the unbound mutant (Y220C) and each of the
five Y220C-mutant drug-bound constructs (Y220C-ub, Y220C-27, Y220C-20, Y220C-22, and Y220C-
PK11000) across all 193 p53-DBD residues. The X-axis represents the residue number, and the y-axis
represents the Wasserstein EE value. For both (a) and (b), Wasserstein EE distributions of either WT_r
or Y220C-ub_r where r is Y220C-ub, Y220C-8, Y220C-20, Y220C-22, Y220C-27, or Y220C-PK11000
are colored orange, red, purple, brown, pink, or green, respectively. p53-DBD secondary structural
elements corresponding to residue positions are visualized with a line representation under the x-axis
of (b). Loop and helical regions L1 (F113-S121), L2 (K164-P177), H1 (H178-E180), S6-S7 (D207-R213),
L6 (E221-T230), L3 (N239-L252), and H2 (D281-R290) illustrate particular areas of note.

For each of the five drug-bound Y220C constructs, EED calculated the difference be-
tween each residue’s embedding error values calculated relative to the wild-type construct
and the unbound Y220C construct. Residues with positive EED values exhibited heat
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kernel embeddings in each Y220C-mutant drug-bound construct closer to their heat kernel
embeddings in the R® PC space in the wild-type construct, while those with negative values
shifted toward heat kernel embeddings more similar to their embeddings in the R PC space
in the unbound mutant Y220C construct. As such, the restorative impact of drug binding
on Y220C-mutant network organization toward the residue’s nominal wild-type long-range
electrostatic interactions was operationalized as residues displaying positive EED values.
Contrastingly, residues displaying negative EED values for each of the Y220C drug-bound
constructs demonstrated the effect of that drug compound on destabilizing that residue’s
long-range electrostatic network dynamics toward the unbound Y220C mutant construct.
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Figure 4. (a) Minimal embedding error analysis (MinEEa): a single residue distribution displaying
each residue’s lowest EE value from one of the six possible embedding error distributions between
the wild type (WT) and a Y220C-construct as generated in Figure 2a. (b) The percent residue
composition (PRC) of each WT_r EE distribution: The stacked bar graph describes the percentage
of all 193 p53-DBD residues whose lowest EE value (as displayed in panel a) is consequent of its
calculation for each specific WT_r EE distribution. (¢) Maximal embedding error analysis (MaxEEa):
a single residue distribution displaying each residue’s highest EE value from one of the five possible
embedding error distributions between Y220C and a Y220C-db construct. The X-axis represents
the residue number, and the y-axis represents the EE value. (d) The PRC for each Y220C_Y220C-db
EE distribution: the stacked bar graph describes the percentage of all 193 p53-DBD residues whose
highest embedding error value (as displayed in c) is consequent of its calculation from each specific
Y220C_Y220C-db EE distribution. Coloration follows from Figure 3. P53-DBD secondary structural
elements corresponding to residue number are visualized with a line representation under the x-axis.
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EmbeddingError Difference (EED)

Positive EED values were consistently observed in regions spanning S3 (residues
140-144), S5-S6 (residues E198-R202), and L6 (residues E221-T230) across all five drug-
bound constructs. Notably, residues in the S6-57 loop displayed distinct EED trends among
the drugs. Y220C-22 resulted in highly positive EED values in this region, while Y220C-
PK11000 and Y220C-8 led to more negative values, particularly at R209. Additionally,
residues proximal to the mutation site, including L1, $2-S2/, and the H2 helix, exhibited
significant positive EED values in constructs bound to PK11000, 8, and 22. Constructs bound
to 20 and 27 displayed predominantly negative EED values, suggesting a lesser restorative
effect on p53-DBD dynamics. Overall, these analyses demonstrated that allosteric drug
binding significantly modulated electrostatic network dynamics in the p53-DBD, with
certain compounds, such as PK11000, 8, and 22, exhibiting stronger restorative effects
toward wild-type behavior.
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Figure 5. Embedding error difference (EED) distributions for each of the five Y220-db constructs
relative to the WT and Y220C constructs across all 193 DBD residues. The X-axis corresponds to
the residue index, and the Y-axis corresponds to the EEE value calculated as the difference (error)
between each residue’s EE value from the Y220C-ub_Y220C-j and WT_Y220C-j distributions, where
is one of the five examined drug compounds: 8, 20, 22, 27, and PK11000. A blue dotted line is drawn
across the x-axis to indicate an EEE value of 0. Secondary structural elements of the p53-DBD are
visualized under the x-axis. Coloration as dependent on construct Y220C-j follows from Figure 3.

To investigate the role of allosteric rescue in regions critical for DNA binding and
overall p53-DBD function, we analyzed the distribution of residues with high EED values
across key loop and helical motifs, including L1, L2, H1, S6-S7, L6, L3, and H2. These
regions were selected due to their functional implications in allosteric signaling and their
involvement in stabilizing DNA interactions [39]. Table 1 summarizes the proportions of
residues within these regions exhibiting increasingly positive EED values, and Figure 6a
projects these residues with significant EED values onto the p53-DBD structure.
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Figure 6. (a) Residues with EED values greater than or equal to 0.0002 mapped onto the structure
of p53’s DBD from any of the five EED distributions. Color mapping of white-to-blue-to-purple
corresponds to residues with increasing EED values greater than or equal to 0.0002, 0.00025, 0.0003,
0.0004, 0.0005, 0.001, and 0.002. (b) Grouped bar chart of mean EED value (EED) from each of the five
EED distributions averaged across residues in functionally implicated loop and helical regions L1, L2,
H1, S6-S7, L6, L3, and H2. Coloration follows from those assigned to each Y220C-db construct in
Figure 3.

Among the regions analyzed, S6-57 and L6 demonstrated the highest proportions of
residues with EED values > 0.0005, underscoring their significance in allosteric rescue. L1
and H2 also showed a higher percentage of residues with positive EED values compared
with other regions, such as H1, L2, and L3.

To compare the efficacy of the five drug compounds, we calculated the average EED
values for residues within these seven key loop regions under each Y220C drug-bound
condition (Figure 6b).
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Table 1. Tabulation of percentages of residues in functionally relevant loop and helical motif regions
with EED values in increasingly high threshold ranges. The investigated loop and helical motif
regions include L1 (F113-5121), L2 (K164-P177), H1 (H178-E180), S6-S7 (D207-R213), L6 (E221-T230),
L3 (N239-L252), and H2 (D281-R290). The more green-shifted the color mapping, the greater the
residue percentage. The preceding column indicates the average alpha-carbon distance of the region
from Y220C. The more red-shifted the color mapping, the more proximal the motif is to the Y220C
mutation site.

