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Abstract: Cellular therapeutics, encompassing stem cell-based regeneration and engineered
immune cell platforms, have demonstrated efficacy in treating degenerative diseases,
immune-related diseases, and oncology. However, low engraftment rates and limited long-
term efficacy remain critical translational barriers. This review compiled clinical projects
on cell therapy in China over the past five years (over 1200 patients across 172 clinical
trials) to highlight its rapid development in recent years and illustrate the directions of
indications for application. This review also analyzes published clinical achievements all
over the world, revealing significant therapeutic improvements in degenerative disorders
(40–60% improvement in Western Ontario and McMaster Universities Osteoarthritis Index
(WOMAC) scores and oncology (78% ctDNA clearance, p < 0.001)). We propose integrating
traditional Chinese medicine (TCM) bioactive compounds to enhance cell viability via
C-X-C motif chemokine receptor (CXCR4) upregulation and mitochondrial biogenesis.
Despite mechanistic insights, translational barriers include limited TCM validation (72%
lacking single-cell omics) and regulatory misalignment. Future efforts should prioritize
randomized trials and standardized TCM-cell therapy protocols to bridge discovery and
clinical translation.

Keywords: cellular therapeutics; MSC; CAR-T; degeneration diseases; cancer; traditional
Chinese medicine

1. Introduction
According to statistics, over 20 million new cancer cases occur globally each year, with

about 50% of patients facing a risk of death due to drug resistance or cancer recurrence [1].
However, the efficacy of traditional chemotherapy and targeted drugs has nearly reached
its limit, often accompanied by severe side effects. Cell therapy, which modifies or uti-
lizes autologous/allogeneic cells to achieve precise targeting or tissue regeneration, has
shown significant efficacy in several early clinical trials. Nonetheless, its long-term safety,
industrial bottlenecks, and ethical controversies still need to be addressed through rigorous
clinical trials.

Cellular therapeutics represents a paradigm shift in precision medicine, leveraging
viable human-derived cells for tissue regeneration and immune modulation. Governed
by stringent ethical frameworks (e.g., World Medical Association Declaration of Helsinki)
and regulated as advanced therapy medicinal products (ATMPs), these therapies require
pharmaceutical-grade manufacturing and risk-adapted clinical trial designs [2]. Two dom-
inant modalities drive the field: stem cell-based strategies (multipotent differentiation,
paracrine signaling, immunomodulation) and engineered immune cell platforms (e.g.,
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chimeric antigen receptor T cells (CAR-T)). Applications span degenerative diseases, oncol-
ogy, and regenerative medicine, supported by emerging evidence in epigenetic rejuvenation
and immune reprogramming [3]. This review aims to summarize and organize clinical trials
of mesenchymal stem cells (MSCs) and immune cell therapies in China, manifesting their
safety and efficacy, as well as breakthroughs in treating complex diseases. It also explores
the biological molecular mechanisms behind their effects and investigates potential new
advancements in combined traditional Chinese medicine and cell therapies.

1.1. Challenges and Solutions in the Practice of Cell Therapy Clinical Trials

Cell therapy methods are still being continuously explored and improved. Clinical
trials of cell therapy developed and registered in accordance with relevant pharmaceutical
management regulations must comply with the requirements of the Good Clinical Practice
for Drug Trials. This includes establishing a clinical trial quality management system by
the sponsor and conducting risk-based quality management. Even when sponsors fully
fulfill their responsibilities and develop well-designed protocols, there are still many chal-
lenges for clinical trial institutions and principal investigators in managing and conducting
clinical trials.

1.1.1. Selection of Study Populations

Cell therapy is often used for currently difficult-to-treat diseases with poor efficacy,
such as blood system tumors. The severity of adverse reactions is high, with cytokine
release syndrome (CRS) potentially causing high fever, coma, or even death. Additionally,
the long-term safety of gene-modified cell therapy products is unclear [4], leading to
significant uncertainty in risk-benefit assessments [5]. Cell therapy is still in its early stage
of development, with considerable risks. In clinical trials, the risk–benefit ratio should
be thoroughly considered. Patients should not directly opt for cell therapy as their first
treatment option without undergoing standard treatment [6]. Patients whose condition has
progressed after standard radiotherapy, chemotherapy, or targeted therapy have poorer
physical conditions, and researchers should carefully evaluate whether these participants
can tolerate cell therapy. Patients usually lack comprehensive understanding of cell therapy
and its potential side effects. Researchers must fully inform participants about the trial
process and risks during the informed consent process and appropriately address any
questions raised by the participants [5].

Cell therapy should also consider minors, conducting trials only after dose exploration
and initial safety and efficacy validation have been completed in adult subjects, with
separate clinical trial protocols and plans for adverse event prevention and management.