% of Residues with EED Value > Cuttoff
Residue EED Value Cutoff
Average «-carbon
pﬁgED distance (A) between |  0.0002 0.0003 0.0004 0.0005 0.001 0.002

Motif and Y220C
L1 29.1 54.5 45.5 36.4 18.2 9.1 0.0
L2 25.5 38.5 7.7 3.8 0.0 0.0 0.0
H1 29.1 66.7 0.0 0.0 0.0 0.0 0.0
S6-S7 194 85.7 714 714 71.4 28.6 14.3
L6 15.2 90.0 70.0 70.0 70.0 30.0 10.0
L3 30.5 28.6 21.4 14.3 14.3 14.3 0.0
H2 36.7 70.0 46.2 30.8 15.4 15.4 0.0

The analysis revealed that L6, followed by S6-57 and L1, demonstrated the most
pronounced responses to drug binding. Among the drugs, PK11000, compound 22, and
compound 8 were the most effective in redistributing electrostatic dynamics in these regions
toward wild-type-like behavior. The only effector compound capable of reestablishing
nominal electrostatics across L6, S6-57, and L1 simultaneously was compound 22, demon-
strating its comparatively significant efficacy for redistributing the global electrostatics of
the Y220C mutant p53-DBD to wild-type-like dynamics.

3. Discussion

The population shift model of protein dynamics suggests that distal allosteric per-
turbations can modulate the local functional dynamics of active sites by reorganizing the
global energetic landscape of a protein. This mechanism alters the equilibrium of functional
ensemble states, as seen in p53-DBD, where mutations such as Y220C shift residue inter-
actions toward non-functional conformations, resulting in loss of DNA-binding affinity.
Modulation of the global activity of a protein elicited by allosteric perturbation leads to
redistributions across each residue’s dominant inter-residue interactions and the functional
states the entire protein can occupy [40]. This study employed novel computational net-
work analyses to investigate how allosteric drugs influence the long-range electrostatic
dynamics of p53-DBD and restore functional behavior disrupted by the Y220C mutation.
By leveraging Wasserstein distance-based embedding error (EE) metrics, we quantified
the extent and distribution of significant energetic changes induced by allosteric drugs,
evaluating their differential efficacies in rescuing p53-DBD functionality.

3.1. Heat Kernel Analyses Capture Dominant Energetic Connections Across Constructs

The heat kernel methodology was instrumental in identifying the global networked
dynamics of long-range electrostatic interactions across wild-type, Y220C mutant, and drug-
bound p53-DBD constructs. Optimized for embedding electrostatic networks into R® space,
the heat kernel projections effectively partitioned residues based on their connectivity to
other residues, capturing the organization of each construct’s electrostatic networks over
simulation time. Residues with high connectivity, particularly arginine residues distributed
throughout the p53-DBD, consistently separated along the principal component axes due
to their numerous high-intensity interactions. Arginine residues are essential for stabilizing
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energetic pathways, diffusing thermal perturbations, and maintaining global electrostatic
interactions critical to p53 function [41,42]. The ability of the heat kernel embeddings to
encode long-range energetic relationships, beyond mere structural proximity, underscores
their value in elucidating the global and local electrostatic dynamics of p53-DBD.

3.2. Wasserstein Embedding Error Analyses Reveal Long-Range Reorganizations

Allosteric mutations operate by modulating the dynamics of significant fractions
of residues across globular protein structure, deviating long-range interactions between
functional domains away from their native stabilities that facilitate the entire protein func-
tionality [43]. An allosteric framework for protein functional rescue emphasizes how
introduced interactions at sites distal to functional domains reestablish active site func-
tionality by recovering significant long-range stabilities lost from the effects of mutational
disruption. Our embedding error analyses provided insights into how the introduction
of small molecule compounds at sites allosteric to the p53-DBD modulate electrostatic
network interactions within the Y220C mutant. By embedding each residue’s long-range
electrostatic dynamics in the latent PC space, we linked local residue-level changes to
global reorganizations in p53-DBD function. Comparisons of embedding error distribu-
tions showed that unbound Y220C p53 exhibited the largest deviation from wild-type-like
electrostatic interactions, particularly in loop and helical motifs critical for DNA binding
and stability [44,45]. Drug binding partially restored these interactions, as evidenced by
reduced embedding error values in key regions of the DBD.

MinEEa revealed that PK11000 accounted for the largest proportion (41.45%) of
residues displaying wild-type-like electrostatic interactions, followed by drugs 22 and
8. MaxEEa further demonstrated that drug compound 22 induced the most significant
redistribution of residues away from Y220C mutant-like electrostatic dynamics, with com-
pounds 8 and PK11000 also showing substantial effects. These findings highlight the ability
of these compounds to stabilize residue-level interactions across the DBD, promoting a
shift toward functional conformations.

3.3. Allosteric Disruption and Rescue in p53-DBD Dynamics

The globally disruptive nature of the Y220C mutation was evident in the unbound
construct’s low proportion of residues with wild-type-like electrostatic dynamics compared
with any of the drug-bound constructs. Notably, regions of high embedding error between
wild type and Y220C-ub (e.g., L1, L6, S6-57, and H2) overlapped with high embedding error
regions in comparisons of Y220C-ub and drug-bound constructs. This suggests that the
allosteric effects of the Y220C mutation are closely mirrored by the redistribution effects of
drug binding. Residues proximal to Y220C (e.g., L6) and distal regions such as L1 and H2,
which are critical for DNA-binding and structural stability, exhibited significant recovery in
electrostatic interactions upon drug binding. The EED analysis quantified the residue-level
impact of each drug, identifying regions where electrostatic interactions shifted toward
wild-type-like dynamics. Across all five compounds, residues in L6 consistently exhibited
the greatest degree of rescue. Regions such as the $2-52 hairpin and H2 helix, which are
directly involved in DNA complex formation [46], also displayed positive EED values for
multiple Y220C drug-bound DBD constructs, evidencing the role of allosteric compounds’
capacities to rescue active-site interactions from allosteric mutation. Residues of the S6-57
loop region demonstrated substantial variability in EED value dependent on the specific
drug-bound construct, with Y220C-22 showing the most positive EED values followed by
Y220C-27. Conversely, Y220C constructs bound to compounds 8 and PK11000 produced
minimal recovery of this region. Recent mutational studies have demonstrated residues
of the 56-57 region, particularly R209, to be crucial for stabilizing energetically favorable
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states of the p53-DBD [47], regulating p53 function despite its distal location relative to the
DNA binding interface at H2 with mutation of R209 being directly implicated in several
cancers [48]. Our findings may thus evidence a highly sensitive role of electrostatic network
organization of S6-57 loop residues, implicated in long-range signaling between L6 and
the DNA-binding L1 loop [44], for both regulating p53-DBD function and being a key
target for allosteric drug rescue [39,49]. The overlap of high EED regions with functional
interfaces highlights the utility of electrostatic network analyses in identifying critical sites
for therapeutic targeting.