1.1.2. Cell Source and Collection

The cell collection techniques for clinical trials of cellular therapies have become
relatively mature and have a minor impact on the overall quality of clinical trials. How-
ever, cell collection is the first step in ensuring the quality of the cells to be reinfused.
Researchers should thoroughly evaluate the impact of cell collection on the patient’s health
status [5]. Appropriate software and hardware collection conditions can ensure the smooth
progression of subsequent processes. Therefore, the study protocol must clearly define the
bridging chemotherapy and pre-treatment protocols before treatment, specifying the cell
collection conditions, including the patient’s health status, specific numerical requirements
for various test and examination indicators, and the number of allowable retests and time
range, to maximize the patient’s treatment possibilities within a controllable risk range. The
research team needs to complete cell collection in an environment that meets the criteria
and transport it via cold chain logistics to the designated location according to the protocol
requirements to proceed with subsequent operations [7].
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For allogeneic source cell preparations, such as MSCs and umbilical cord blood stem
cells, collection requires informed consent from the donor, and storage conditions and loca-
tions must comply with relevant regulations. The principal investigator should confirm the
cell source, preparation process, and compliance of the cell preparation before conducting
clinical trials [8]. During ethical review, apart from reviewing clinical trial-related materials,
it should also review documents such as the donor’s informed consent form, storage insti-
tution’s storage qualification documents, and safety support documents for cell preparation
and expansion. Allogeneic source cells are often stem cell preparations, and their storage
time may be long, posing a risk of microbial contamination during storage and preparation.
For gene-modified cell preparations, the method of gene editing affects safety risks. When
discussing the clinical trial protocol with the sponsor, the principal investigator should
fully consider safety risks and corresponding clinical tests and examinations, and improve
follow-up test arrangements, set reasonable follow-up periods, and if necessary, arrange
long-term follow-ups to confirm the long-term and potential toxicity of gene modification
and gene introduction [9].

1.1.3. Transport and Storage of Cell Preparations

Cell preparations require higher standards for storage and transportation compared
to regular pharmaceuticals or medical devices, and should comply with domestic and
international guidelines for the transport of cell preparation products [10]. Clinical trial
institutions should communicate with the sponsor about the storage requirements of
the cell product before receiving it [11]. The pharmacy staff should learn and familiarize
themselves with the corresponding conditions in advance and reserve space and equipment
that meet the requirements to ensure proper storage of the cell product after receipt. Upon
receiving the cell product, in addition to verifying the quantity, specifications, and delivery
temperature, it is also necessary to confirm that the temperature during transportation
meets the storage requirements of the product before accepting it. The sponsor should
investigate cell stability in advance, clearly define the extreme conditions under which
the cells can be used, and if there is a brief temperature excursion during storage or
transportation, promptly determine whether the cells can still be used to avoid delaying
patient treatment and trial progress. Researchers should make the necessary preparations
(such as warming the cells) before administering them, and keep detailed records.

1.1.4. Monitoring and Management of Adverse Events in Cell Therapy Clinical Trials

Adverse event management is crucial in cellular therapy clinical trials. Cell therapy
has shown good efficacy, but its treatment mechanism is complex and its biological effects
are not well understood [8]. Chemical drugs and biologics have clear mechanisms of
action, allowing safety risks identified in preclinical data to predict clinical trial risks
and prepare accordingly. Different types of cell therapies have varying safety risks; for
example, with chimeric antigen receptor T-cell therapy, common severe adverse events
are immune-related, including CRS and immune effector cell-associated neurotoxicity
syndrome (ICANS). The type and severity of adverse events occurring at different stages
after cell infusion vary, necessitating graded and categorized management [12].

Researchers cannot predict clinical trial safety risks based on preclinical safety data of
human-derived cell products. Therefore, the principal investigators and research teams
need to have substantial knowledge and experience in cell therapy. They must undergo
thorough training before starting the study to properly handle adverse events related to cell
therapy, especially severe adverse events, and identify and intervene as early as possible [7].
Additionally, participants in cell therapy clinical trials are often patients with malignant
diseases, who have poor health conditions, leading to a high frequency of adverse events
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during the trial, complex concomitant medication, and difficulty in assessing the correlation
between adverse events and the clinical trial. Sponsors should conduct pharmacovigilance
work, systematically analyze the correlation between adverse events and the clinical trial
and promptly inform all principal investigators to prepare contingency plans. Researchers
should regularly participate in training related to cell therapy clinical trials. During the
training, they should not only learn about knowledge relevant to clinical trial practice but
also exchange experiences in conducting clinical trials, preventive measures for adverse
events, and handling procedures among researchers in the field, thereby improving the
execution and quality of clinical trials.

2. Cell Therapy Landscape in China
The clinical advancement of cellular therapeutics in China has been driven by two

landmark discoveries: the differentiation potential of human embryonic stem cells (hESCs)
reported in 1998 [13] and the reprogramming of induced pluripotent stem cells (hiPSCs) in
2007 [14]. Cell therapy clinical research initiated by researchers often suffers from insuffi-
cient scientific design, inadequate ethical review, low reliability of research data, and weak
homogeneity in research quality across different centers. This article focuses on discussing
the relevant content of cell therapy clinical trials developed and registered according to
relevant pharmaceutical management regulations. To comprehensively understand the
development and registration of clinical trials for cell therapies according to relevant phar-
maceutical regulations, if searching with the keyword ‘cells’, the scope is broad, covering
cell therapy clinical trials, vaccine clinical trials, and various chemical drugs, protein bio-
logics, etc. By observing the characteristics of the target trial titles, the search terms ‘stem
cells’ and ‘cell injection solution’ were chosen. As of 14 May 2025, 168 and 150 records were
found, respectively, on the ‘Drug Clinical Trials Registration and Information Disclosure
Platform’ (http://www.chinadrugtrials.org.cn/index.html (accessed on 14 May 2025)).
After excluding 33 duplicate trials, 111 unrelated trials, and 2 ‘voluntary suspension’ cases,
the remaining 172 records are all cell therapy clinical trials. There are 57 trials related to
mesenchymal stem cell therapy, and another 115 trials related to immunotherapy with a
notable underrepresentation of pediatric populations (2.91%, n = 5 trials). This is presum-
ably due to heightened safety and ethical hurdles for pediatric cell therapy trials (accessed
on 14 May 2025), coupled with parental reluctance due to limited public awareness of
clinical research. Also, commercial disincentives for pharmaceutical companies, including
the relatively small pediatric market size, complex trial designs, and higher costs, deter
investment compared to adult-focused therapies. Recently, the National Medical Prod-
ucts Administration (NMPA) has prioritized pediatric drug reviews, establishing a green
channel for accelerated approval of pediatric drugs and therapies, which now extends
to cell therapies [15]. Immune cell therapies were predominantly represented by CAR-T
therapies (55.81%, n = 96/172), reflecting their dominance in hematologic malignancy
research (Figure 1).