3.4. Regional Analysis of Allosteric Rescue in p53-DBD

To investigate the role of allosteric rescue in regions critical for DNA binding and
overall p53-DBD function, we analyzed the distribution of residues with high embedding
error difference (EED) values across key loop and helical motifs, including L1, L2, H1,
56-57, L6, L3, and H2. These regions were selected due to their functional implications
in allosteric signaling and their involvement in stabilizing DNA interactions [39]. L1 and
H2 also showed a higher percentage of residues with positive EED values compared with
other regions, such as H1, L2, and L3. This is particularly striking given that L1 and L6 are
among the most distal regions from the Y220C mutation site. These findings suggest that
allosteric drug binding facilitates coordinated electrostatic network reorganizations that
span the DBD, effectively coupling proximal regions like L6 and S6-S7 with distal regions
like L1 and H2, which directly interact with DNA.

3.5. Mechanistic Insights into Allosteric Rescue

One of the main goals of the present study was to uncover the underlying signaling
pathways through which rescue compounds restore function to the Y220C mutant of p53. By
using heat kernel-based network analysis, we identified shifts in long-range communication
patterns that propagated from the ligand-binding site toward functional regions of the
protein. These shifts were not evident from structural data alone but were captured in
the heat kernel embeddings of electrostatic network reorganizations. Our results from the
EED analysis suggested that the rescue mechanism operated by re-establishing disrupted
electrostatic pathways, enabling more native-like residue-residue interactions that are
critical for restoring wild-type behavior.

Across the investigated motifs of the p53-DBD, regions demonstrating the most dra-
matic “response” to the presence of the five effector compounds appeared to be L6, followed
by S6-57 and L1. As shown by our studies of the average EED value in Figure 6b, the L1and
L6 motifs demonstrated the greatest electrostatic network reorganizations as dependent
on the complexing of the allosteric compounds investigated with Y220C mutant p53-DBD.
Out of the five compounds investigated, only compound 22 led to an average positive EED
value across all three of these motifs. These findings align with previous studies conducted
by the Thayer lab, which used MD-MSM and MD-Sector analyses to demonstrate that
PK11000 and compound 22 best recapitulate wild-type dynamics in regions L6 and L1,
where Y220C and DNA-binding residue K120 reside, respectively [13]. Our current results
provide an additional layer of validation by demonstrating the electrostatic basis for these
observations. Specifically, the coordinated rescue of electrostatic networks across L6, S6-57,
and L1 by compound 22 highlights the importance of these regions in stabilizing p53-DBD
dynamics and DNA-binding function.

Further support for the role of electrostatics in allosteric rescue comes from our ob-
servation that 32% of residues with high EED values are located in the beta-sheet core of
the p53-DBD, particularly in structurally adjacent sheets (e.g., S10 with S9, 54, and S8 with
S5). The simultaneous rescue of residues in the structurally stable core and more dynamic
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loop regions indicates that allosteric drug effects are not solely mediated through confor-
mational changes but are also driven by long-range electrostatic interactions. This supports
the hypothesis that energetic reorganizations play a pivotal role in restoring nominal p53
function [28]. Our results therefore can provide a quantitative means of ascertaining in
p53-DBD purely theoretical propositions of allosteric networks via redistributions through
protein energetics [18].

3.6. Implications for Drug Design and Therapeutic Development

Our findings reinforced the therapeutic potential of the known p53-reactivator
PK11000 and compound 22 as allosteric effectors capable of restoring wild-type-like electro-
static dynamics in p53-DBD. The Y220C mutant p53-DBD construct bound to compound
22 yielded the second-highest proportion of residues with minimal embedding errors in
MinEEa (second only to the Y220C-PK11000 construct) and the highest proportion with
maximal embedding errors in MaxEEa, underscoring its efficacy in restoring wild-type-like
behavior across the DBD. Moreover, the ability of compound 22 to redistribute electro-
static dynamics in regions such as L6, S6-57, and L1 highlights its potential to address
the deleterious effects of the Y220C mutation through a coordinated allosteric mechanism.
Recent evidence has pointed toward the dynamic coupling between both the L1 and S6-S57
loops in enabling DNA binding to exert long-range allosteric effects through H2 on DBD
functioning [47,50], with other studies demonstrating disruptions in long-range motional
correlations between L1 and L6 [44] consequent of Y220C mutation to the DBD. compound
22’s reversible nature of binding further enhances its viability as a therapeutic agent, distin-
guishing it from the PK11000, which, while initially designed to noncovalently interact with
p53-DBD, covalently modifies cysteine residues 182 and 277 in the DBD [29]. PK11000’s
unexpected covalent modifications have thus led to concerns over its potential off-target
effects and toxicity to p53, making it unsafe for clinical use [13]. In contrast, compound 22
demonstrates a comparable efficacy in rescuing important long-range electrostatic interac-
tions across the DBD, including those of S6-57, while reversibly binding at an allosteric site.
This characteristic corroborates recent findings of compound 22 as a particularly promising
candidate for further development as a safer therapeutic alternative to PK11000 [13].

Our approach can be extended to study additional hot spot mutations in p53, many
of which are of high biological and clinical interest due to their prevalence in. In order of
respective prevalence in p53-DBD, R175H, R248Q), R273H, R248W, R175L, R273C, R282W,
R248L, and R175P are of particular interest, with the first six of these mutations being
accountable for 30% of all p53-DBD oncogenic mutations [51]. More broadly, the network-
based framework we present is readily generalizable to any residue of interest in systems
for which MD simulations are available. We view this method as a flexible tool with broad
applicability for uncovering dynamic and allosteric consequences of mutations across a
range of protein systems.

4. Materials and Methods
4.1. MD Simulation Trajectory Specifications for p53-DBD Constructs

The MD simulation trajectory data for the unbound wild-type p53-DBD construct, the
unbound Y220C p53-DBD mutant construct, and the five mutant Y220C p53-DBD constructs
bound to effector compounds (PK11000, 8, 20, 22, and 27) were sourced from Han et al.’s
recently published MD docking and MD-MSM study on the Y220C p53 mutant [30].

All-atom MD simulations for each p53-DBD construct (residues 96-290) were con-
ducted for 1 microsecond (10,000 simulation frames) using explicit solvent models, wa-
ter, DNA, and counterions [30]. Simulations followed a standard protocol developed
by the Thayer lab, employing the AMBER14 and AMBER16 packages with the AMBER-
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TOOLS14 (v14, University of California, San Francisco, CA, USA) suite [52-54]. The
FF19SB force field [54,55] was used for proteins, and the TIP3P potential was applied for
solvent modeling.

Initial configurations of the p53-DBD wild-type (PDB ID: 1TUP) and Y220C+PK11000
(PDB ID: 5LAP) constructs were obtained from the Protein Data Bank (PDB). Residue Y220
was mutated to C220 using PyMOL (v1.8, Schrodinger, New York, NY, USA) [56]. PK11000
was parameterized using the Generalized Amber Force Field (GAFF) [30,57], implemented
via Antechamber in the AMBER suite (University of California, v.16, San Francisco, CA,
USA), [58] and covalently bonded to C182 using the t-Leap program suite (v.16, University
of California, San Francisco, CA, USA) [52]. For the effector-bound constructs, docking of
compounds 8, 20, 22, and 27 to the average structure of the Y220C mutant was performed
using AutoDock Vina (v1.20, Scripps Research, San Diego, CA, USA) [59,60], with zinc
coordination parameterized using the Zinc AMBER Force Field (ZAFF) [61].

Each system was neutralized with Na+ counterions and treated with particle mesh
Ewald periodic boundary conditions using a 10 A Lennard—Jones cutoff in a truncated
octahedral box [62]. Hydrogen bond motions were constrained using the SHAKE algo-
rithm [63]. Systems were energy-minimized with progressively reduced solute constraints,
heated to 300 K, and equilibrated using the Berendsen thermostat [64]. MD simulations
were performed using the parallelized CUDA (v12.0, NVIDIA, Santa Clara, CA, USA) ver-
sion of the pmemd routine [65] on NVIDIA GPUs (NVIDIA, Santa Clara, CA, USA). RMSD
convergence analyses were conducted using the cpptraj utility in AMBERTOOLS14 [52] to
confirm simulation stability.

For uniformity, residues comprising solvent, ions, DNA, zinc, and bound effector
compounds were stripped from all trajectory and topology files. Additionally, due to
modifications at the C182 site in the PK11000-bound mutant and the Y220C mutation itself,
residues C182 and C220 (or Y220 in the wild type) were stripped from all trajectories. These
steps were performed using the strip and parmstrip commands in AMBERTOOLS [52].

4.2. Locally Thresholded Interaction Network Generation

Residue-wise electrostatic and van der Waals (VDW) interaction matrices were com-
puted from atom-wise interaction matrices across regularly sampled frames of each tra-
jectory. For the seven p53-DBD constructs (193 residues), the initial atom-wise interaction
matrix (2999 x 2999) was reduced to a residue-level interaction matrix (193 x 193). Edge
weights in these matrices represented the total interaction energy between pairs of residues.

To reduce computational cost, the original 1 microsecond trajectory (10,000 frames) was
sampled at 66 frames/nanosecond, yielding approximately 150 frames per trajectory. This
sampling rate was chosen based on prior studies demonstrating convergence of energetic
dynamics using >50 sampled frames for smaller systems [30]. Energy computations were
performed using the cpptraj utility, and the outputs were parsed into tensors for further
analysis. Edge weights were subsequently normalized and thresholded to sparsify the
networks, highlighting regions with significant energetic contributions while minimizing
less impactful interactions [30,36]. Histogram data of the normalized edge weight values
for each construct’s locally-thresholded electrostatic interaction networks and locally-
thresholded van der Waals interaction networks can be found in Supplementary Figures S1
and S2 respectively.

4.3. Heat Kernel Generation from Locally Thresholded Networks

For each p53-DBD construct, the heat kernel was computed from the locally thresh-
olded [36] and normalized electrostatic interaction networks. The heat kernel, a mathemati-
cal function modeling the diffusion of information across a network over time, emphasizes
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node connectivity and topological features at both local and global scales. The heat kernel
matrix ht is defined as follows:
b= @(e )@ (1)

Here, @ is the matrix of spectral eigenvectors of the normalized Laplacian of a graph
G, and @ (e ) ®T is the diagonal matrix of eigenvalues weighted by the diffusion param-
eter t.

4.4. Determination of the Diffusion Parameter for Heat Kernel Computation

To optimize the diffusion parameter t, we employed a “knee point” detection algo-
rithm [66] based on curvature analysis of eigenvalue distributions [67]. The knee point
represents the eigenvalue beyond which additional dimensions add minimal variance,
ensuring efficient dimensionality reduction [66]. Using the wild-type p53-DBD construct
as a baseline, we identified t = 6 as the optimal parameter for all constructs, capturing
the majority of variance in the heat kernel’s principal components. Eigenvalue Scree plot
data for the diffusion parameter optimization protocol can be found in Supplementary
Figure S3.

4.5. Principal Component Analysis (PCA) of Heat Kernels

PCA was performed on the heat kernels to reduce dimensionality and identify sig-
nificant variances in node connectivity across simulation frames. The mean-centered
heat kernel, h;, of each construct was calculated as the average of all 152 frame-specific
heat kernels:

_ 1L
he= 2 Y Iy 2)
f=1

where /1 is the heat kernel for a specific construct calculated with diffusion parameter value
t at sampled fame f. We hypothesized projecting all sampled frames” heat kernels across
the mean-centered heat kernels three leading eigenvectors would account for the most
significant variances in heat kernel matrix values and thus network organization across MD
simulation time. Residues” heat kernel embeddings were projected into a shared latent space
using the leading three eigenvectors (PC!, PC?, and PC?) of each construct’s mean centered
heat kernel, yielding a total of 29,336 embeddings per construct (193 residues x 152 frames).
This embedding provided insights into residue-level network dynamics across simulation
time. Data for each construct’s electrostatic heat kernel embedding projections into R®
principal component space color-mapped by residue index can be found in Supplementary
Figure 54.

4.6. Calculation of Embedding Error Metrics

Embedding error (EE) values were computed using the Wasserstein distance metric,
which quantifies the “cost” of transforming one residue’s embedding distribution into
another. To calculate the embedding error (EE) for each residue between two p53-DBD
constructs, we employed a calculation of the 1st Wasserstein distance metric implemented
by the SciPy package [68]. For each residue, EE values were calculated between wild-type,
mutant, and drug-bound constructs.