• Stem cell trials (n = 57): Degenerative disorders (Figure 2) accounted for 59.65% (n = 34),
including diabetes complications, osteoarthritis, and ischemic stroke etc.

• Immune cell trials (n = 115): Hematologic malignancies were targeted in 40.87%
(n = 47), with CAR-T therapies focusing on CD19+ B-cell malignancies (63.83%,
n = 30/47).

• In the analysis of stem cell types (Figure 3), human stem cells have diverse sources.
Umbilical cord mesenchymal stem cells (UCMSC) account for 35 items (44.2%), as they
are easily accessible and have broad applications [14].

http://www.chinadrugtrials.org.cn/index.html
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Figure 1. Recent clinical trials of immune cell therapies in China (classified by cell type): CAR-T
account for 96 clinical trials, T cells seven clinical trials, natural killer cells (NK) two clinical trials,
tumor infiltrating lymphocytes (TIL) five clinical trials, dendritic cells (DC) three clinical trials, and
chimeric antigen receptor- natural killer cells (CAR-NK) two clinical trials.
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Figure 2. Recent clinical trials of stem cell therapies in China (classified by indication). There are
34 clinical trials for degenerative disorders, 14 related to immune-mediated diseases, and 9 for other
complex illnesses.

• Phase I/II trials constituted 88.95% (n = 153/172) of the analyzed studies, highlighting
an emphasis on preliminary safety assessments. Cumulative cell doses administered
exceeded 190 billion across more than 1200 patients, with a median follow-up duration
of 18 months (interquartile range [IQR] 12–24) [3]. The cell therapy method in which
the treatment was associated with most adverse events was Olfactory ensheathing
cell and BMSC combination therapy (55%), and the lowest level of adverse events
was with embryonic stem cell therapies (2.33% of patients) [16]. In a meta-analysis,
the total prevalence of adverse events in cell therapy was 19% and the highest pulled
effect size belonged to urinary tract and localized adverse events; for example, the
most common adverse events were transient backache and meningism (90%) and
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cord malacia (80%) in MSCs-based clinical trials of spinal cord injury [16]. The most
frequently reported adverse event is transient fever, predominantly associated with in-
travenous infusion. This fever typically occurs within 24 h post-infusion and resolves
spontaneously within 48 h without requiring intervention [17]. Administration-site
reactions, including localized pain, swelling, or erythema, occur in up to 12% of pa-
tients receiving intra-articular or intralesional injections. Severe adverse events (SAEs),
such as thromboembolism, infections, and organ-specific toxicities, are infrequent.
These SAEs are often attributable to procedural factors or patient comorbidities rather
than inherent properties of the cells themselves [18,19]. Also, the total prevalence
of adverse events in 14 cell therapy methods was 18% and four cell types (neural
stem cell, bone marrow hematopoietic stem cell, embryonic stem cell, and UCMSC)
had the most effect. None of the adverse events were reported at (death) grading
scales 4 (life-threatening consequences) and 5 [16]. Notably, CAR-T therapies were
associated with higher incidences of cytokine release syndrome (CRS: 68.2%) and
immune effector cell-associated neurotoxicity syndrome (ICANS: 21.4%) [20].
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Figure 3. Recent clinical trials of stem cell therapies in China (classified by cell type). The most
common sources are UCMSCs (35 clinical trials), BMSCs (eight clinical trials), ADMSCs (five clinical
trials), HSCs (four clinical trials), EMSCs and DPMSCs (two clinical trials each), AMSCs (one clinical
trial), and PMSCs (one clinical trial).

3. Disease-Specific Clinical Advancements and Therapeutic Efficacy
3.1. Degenerative Diseases
3.1.1. Osteoarthritis (OA)

Osteoarthritis, characterized by progressive cartilage degradation, synovial inflam-
mation, and subchondral bone remodeling, affects over 500 million individuals globally,
with aging and obesity as key risk factors. Molecular pathogenesis involves dysregulated
chondrocyte metabolism, mitochondrial dysfunction, and elevated pro-inflammatory cy-
tokines (e.g., IL-1β, TNF-α), which drive extracellular matrix breakdown. MSCs mitigate
oxidative stress, cellular senescence, and apoptosis by restoring dysfunctional mitochon-
dria in chondrocytes, thereby facilitating cartilage regeneration. Exosomes play a pivotal
role in mediating the therapeutic effects of MSCs (Figure 4) [21]. MSCs mitigate OA
progression via paracrine secretion of anti-inflammatory cytokines (e.g., IL-10, TGF-β),
exosomal miRNA-mediated inhibition of catabolic pathways (e.g., MAPK/NF-κB), and
mitochondrial transfer to restore chondrocyte bioenergetics. A study suggested that hUC-
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MSC-derived exosomal miR-199a-3p alleviates OA by inhibiting the mitogen-activated
protein kinase 4/nuclear factor-kappaB signaling pathway. The present findings suggest
that miR-199a-3p delivery by hUC-MSC-Exos may be a novel strategy for the treatment of
OA [22].

 

Figure 4. Potential mechanisms of MSC-based therapy for OA.

Numerous clinical trials have demonstrated that stem cell therapy significantly allevi-
ates symptoms with minimal adverse effects (Table 1). Clinical trials demonstrate intra-
articular MSC administration (10–100 × 106 cells) improves WOMAC scores by 40–60%
at 12 months [23], with high-dose cohorts showing enhanced cartilage regeneration on
MRI [24]. Furthermore, it offers long-term therapeutic benefits by improving joint function.
However, challenges remain: (1) therapeutic outcomes vary among individuals, with some
patients showing no response; (2) the high cost of treatment often necessitates multiple
administrations for efficacy; and (3) as shown in Table 1, ADMSCs that exhibit superior
chondrogenic differentiation capacity due to their high expression of transcription factors
SOX9 and COL2A1 are predominantly selected [25]. Future directions include combinato-
rial strategies with hydrogels or platelet-rich plasma (PRP) to enhance MSC retention and
standardized protocols for exosomal miRNA profiling to predict patient-specific outcomes.
Chinese researchers, specifically from Peking University Third Hospital, developed an inno-
vative hydrogel encapsulation technology (Mg2+/Dimethyloxalylglycine-preconditioned
hyaluronic acid methacrylate-phenylboronic acid (HAMA-PBA)) to enhance MSC therapy
for osteoarthritis [26]. This self-healing, tissue-adhesive hydrogel significantly improved
MSC survival by three-fold within the hostile joint environment and sustained therapeutic
efficacy for over 12 months, evidenced by a 50% increase in cartilage repair markers (COL-II,
GAG) secretion [26].
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Table 1. Clinical applications of MSCs in knee osteoarthritis.

Ref.
MSC

Tissue
Source

Cell Dose
(×106 Cells) Number Treated Time Points Cartilage Outcomes

[27] AD 10, 50, 100
12 (100 × 106 dose);

3 (50 × 106 dose);
3 (10 × 106 dose)

0, 3, 6 months (MRl,
X-Ray);

0, 6 months
(arthroscopy

histology)

Regeneration favoring
high-dose group by MRl,

arthroscopy, histology

[28] BM 10, 100
10 (100 × 106 dose);
10 (10 × 106 dose);

10 (control)
0, 6, 12 months

Possible regeneration favoring
high-dose group by X-Ray and

MRI

[29] AD 100
10 (single dose);
10 (two doses);

10 (control)
0, 12 months Chondroprotection favoring

two-dose group

[30] BM 100 30 (MSC + PRP); 30
(control) 0, 12 months No significant effects

[31] AD 100 12 (MSC group); 12
(control) 0, 6 months

Chondroprotection; significant
increase in defect size

observed in saline- but not
MSC-treated group by MRI

[32] AD 10, 20, 50 6/dose group 0, 12, 24, 48, 72, 96
weeks

Regeneration favoring
high-dose group with

subsequent reduction in
cartilage volume at 96 weeks

[33] BM 1, 10, 50
4 (50 × 106 dose);
4 (10 × 106 dose);
4 (1 × 106 dose)

0, 6, 12 months
(MRI); 2, 6, 12, 24,

and 48 weeks
(ELISA)

Possible chondroprotection;
no changes by MRl but

catabolic biomarkers were
significantly reduced and
favored high-dose group

[34] AD 50 12 0, 48 weeks
Regeneration indicated by
reduced MOAKs articular
cartilage pathology scores

[35] AD 50 26/group 0, 24, 48 weeks
Regeneration in MSC group

with degeneration in HA
group

[36] BM 40 12 0, 6, 12 months
Regeneration indicated by
significant reduction in PCl
scores at 6 and 12 months

[37] BM 40 50 0, 12 months
Regeneration indicated by
significant reduction in T2

values

[38] BM 40 15 0, 6, 12 months
Regeneration indicated by
significant reduction in T2
values at 6 and 12 months

[39] BM 30.5 13 0, 6, 12 months
Regeneration indicated by

increased cartilage thickness
at 12 months

[40] BM 25, 50, 75, 150 10 (for each MSC
dose); 20 (control)

0, 6, 12 months
(MRl);

0, 3, 6 months
(X-Ray)

No significant effects

[41] AD 100 3
0, 6 months (MRl);
0, 1 week, 1, 3, 6

months

Possible chondroprotection
and regeneration by MRl and
ELISA but small sample size
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Table 1. Cont.

Ref.
MSC

Tissue
Source

Cell Dose
(×106 Cells) Number Treated Time Points Cartilage Outcomes

[42] Placenta 50–60 10 (MSC); 10
(control) 0, 24 weeks

Regeneration indicated by
increased cartilage thickness

relative to baseline in MSC but
not control group

[43,44] AD 10, 20, 50
7 (10 × 106 group);
8 (20 × 106 group);
7 (50 × 106 group)

0, 48 weeks Regeneration favoring
high-dose group

AD = Adipose Derived; BM = Bone Marrow Derived.