For all residues in the p53-DBD, i = 96 to i = 290 (excluding i = 182 and i = 220), let
EE (YZZOC, Y220Cd].) denote the Wasserstein embedding error value of p53-DBD residue
iin the calculated embedding error distribution between construct x and Y220C mutant-
bound p53 to drug dj. For each DBD residue i, we can compute its corresponding value vi
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in the embedding error difference (EED) distribution V; of each drug compound j, where
v; € Vj, simply as

v; = EE (YZZOC, Yzzocdj)i — EE (wt, Yzzocdj)i 3)
Thus, when the EE value for residue i between the constructs of unbound Y220C and
Y220C bound to drug d; is high and its EE value between WT and Y220C bound to drug dj
is low, the drug compound redistributes the electrostatic network interactions of residue i
“toward” its electrostatic network dynamics in nominal wild-type p53 and “away” from
its dynamics in the aberrant Y220C mutant construct, resulting in its corresponding EED
value being higher. Supplementary Figure S5 visualizes investigated EED cutoff values
onto the EED distributions generated for this study.

4.7. Code Development

Algorithms implemented in the methodologies were generated in Bash (v5.0, Chet
Ramey) and Python (v3.7, Python Software Foundation, Wilmington, DE, USA) [69] through
Jupyter Notebooks (v7.0.0, Project Jupyter, Avignon, France) [70]. See supplementary
documentation for more information on code implementation. Flow chart diagram of
electrostatic network, embedding error, and embedding error difference protocols can be
found in Supplementary Figure S6.

4.8. Molecular and Chemical Structure Visualization

All 3D molecular structures were generated using PyMOL [56], and visualization of
chemical structures of small effector compounds and PK11000 was generated using Ketcher
(v3.4.0, EPAM Life Sciences, Newtown, PA, USA) [71].

Supplementary Information
Sample code can be found in the following files:

SUPP_00_strip_res_frame_contain.sh
SUPP_01_strip_res_frame_contain_66FS_trials.sh
SUPP_02_trajin_and_run_energy_dat.sh
SUPP_1_0_Energetic_Networks_Initial_Tensor_Generation_p53_Y220C_66SF.ipynb
SUPP_1_1_Energetic_Networks_Initial Tensor_Generation_p53_Y220C_66SF.ipynb
SUPP_2_0_Heat_Kernel_Generation_and_Analysis.ipynb

e  SUPP_3_0_Wasserstein_EE_Analysis_ WT_to_Y220C_mutants.ipynb

e  SUPP_3_1_Wasserstein_EE_Analysis_Y220C_to_drug_bound.ipynb

e  SUPP_3_Wasserstein_EE_Analysis_Cells.ipynb

e  SUPP_4_Wasserstein_Embedding_Error_Error_Analysis.ipynb

Supplementary Files:

e  Supplementary_Information_and_Figures.docx
e  Supplementary_Material Method_Calculations.docx.

5. Conclusions

This study demonstrates the utility of embedding the long-range electrostatic dy-
namics of the p53 DNA-binding domain (DBD) within a network-theoretic framework to
analyze the differential effects of allosteric drug interactions. By integrating heat kernel em-
bedding and Wasserstein distance-based metrics, we identified specific energetic network
reorganizations associated with functional, dysfunctional, and drug-rescued conditions
of the Y220C mutant p53-DBD. These methodologies revealed the capacity to not only
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evaluate the efficacy of allosteric drugs but also to pinpoint functionally significant regions
across the DBD that are most responsive to drug binding.

Our findings showed that compound 22 from the small-molecule panel was par-
ticularly effective in restoring long-range electrostatic interactions in the Y220C mutant,
mirroring the restorative effects of the established allosteric modulator PK11000. Impor-
tantly, compound 22 achieved this without covalent binding, suggesting its potential as a
safer alternative for therapeutic development. Regions such as L1, S6-57, and L6 emerged as
critical sites for electrostatic rescue, highlighting their importance in maintaining p53-DBD
stability and function. These findings underscore the potential of targeting distal allosteric
sites in the design of drugs capable of inducing global electrostatic network reorganizations
toward wild-type-like behavior.

Moreover, this study underscores the broader significance of long-range electrostatics
in regulating p53-DBD function and allosteric drug rescue. Our analyses revealed that the
dynamic redistribution of electrostatic interactions is a critical determinant of functional
state transitions in p53 and likely other proteins with complex allosteric mechanisms.
By coupling heat kernel embeddings with residue-specific embedding error analysis, we
provide a robust computational framework for dissecting the allosteric effects of small-
molecule modulators.

However, our results also emphasize the specificity of allosteric drug interactions.
While compound 22 and PK11000 demonstrated efficacy in rescuing the electrostatic dy-
namics of the Y220C mutant, the diversity of p53 mutations suggested that no single
allosteric drug could universally restore functionality across all variants. Effective therapeu-
tic strategies may require mutation-specific drug designs targeting distinct electrostatic and
energetic pathways. As such, the development of tailored allosteric modulators will necessi-
tate detailed analyses of the unique energetic disruptions caused by individual mutations.

Finally, the methodologies developed in this study, including heat kernel embeddings
and Wasserstein-based embedding error analyses, offer a powerful toolset for investigating
allosteric dynamics in p53 and other proteins. These approaches can aid in both drug
discovery and the mechanistic elucidation of allosteric regulation in diverse biological
systems. By leveraging these methods, future studies can further explore the therapeutic
potential of allosteric modulation in addressing the functional disruptions caused by
mutations in p53 and beyond.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms26146884/s1. References [36,66,67,72,73] are cited in the supplemen-
tary materials.

Author Contributions: Conceptualization, B.S.C. and K.M.T.; Methodology, B.S.C.; Investigation,
B.S.C. and K M.T.; Resources, KM.T.; Writing—original draft, B.S.C.; Writing—review & editing,
B.S.C. and K. M.T,; Visualization, B.S.C.; Supervision, KM.T.; Project administration, K.M.T.; Funding
acquisition, K.M.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by R15 GM128102-02 to KMT and by NSF grants CNS-0619508
and CNS-095985 to Wesleyan University for high-performance computing facilities.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the cor-
responding author. The data are not publicly available due to insufficient storage size for distributing
the raw trajectory file data utilized in the present study.

Acknowledgments: The authors gratefully acknowledge the Molecules to Medicine consortium,
especially David L. Beveridge, Michael P. Weir, In Sub Mark Han, Abhilash Jayaraj, Dylan Abramson,
and Theodore Sternlieb, for fruitful discussion. In Sub Mark Han generously shared the p53-DBD


https://www.mdpi.com/article/10.3390/ijms26146884/s1
https://www.mdpi.com/article/10.3390/ijms26146884/s1

Int. J. Mol. Sci. 2025, 26, 6884 19 of 21

trajectories. We gratefully acknowledge Henk Meij’s administration of Wesleyan’s High Performance
Computing Facility.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. George, P. p53 how crucial is its role in cancer. Int. J. Curr. Pharm. Res. 2011, 3, 19-25.