3.1.2. Neurodegenerative Disorders

Neurodegenerative diseases, including Parkinson’s disease (PD), Alzheimer’s disease
(AD), and ischemic stroke (IS), collectively account for 12% of global disability-adjusted life
years [45]. PD pathogenesis involves α-synuclein aggregation and dopaminergic neuron
loss, while AD is driven by Aβ plaques, tau hyperphosphorylation, and neuroinflamma-
tion [46]. In stroke, ischemia-reperfusion injury triggers excitotoxicity, oxidative stress,
and blood–brain barrier disruption [47]. A study discusses the molecular mechanisms via
which flavonoids and MSC therapy influence synaptic plasticity as well as their therapeutic
potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways
such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity,
and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) which are
secreted by MSCs and their receptors (TrkB, TrkA) [48]. By means of three molecular
pathways (prostaglandin E2 (PGE2)), tumor-necrosis-factor-inducible gene 6 protein (TSG-
6), and progesterone receptor (PR) and glucocorticoid receptors (GR), MSCs induce the
activation of macrophages/microglia and drive them to polarize into the M2 phenotypes,
which inhibits the release of pro-inflammatory cytokines and promotes tissue repair and
nerve regeneration [49]. The therapeutic mechanisms of MSCs in IS include the regulatory
effects of MSCs on microglia, the dual role of MSCs in astrocytes that produce excita-
tory neurotransmitters to protect neurons and produce TNF-α to balance inflammation,
how MSCs connect innate and adaptive immunity, the secretion of cytokines by MSCs
to counteract apoptosis and MSC apoptosis, the promotion of angiogenesis by MSCs to
favor the restoration of the blood–brain barrier, and the potential function of local neural
replacement by MSCs [50]. The findings indicate that Wilms’ tumor 1-associated protein
(WTAP) depletion can enhance the alleviative effects of MSCs Exo on oxygen–glucose
deprivation/reoxygenation-triggered cellular damage in SK-N-SH cells by downregulating
receptor protein RPL9 [51].

Trans-European PD trials reported sustained dopaminergic neuron engraftment (42%
fluorine-18 fluorodopa positron emission tomography (18F-DOPA PET) signal increase at
48 months) but limited motor improvement beyond 24 months [52]. The results of IS clinical
trials are promising, in the sense that most methods used for stem cell transplantation
appear to be safe. Table 2 shows that intravenous or intra-arterial transplantation is
preferred in the acute phase, where the aim is to ameliorate systemic and local inflammation
and cell engraftment is not required. Alternatively, intracerebral transplantation is preferred
in the chronic phase, where cell engraftment is considered the objective of cell therapy [53].
However, optimal parameters including the choice of cell type, cell dose, and patient
characteristics remain elusive and further research is needed to maximize the effects of the
proposed methods [53]. Future research must prioritize biomaterial scaffolds to enhance
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neuronal integration and CRISPR-edited MSCs overexpressing neurotrophic factors to
amplify therapeutic potency.

Table 2. Published clinical trials using stem cells for ischemic stroke.

Ref. Country Cell Source Dose Route Transplant
Timing

Treated
Patient

Number
(Control)

Major Outcome

Acute

[54] USA BM 4–6 × 108 IV 1–3 D 10 Showed good neurological
recovery

[55] USA BM 1.2 × 108 IV 1–2 D 65 (58) No difference
[56] USA UC 1.2 × 106 (CD34+) IV 3–9 D 10 Safe

[57] Brazil BM 5–6 × 107 IA 3–10 D 20 30% of patients showed
satisfactory clinical outcome

[58] Spain BM 1.6 × 108 IA 5–9 D 10 (10) No difference

[59] Brazil BM 3 × 107 IA 9 D 1 Brain/liver/spleen uptake at 8
h

[60] UK BM 1–3 × 106 (CD34+) IA 1 W 5 Good recovery

[61] China UC & NPC
3 × 107 (UC:IV),

1.5 × 107 (UC:IT),
1.8 × 107 (NPC:IT)

IV &
IT 1 W 1 Showed some degree of

neurological recovery

Sub-Acute

[62] India BM 2–19 × 108 IV 2–4 W 11
Favorable outcomes were

mostly found in early treatment
group

[63] India BM 5 × 107 IV 3–4 M 1 (3) Safe

[64] Brazil BM 2–5 × 108 IV 1–3 M 5

Cells in brain were scarce (1%),
IV (21%) showed high cell

distribution in lung compared
with IV (7%)

[65] India BM 2.8 × 107 IV 18 D 59 (59) No significant recovery
compared with control

[66] Japan BM 2.5–3.4 × 108 IV 7–10 D 12
Better NlHSS recovery

compared with historical
control

[67] Korea BM 1 × 108 IV 1–2 M 5 (25)
Cell treatment group showed
better neurological recovery

than control

[68] Korea BM 1 × 108 IV 2 M 16 (36) Better recovery, less mortality
within 5 years

[69] Japan BM 0.8–1.5 × 108 IV 1–4 M 12 Recoveries were mainly seen
0–1 W from transplantation

[70] China BM 3 × 108 IV 1 M 12 (6) No neurological difference
compared with control

[71] France BM 1 or 3 × 108 IV 1–2 M 16 (15)
No overall change, but motor

functional evaluations indicated
improvement

[61] China UC 1.2 × 108 IV 2 & 3 M 2 Showed some degree of
neurological recovery

[72] Brazil BM 1–5 × 108 IA 2–3 M 6 Cells were found in the brain
after 2 h, but not after 24 h

[73] Brazil BM 1–5 × 108 IA 2–3 M 6
Safe, but cells could not be seen
24 h after injection in 4 out of 6

patients

[64] Brazil BM 1–5 × 108 IA 1–3 M 7

Cells in brain were scarce
(1%), IA (41%) showed high cell
distribution in liver compared

with lV (13%)

[74] Egypt BM 1 × 106 IA 2–4 W 21 (18)
lA treatment did not improve

neurological recovery compared
with control

[75] India BM 5 × 108 IA 1–2 W 10 (10) Good recovery was observed in
treatment group (p = 0.06)

[76] USA BM 3 × 106 IA 2–3 W 29 (17) No statistical difference
compared to control
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Table 2. Cont.

Ref. Country Cell Source Dose Route Transplant
Timing

Treated
Patient

Number
(Control)

Major Outcome

[77] China UC & NPC 2 × 107 IA 11–22 D 3
Showed neurological
recovery in 2 out of 3

patients
[78] Russia Fetus

neuronal cell 2 × 108 IT 4 M 1 Cell treatment showed 33%
increase in score

[61] China UC & NPC
3 × 107 (UC:IV),

1.5 × 107 (UC:IT),
1.8 × 107 (NPC:IT)

IV&IT 2 W 1 Showed some degree of
neurological recovery

Chronic

[67] India BM 5 × 107 IV 6–15 M 11 (9) Significant improvement in mBl,
but not in FM

[63,79] India BM 5–6 × 107 IV 8–12 M 6 (6)
No significant difference

compared with control up to 4
years

[80] USA BM 1 × 108 IV 7 M–25 Y 36 Significant recovery was
observed

[81] India BM 5–6 × 107 IV 3 M–2 Y 20 (20) mBl showed significant
improvement

[82] India BM 6 × 107 IT 4 M–12 Y 14 Showed recovery, but this study
included hemorrhagic stroke

[83] China UC(CD34+) 1–3 × 107 IT 1–7 Y 8
Patients showed recovery, but

this may have been due to
natural history

[84] Russia Fetus
neuronal cell 2 × 108 IT 8 M–1.5 Y 6 (6) Cell treatment groups showed

better recovery
[85] USA AD N.D. IT 1 Y 1 Stable

[86] Cuba BM 1–5 × 107 IC 3–5 Y 3 Recovery compared with
pre-operation was found

[87] Taiwan UC (CD34+) 3–8 × 106 IC 6 M–5 Y 15 (15) Statistically significant
recovery

[88,89] USA BM 2.5, 5, 10 × 106 IC 7–36 M 18
Neurological recovery (ESS,

NIHSS, F-M test) was observed
up to 2 years

[90] USA Fetus
neuronal cell

2 × 106 (n = 8) or 6
× 106 (n = 4)

IC 7 M–5 Y 12 6 × 106 showed better recovery
than 2 × 106

[91] UK Fetus
neuronal cell 2, 5, 10, 20 × 106 IC 1–4 Y 11 Neurological recovery (median

NlHSS of 2) was observed

[92] UK Fetus
neuronal cell 2 × 107 IC 2 M–1 Y 23 Upper limb function recovered

from baseline

[93] USA Fetus
neuronal cell 5, 10 × 106 IC 1–6 Y 18 (4)

No difference for neurological
recovery (primary endpoint),

but showed partial recovery in
some tests

[94] China OEC 1 × 106 IC 3 Y 1 Recovery in speech and gait
[94] China OEC & NPC 1 × 106 & 2 × 106 IC 5 Y 1 Recovery in motor function

[95] USA Fetus
neuronal cell 2 × 107 IC 1.5–10 Y 5

Slight recovery, but 2 patients
exhibited adverse events

(seizure and motor deficit)
[94] China OEC & NPC 1 × 106 & 2 × 106 IC &

IT 1–20 Y 4 Recovery in gait

[61] China UC & NPC
3 × 107 (UC:IV),

1.5 × 107 (UC:IT),
1.8 × 107 (NPC:IT)

IV &
IT 10 M & 2 Y 2 Showed some degree of

neurological recovery

BM = Bone Marrow Derived; UC = Umbilical Cord Derived; NPC = Neural Progenitor Cell; OEC = Olfactory
Ensheathing Cell; IV = Intravenous; IT = Intrathecal; IC = Intracerebral; IA = Intra-Arterial.

3.1.3. Type 2 Diabetes Mellitus (T2DM) and Complications

Type 2 diabetes mellitus (T2DM), which accounts for 90–95% of all diabetes cases [96],
is a chronic metabolic disorder characterized by insulin resistance and impaired insulin
secretion. Globally, approximately 415 million adults are affected by diabetes, with an
additional 318 million at high risk due to impaired glucose tolerance [97]. T2DM is a
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major risk factor for ischemic heart disease, stroke, chronic kidney disease, and adult-onset
blindness [98]. Its pathogenesis involves complex interactions between genetic and environ-
mental factors, leading to chronic low-grade inflammation, pancreatic beta cell dysfunction,
and insulin resistance [99]. MSCs possess differentiation potential, immunosuppressive
properties, and anti-inflammatory effects, making them a promising therapeutic candidate
for T2DM [94]. MSCs can differentiate into insulin-producing cells (IPCs), promote the
regeneration of pancreatic islet beta cells, protect endogenous islet cells, and improve
insulin resistance, thereby exerting a positive impact on T2DM [100].

Numerous clinical studies have demonstrated the efficacy of MSCs in treating T2DM.
For instance, in 2019, Esteban et al. found that combining BMSCs with hyperbaric oxy-
gen therapy effectively reduced HbA1c levels in T2DM patients for up to one year [94].
However, the duration of MSC treatment effects remains a concern [101]. Some studies
have shown that HbA1c levels decrease transiently but do not continue to decline over the
long term [102]. Representative cases include a patient treated with BMSCs who achieved
significant improvements in glycemic control and insulin resistance [103]. Future T2DM
therapies may focus on MSC-based approaches, such as optimizing the source and dose
of MSCs, developing personalized treatment regimens (changing the method of infusion,
administering MSCs directly into the lymph nodes around the pancreas [104]), combining
with gene therapy (silencing the MST1 gene in embryonic stem cells (ESCs) enhanced dif-
ferentiation into IPCs that increased insulin secretion and improved glucose responsiveness
in T2DM rat models, with normoglycemia maintained for 6+ weeks post-transplant [105]),
and enhancing the understanding of the molecular mechanisms underlying MSC treatment
to improve its efficacy and safety. Additionally, strategies to prevent the recurrence of
diabetes post-treatment should be explored.