2. Lane, D.P. p53, guardian of the genome. Nature 1992, 358, 15-16. [CrossRef]

3.  Luo, Q. Beaver, ].M,; Liu, Y.; Zhang, Z. Dynamics of p53: A Master Decider of Cell Fate. Genes 2017, 8, 66. [CrossRef] [PubMed]

4. Hafner, A,; Bulyk, M.L.; Jambhekar, A.; Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol.
Cell Biol. 2019, 20, 199-210. [CrossRef] [PubMed]

5. Jain, AK,; Barton, M.C. p53: Emerging roles in stem cells, development and beyond. Development 2018, 145, dev158360. [CrossRef]
[PubMed]

6. Brady, C.A,; Jiang, D.; Mello, S.S.; Johnson, T.M.; Jarvis, L.A.; Kozak, M.M.; Kenzelmann Broz, D.; Basak, S.; Park, E.J.; McLaughlin,
M.E; et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011, 145,
571-583. [CrossRef]

7. Candau, R.; Scolnick, D.M.; Darpino, P; Ying, C.Y.; Halazonetis, T.D.; Berger, S.L. Two tandem and independent sub-activation
domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene 1997, 15, 807-816. [CrossRef]

8. Walker, K.K.; Levine, A J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc.
Natl. Acad. Sci. USA 1996, 93, 15335-15340. [CrossRef]

9.  Berger, M.; Vogt Sionov, R.; Levine, A.J.; Haupt, Y. A role for the polyproline domain of p53 in its regulation by Mdm?2. J. Biol.
Chem. 2001, 276, 3785-3790. [CrossRef]

10. Brandt, T; Petrovich, M.; Joerger, A.C.; Veprintsev, D.B. Conservation of DNA-binding specificity and oligomerisation properties
within the p53 family. BMC Genom. 2009, 10, 628. [CrossRef]

11. Hernandez Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim.
Biophys. Acta Rev. Cancer 2021, 1876, 188556. [CrossRef]

12.  Harris, C.C. Structure and function of the p53 tumor suppressor gene: Clues for rational cancer therapeutic strategies. J. Natl.
Cancer Inst. 1996, 88, 1442-1455. [CrossRef]

13.  Han, I.5.M.; Thayer, K.M. Reconnaissance of Allostery via the Restoration of Native p53 DNA-Binding Domain Dynamics in
Y220C Mutant p53 Tumor Suppressor Protein. ACS Omega 2024, 9, 19837-19847. [CrossRef] [PubMed]

14. Kato, S.; Han, S.-Y,; Liu, W.; Otsuka, K.; Shibata, H.; Kanamaru, R.; Ishioka, C. Understanding the function-structure and
function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad.
Sci. USA 2003, 100, 8424-8429. [CrossRef] [PubMed]

15. Olivier, M.; Eeles, R.; Hollstein, M.; Khan, M.A.; Harris, C.C.; Hainaut, P. The IARC TP53 database: New online mutation analysis
and recommendations to users. Hum. Mutat. 2002, 19, 607-614. [CrossRef] [PubMed]

16. Joerger, A.C.; Fersht, A.R. Structure-function-rescue: The diverse nature of common p53 cancer mutants. Oncogene 2007, 26,
2226-2242. [CrossRef]

17.  Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: A plausible model. ]. Mol. Biol. 1965, 12, 88-118.
[CrossRef]

18. Cooper, A.; Dryden, D.T. Allostery without conformational change. A plausible model. Eur. Biophys. |. EB] 1984, 11, 103-109.
[CrossRef]

19. Tsai, C.-J.; del Sol, A.; Nussinov, R. Allostery: Absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol.
2008, 378, 1-11. [CrossRef]

20. Tsai, C.-J.; Nussinov, R. A Unified View of “How Allostery Works”. PLoS Comput. Biol. 2014, 10, €1003394. [CrossRef]

21. Gunasekaran, K.; Ma, B.; Nussinov, R. Is allostery an intrinsic property of all dynamic proteins? Proteins 2004, 57, 433—443.
[CrossRef] [PubMed]

22. Liu, J.; Nussinov, R. Energetic redistribution in allostery to execute protein function. Proc. Natl. Acad. Sci. USA 2017, 114,
7480-7482. [CrossRef] [PubMed]

23.  Zhou, H.X,; Pang, X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018, 118,
1691-1741. [CrossRef] [PubMed]

24. Warshel, A. Electrostatic basis of structure-function correlation in proteins. Acc. Chem. Res. 1981, 14, 284-290. [CrossRef]

25. Perutz, ML.F. Electrostatic effects in proteins. Science 1978, 201, 1187-1191. [CrossRef]

26. Kumawat, A.; Chakrabarty, S. Hidden electrostatic basis of dynamic allostery in a PDZ domain. Proc. Natl. Acad. Sci. USA 2017,

114, E5825-E5834. [CrossRef]


https://doi.org/10.1038/358015a0
https://doi.org/10.3390/genes8020066
https://www.ncbi.nlm.nih.gov/pubmed/28208785
https://doi.org/10.1038/s41580-019-0110-x
https://www.ncbi.nlm.nih.gov/pubmed/30824861
https://doi.org/10.1242/dev.158360
https://www.ncbi.nlm.nih.gov/pubmed/29654218
https://doi.org/10.1016/j.cell.2011.03.035
https://doi.org/10.1038/sj.onc.1201244
https://doi.org/10.1073/pnas.93.26.15335
https://doi.org/10.1074/jbc.M008879200
https://doi.org/10.1186/1471-2164-10-628
https://doi.org/10.1016/j.bbcan.2021.188556
https://doi.org/10.1093/jnci/88.20.1442
https://doi.org/10.1021/acsomega.3c08509
https://www.ncbi.nlm.nih.gov/pubmed/38737036
https://doi.org/10.1073/pnas.1431692100
https://www.ncbi.nlm.nih.gov/pubmed/12826609
https://doi.org/10.1002/humu.10081
https://www.ncbi.nlm.nih.gov/pubmed/12007217
https://doi.org/10.1038/sj.onc.1210291
https://doi.org/10.1016/S0022-2836(65)80285-6
https://doi.org/10.1007/BF00276625
https://doi.org/10.1016/j.jmb.2008.02.034
https://doi.org/10.1371/journal.pcbi.1003394
https://doi.org/10.1002/prot.20232
https://www.ncbi.nlm.nih.gov/pubmed/15382234
https://doi.org/10.1073/pnas.1709071114
https://www.ncbi.nlm.nih.gov/pubmed/28696318
https://doi.org/10.1021/acs.chemrev.7b00305
https://www.ncbi.nlm.nih.gov/pubmed/29319301
https://doi.org/10.1021/ar00069a004
https://doi.org/10.1126/science.694508
https://doi.org/10.1073/pnas.1705311114