In diabetic nephropathy applications, MSCs significantly improved mitochondrial
function in renal tubular epithelial cells by upregulating peroxisome proliferator-activated
receptor gamma coactivator 1α (PGC-1α) expression, regulating mitochondrial fusion and
fission proteins, reducing mitochondrial reactive oxygen species (ROS) production, and sup-
pressing NACHT, LRR, and PYD Domains-Containing Protein 3 (NLRP3) inflammasome
activation [106]. Furthermore, MSC treatment reduced the levels of pyroptotic markers,
such as IL-18, and exhibited a marked anti-fibrotic effect in the long term. These findings
suggest that MSCs not only repair kidney injury but also offer long-term protection against
fibrosis [106,107].

3.1.4. Cardiac Tissue Engineering Milestones

Recently, tunneling nanotubes (TNTs)—a novel type of long-distance intercellular
connective structure—have been identified between MSCs and cardiomyocytes (CMs). The
results demonstrate that isoproterenol (ISO) promotes the formation of TNTs, particularly
between MSCs and CMs, and induces changes in the morphology of TNTs (thickening
and lengthening). Additionally, MSCs transmitted Cx43 to CMs via TNTs, which con-
tributes to the alleviation of ISO-induced myocardial hypertrophy. These results suggest
that TNTs represent an important mechanism in MSC-mediated therapy for myocardial
hypertrophy [108].

Cardiac cell therapy has progressed to Phase III validation. The trial (NCT01768702)
demonstrated significant reductions in left ventricular end-systolic volume (−15.4 mL,
p = 0.02) and increased 6-min walk distance (+34.9 m, p = 0.03) in ischemic cardiomyopathy
patients receiving cardiopoiesis-guided mesenchymal stromal cells [109]. Innovations in
electromechanical coupling, such as connexin-43 overexpression, improved engraftment
rates by 2.3-fold in porcine myocardial infarction models, mitigating historical arrhythmo-
genicity risks [110].
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3.1.5. Hepatic Regeneration Paradigms

LyGenesis’ ectopic hepatogenesis platform restored albumin levels to normal in 42%
of end-stage liver disease patients following lymph node delivery of allogeneic hepa-
tocytes (50 million cells; 6-month follow-up) [111]. Phase IIa trials (150 million cells)
now employ 99mTc-mebrofenin scintigraphy to quantify metabolic activity in ectopic
liver tissue [111]. Preclinical porcine models revealed a 1:30 donor-to-recipient scaling
ratio via Notch/epidermal growth factor (EGF) co-stimulation, offering a scalable solu-
tion to donor shortages. MSCs can regulate signaling pathways, including hepatocyte
growth factor/c-Met, Wnt/beta (β)-catenin, Notch, transforming growth factor-β1/Smad,
interleukin-6/Janus kinase/signal transducer and activator of transcription 3, and phos-
phatidylinositol 3-kinase/PDK/Akt, thereby influencing the progression of liver fibrosis
and regeneration [112].

3.2. Immune-Mediated Diseases
3.2.1. Autoimmune Disorders

Rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are characterized
by dysregulated adaptive immunity, including Th17/Tfh hyperactivation and autoantibody
production. In RA, synovial fibroblast proliferation and IL-17/IL-21-driven inflammation
perpetuate joint destruction. MSCs suppress pathogenic T cells via IDO/kynurenine-
mediated apoptosis, promote Treg differentiation through TGF-β/IL-10, and inhibit B-cell
maturation by downregulating BAFF/APRIL. MSCs show potential in cases of autoimmune
disease and organ transplantation due to their immune regulation and anti-inflammatory
properties. Comprehensive sample analysis revealed dysregulation of FGL1/LAG-3 and
PD-L1/PD-1 immune checkpoints in allogeneic heart transplantation mice and clinical
kidney transplant patients. MSCs not only enrich FGL1/PD-L1 expression but also main-
tain the immunomodulatory properties of unmodified MSC extracellular vesicles. It is
confirmed that FGL1 and PD-L1 on extracellular vesicles (EVs) are specifically bound to
their receptors, LAG-3 and PD-1 on target cells [113].

A Phase I/II trial (NCT01547091) demonstrated intravenous umbilical cord MSCs
(1 × 106/kg) reduced disease activity scores in 28 joints (DAS28) in RA patients 1 year
and 3 years after treatment compared to before treatment (p < 0.05), correlating with
decreased anti-circular citrullinated peptide (anti-CCP) titers [114]. In SLE, MSC infusion
normalized CD4+/CD8+ ratios and reduced proteinuria by 60% in a 12-month follow-up
(ChiCTR1800018084) [115]. Future strategies include engineering MSCs to overexpress
anti-IL-6R nanobodies and utilizing single-cell omics to identify patient-specific immune
signatures for precision therapy [116].

Vertex Pharmaceuticals’ VX-880 allogeneic islet cell therapy achieved insulin indepen-
dence in 64% of T1DM recipients (p < 0.001 vs. controls), likely due to restored pancreatic
β-cell mass [104]. Complementary adoptive transfer of regulatory T cells (Tregs) pre-
served fasting C-peptide levels via CTLA-4/IgG Fc-mediated suppression of autoimmune
destruction, demonstrating the synergy between cellular replacement and immunomodula-
tion [117].

3.2.2. Inflammatory Conditions (COVID-19, Chronic Obstructive Pulmonary
Disease (COPD))

Severe COVID-19 and COPD involve cytokine storms (IL-6, TNF-α) and alveolar
macrophage dysfunction, leading to acute respiratory distress syndrome (ARDS) and
pulmonary fibrosis [118]. MSCs attenuate hyperinflammation via ACE2-mediated SARS-
CoV-2 neutralization [119], mitochondrial donation to epithelial cells, and macrophage
reprogramming via Galectin-1/TSG-6 pathways [120].
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In COVID-19 ARDS patients, intravenous MSC therapy (200 × 106 cells) reduced
mortality by 58% (REMAP-CAP trial) [121], while in COPD, MSC administration improved
forced expiratory volume in one second (FEV1) by 12% at 6 months (NCT00683722) [122].
Challenges include transient engraftment and donor variability. Next-generation ap-
proaches focus on aerosolized MSC-EVs for targeted lung delivery [123] and CRISPR-
Cas9-edited MSCs with enhanced anti-fibrotic (shRNA-TGF-β) and antiviral (IFN-λ1)
properties [124].

3.3. Car-T Innovations

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a potentially curative
approach for hematological malignancies. The pooled analysis demonstrated an overall
response rate of 75%, with a complete response achieved in 66% of patients. Moreover,
49% of patients demonstrated progression-free survival (PFS) with a median follow-up of
30 months, and 53% of patients achieved negative measurable residual disease (NMRD)
remission [125]. Notably, few patients experienced CRS of grades 1–2; however, neurotoxic-
ity was not described as a prevalent side effect [125]. DNA transposon-generated CD19
CAR T-cell therapy demonstrates promising efficacy in B-cell malignancies, with favorable
safety profiles [126]. However, the outcomes of this meta-analysis underscore the need for
further clinical development [127].

Off-the-shelf human pluripotent stem cell (hPSC)-derived CAR-NK therapies (e.g.,
Fate Therapeutics’ FT500) achieved 78% circulating tumor DNA (ctDNA) clearance in
solid tumor cohorts (NCT04106167) through TIM-3/LAG-3 dual checkpoint knockout [128].
CRISPR-engineered neoantigen-specific T cell receptor (TCR)-T constructs demonstrated
91% tumor infiltration efficiency (PET-CT SUVmax ≥ 3.5) in Phase I trials, with no grade
≥ 3 cytokine release events [129]. Additionally, bioreactor-expanded megakaryocytes
generated 3.5 × 1011 platelets per unit, achieving hemostatic equivalence to donor-derived
products in thrombocytopenic models (∆ bleeding time −2.1 min, p = 0.01) [130]. Each
product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation,
first-in-human phase I clinical trial (NCT03970382) (Figure 5). One patient had grade 1
cytokine release syndrome and one patient had grade 3 encephalitis. All participants had
the expected side effects from the lymphodepleting chemotherapy. Five patients had stable
disease and the other eleven had disease progression as the best response on the ther-
apy [131]. neoTCR transgenic T cells were detected in tumor biopsy samples after infusion
at frequencies higher than the native TCRs before infusion. This study demonstrates the
feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens.
Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using
single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR
engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR
T cell products and the ability of the transgenic T cells to traffic to the tumors of patients are
also demonstrated [131].
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Figure 5. Generation of the neoTCR product for each patient.

4. Discussion and Future Perspectives
While early successes in cellular therapeutics centered on CNS and ocular applications,

recent advances span immune, cardiac, and metabolic disorders. CAR-T and stem cell
therapies now comprise 31% of clinical interventions, with marked efficacy in diabetes,
epilepsy, and age-related macular degeneration. However, transitioning from Phase I/II to
Phase III trials requires resolving many barriers including low engraftment rates, limited
long-term efficacy, adverse reactions, unclear long-term safety, risk–benefit assessment
difficulties, patient understanding, cell handling challenges, and ethical dilemmas. The
most critical translational bottleneck confronting cell therapy in China is manufacturing
standardization, primarily stemming from the inherent heterogeneity of cellular products
(e.g., MSCs, iPSCs). Variations across donors, tissue sources, and production batches
severely compromise quality control and therapeutic consistency. This variability results
in unreliable clinical outcomes, limited scalability, and barriers to regulatory-compliant
translation [132].

The integration of TCM-derived natural compounds with stem cell therapy represents
an emerging strategy to overcome key limitations in regenerative medicine, such as low cell
survival, uncontrolled differentiation, and insufficient endogenous stem cell pools [133].
The theoretical synergy arises from TCM’s holistic approach to systemic modulation, which
aligns with stem cells’ capacity for multi-tissue regeneration [134]. TCM compounds
epigenetically regulate stem cell niches in vivo by modulating signaling pathways (e.g.,
Wnt/β-catenin, MAPK/ERK), thereby enhancing the microenvironment for transplanted
cells [135]. For example, safflower-derived palmitic acid upregulates CXCR4 expression
in mesenchymal stromal cells (MSCs) [136], improving migration, while ginsenoside com-
pound K (CK) enhances glucose transporter 1 (GLUT1)-mediated ATP production [137].
This mechanistic convergence provides a molecular foundation for combination strategies
aimed at improving therapeutic precision.

Specific TCM-derived compounds significantly augment MSC functions, including
proliferation, differentiation, and stress resistance, through defined molecular pathways.
Icariin (from Epimedium brevicornu) stimulates osteogenic differentiation and suppresses
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adipogenesis in MSCs via miR-23a-mediated Wnt/β-catenin activation [138]. Curcumin
(from