Int. J. Mol. Sci. 2025, 26, 6884 20 of 21

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Cowan, B.S.; Beveridge, D.L.; Thayer, K.M. Allosteric Signaling in PDZ Energetic Networks: Embedding Error Analysis. J. Phys.
Chem. B 2023, 127, 623-633. [CrossRef]

Bhattacharjee, S.; Sengupta, ]. Hidden electrostatic energy contributions define dynamic allosteric communications within p53
during molecular recognition. Biophys. . 2021, 120, 4512-4524. [CrossRef]

Bauer, M.R.; Joerger, A.C.; Fersht, A.R. 2-Sulfonylpyrimidines: Mild alkylating agents with anticancer activity toward p53-
compromised cells. Proc. Natl. Acad. Sci. USA 2016, 113, E5271-E5280. [CrossRef]

Han, I.5.M.; Abramson, D.; Thayer, K.M. Insights into Rational Design of a New Class of Allosteric Effectors with Molecular
Dynamics Markov State Models and Network Theory. ACS Omega 2022, 7, 2831-2841. [CrossRef]

Amitai, G.; Shemesh, A; Sitbon, E.; Shklar, M.; Netanely, D.; Venger, I.; Pietrokovski, S. Network Analysis of Protein Structures
Identifies Functional Residues. J. Mol. Biol. 2004, 344, 1135-1146. [CrossRef] [PubMed]

del Sol, A.; Fujihashi, H.; Amoros, D.; Nussinov, R. Residue centrality, functionally important residues, and active site shape:
Analysis of enzyme and non-enzyme families. Protein Sci. Publ. Protein Soc. 2006, 15, 2120-2128. [CrossRef] [PubMed]

Jacobs, D.J.; Rader, A.].; Kuhn, L.A.; Thorpe, M.F. Protein flexibility predictions using graph theory. Proteins Struct. Funct.
Bioinform. 2001, 44, 150-165. [CrossRef] [PubMed]

Brinda, K.V,; Vishveshwara, S. A network representation of protein structures: Implications for protein stability. Biophys. ]. 2005,
89, 4159-4170. [CrossRef]

Halder, A.; Anto, A.; Subramanyan, V.; Bhattacharyya, M.; Vishveshwara, S.; Vishveshwara, S. Surveying the Side-Chain Network
Approach to Protein Structure and Dynamics: The SARS-CoV-2 Spike Protein as an Illustrative Case. Front. Mol. Biosci. 2020,
7,596945. [CrossRef]

Abramson, D.I. The Colors of a Protein: Protein Dynamics Through the Lens of Spectral Graph Theory. Bachelor’s Thesis,
Wesleyan University, Middletown, CT, USA, 2021.

Vijayabaskar, M.S.; Vishveshwara, S. Interaction energy based protein structure networks. Biophys. ]. 2010, 99, 3704-3715.
[CrossRef]

Charles, M.; Roth, B.L.N.; Abraham, M. Lenhoff. Van der Waals Interactions Involving Proteins. Biophys. |. 1996, 70, 977-987.
Pradhan, M.R; Siau, ].W.; Kannan, S.; Nguyen, M.N.; Ouaray, Z.; Kwoh, C.K; Lane, D.P; Ghadessy, F; Verma, C.S. Simulations of
mutant p53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res. 2019, 47, 1637-1652. [CrossRef]

Kar, G.; Keskin, O.; Gursoy, A.; Nussinov, R. Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 2010, 10,
715-722. [CrossRef]

Sokalingam, S.; Raghunathan, G.; Soundrarajan, N.; Lee, S.-G. A Study on the Effect of Surface Lysine to Arginine Mutagenesis
on Protein Stability and Structure Using Green Fluorescent Protein. PLoS ONE 2012, 7, e40410. [CrossRef]

Martinez, L.; Figueira, A.C.M.; Webb, P; Polikarpov, I.; Skaf, M.S. Mapping the Intramolecular Vibrational Energy Flow in
Proteins Reveals Functionally Important Residues. J. Phys. Chem. Lett. 2011, 2, 2073-2078. [CrossRef]

Naganathan, A.N. Modulation of allosteric coupling by mutations: From protein dynamics and packing to altered native
ensembles and function. Curr. Opin. Struct. Biol. 2019, 54, 1-9. [CrossRef]

Barros, E.P; Demir, O.; Soto, J.; Cocco, M.].; Amaro, R.E. Markov state models and NMR uncover an overlooked allosteric loop in
p53. Chem. Sci. 2021, 12, 1891-1900. [CrossRef]

Lukman, S.; Lane, D.P.; Verma, C.S. Mapping the structural and dynamical features of multiple p53 DNA binding domains:
Insights into loop 1 intrinsic dynamics. PLoS ONE 2013, 8, e80221. [CrossRef] [PubMed]

Cho, Y.; Gorina, S.; Jeffrey, P.D.; Pavletich, N.P. Crystal Structure of a p53 Tumor Suppressor-DNA Complex: Understanding
Tumorigenic Mutations. Science 1994, 265, 346-355. [CrossRef] [PubMed]

Lambrughi, M.; De Gioia, L.; Gervasio, FL.; Lindorff-Larsen, K.; Nussinov, R.; Urani, C.; Bruschi, M.; Papaleo, E. DNA-binding
protects p53 from interactions with cofactors involved in transcription-independent functions. Nucleic Acids Res. 2016, 44,
9096-9109. [CrossRef] [PubMed]

Li, Y;; Zhang, M.-C.; Xu, X.-K.; Zhao, Y.; Mahanand, C.; Zhu, T.; Deng, H.; Nevo, E.; Du, ].-Z.; Chen, X.-Q. Functional Diversity of
p53 in Human and Wild Animals. Front. Endocrinol. 2019, 10, 152. [CrossRef]

Bauer, M.R,; Jones, R.N.; Tareque, R K; Springett, B.; Dingler, FA.; Verduci, L.; Patel, K.J.; Fersht, A.R.; Joerger, A.C.; Spencer, ]. A
structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future
Med. Chem. 2019, 19, 2491-2504. [CrossRef]

Zupnick, A.; Prives, C. Mutational Analysis of the p53 Core Domain L1 Loop. ] Biol Chem. 2006, 281, 20464—20473. [CrossRef]
Thayer, K.M,; Stetson, S.; Caballero, F.; Chiu, C.; Han, .5.M. Navigating the complexity of p53-DNA binding: Implications for
cancer therapy. Biophys. Rev. 2024, 16, 479-496. [CrossRef]

Case, D.A.; Cheatham, T.E., IlII; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M,, Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods,
R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668-1688. [CrossRef] [PubMed]

Lakhani, B.; Thayer, K.M.; Black, E.; Beveridge, D.L. Spectral analysis of molecular dynamics simulations on PDZ: MD sectors. J.
Biomol. Struct. Dyn. 2020, 38, 781-790. [CrossRef]


https://doi.org/10.1021/acs.jpcb.2c06546
https://doi.org/10.1016/j.bpj.2021.08.037
https://doi.org/10.1073/pnas.1610421113
https://doi.org/10.1021/acsomega.1c05624
https://doi.org/10.1016/j.jmb.2004.10.055
https://www.ncbi.nlm.nih.gov/pubmed/15544817
https://doi.org/10.1110/ps.062249106
https://www.ncbi.nlm.nih.gov/pubmed/16882992
https://doi.org/10.1002/prot.1081
https://www.ncbi.nlm.nih.gov/pubmed/11391777
https://doi.org/10.1529/biophysj.105.064485
https://doi.org/10.3389/fmolb.2020.596945
https://doi.org/10.1016/j.bpj.2010.08.079
https://doi.org/10.1093/nar/gky1314
https://doi.org/10.1016/j.coph.2010.09.002
https://doi.org/10.1371/journal.pone.0040410
https://doi.org/10.1021/jz200830g
https://doi.org/10.1016/j.sbi.2018.09.004
https://doi.org/10.1039/D0SC05053A
https://doi.org/10.1371/journal.pone.0080221
https://www.ncbi.nlm.nih.gov/pubmed/24324553
https://doi.org/10.1126/science.8023157
https://www.ncbi.nlm.nih.gov/pubmed/8023157
https://doi.org/10.1093/nar/gkw770
https://www.ncbi.nlm.nih.gov/pubmed/27604871
https://doi.org/10.3389/fendo.2019.00152
https://doi.org/10.4155/fmc-2019-0181
https://doi.org/10.1074/jbc.M603387200
https://doi.org/10.1007/s12551-024-01207-4
https://doi.org/10.1002/jcc.20290
https://www.ncbi.nlm.nih.gov/pubmed/16200636
https://doi.org/10.1080/07391102.2019.1588169

Int. J. Mol. Sci. 2025, 26, 6884 21 of 21

54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein
Side Chain and Backbone Parameters from ff99SB. ]. Chem. Theory Comput. 2015, 11, 3696-3713. [CrossRef] [PubMed]
Jorgensen, W.L. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for
water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 1981, 103, 335-340. [CrossRef]

Schrédinger, L.L.C. The PyMOL Molecular Graphics System, Version 1.8; Schrodinger, LLC: New York, NY, USA, 2015.

Wang, J.; Wolf, RM.; Caldwell, ].W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput.
Chem. 2004, 25, 1157-1174. [CrossRef]

Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical
calculations. J. Mol. Graph. Model. 2006, 25, 247-260. [CrossRef]

Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and
Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891-3898. [CrossRef]

Trott, O.; Olson, A.]. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. |. Comput. Chem. 2010, 31, 455—461. [CrossRef]

Peters, M.B.; Yang, Y.; Wang, B.; Fiisti-Molndr, L.; Weaver, M.N.; Merz, K. M., Jr. Structural Survey of Zinc Containing Proteins and
the Development of the Zinc AMBER Force Field (ZAFF). J. Chem. Theory Comput. 2010, 6, 2935-2947. [CrossRef]

Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys.
1993, 98, 10089-10092. [CrossRef]

Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with
Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327-341. [CrossRef]

Berendsen, H.J.C.; Postma, ] PM.; van Gunsteren, W.E; DiNola, A.; Haak, ].R. Molecular dynamics with coupling to an external
bath. J. Chem. Phys. 1984, 81, 3684-3690. [CrossRef]

Gotz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations
with AMBER on GPUs. 1. Generalized Born. . Chem. Theory Comput. 2012, 8, 1542-1555. [CrossRef]

Arvai, K. Kneed: Knee-Point Detection in Python; GitHub Repository: Washington, DC, USA, 2020.

Satopaa, V.; Albrecht, J.; Irwin, D.; Raghavan, B. Finding a “Kneedle” in a Haystack: Detecting Knee Points in System Behavior. In
Proceedings of the 2011 31st International Conference on Distributed Computing Systems Workshops, Minneapolis, MN, USA,
20-24 June 2011; pp. 166-171.

Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261-272. [CrossRef]
Van Rossum, G.; Drake, EL. Python 3 Reference Manual; CreateSpace: North Charleston, SC, USA, 1995.

Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.;
et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas; 10S Press: Amsterdam, The Netherlands, 2016; pp. 87-90.

Karulin, B.; Kozhevnikov, M. Ketcher: Web-based chemical structure editor. J. Cheminform. 2011, 3, P3. [CrossRef]

Cowan, B. Interconnected Protein Networks: Insights Towards CRIB-Par6 Protein Allostery Through a Graph-Theoretic Analysis.
Bachelor’s Thesis, Wesleyan University, Middletown, CT, USA, 2022.

ElGhawalby, H.; Hancock, E.R. Heat Kernel Embeddings, Differential Geometry and Graph Structure. Axioms 2015, 4, 275-293.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1021/acs.jctc.5b00255
https://www.ncbi.nlm.nih.gov/pubmed/26574453
https://doi.org/10.1021/ja00392a016
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1016/j.jmgm.2005.12.005
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/ct1002626
https://doi.org/10.1063/1.464397
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1063/1.448118
https://doi.org/10.1021/ct200909j
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1186/1758-2946-3-S1-P3
https://doi.org/10.3390/axioms4030275

	Introduction 
	Results 
	Energetic Network Generation and Electrostatic Heat Kernel PCA Projection 
	Embedding Error Analyses 

	Discussion 
	Heat Kernel Analyses Capture Dominant Energetic Connections Across Constructs 
	Wasserstein Embedding Error Analyses Reveal Long-Range Reorganizations 
	Allosteric Disruption and Rescue in p53-DBD Dynamics 
	Regional Analysis of Allosteric Rescue in p53-DBD 
	Mechanistic Insights into Allosteric Rescue 
	Implications for Drug Design and Therapeutic Development 

	Materials and Methods 
	MD Simulation Trajectory Specifications for p53-DBD Constructs 
	Locally Thresholded Interaction Network Generation 
	Heat Kernel Generation from Locally Thresholded Networks 
	Determination of the Diffusion Parameter for Heat Kernel Computation 
	Principal Component Analysis (PCA) of Heat Kernels 
	Calculation of Embedding Error Metrics 
	Code Development 
	Molecular and Chemical Structure Visualization 

	Conclusions 
	References

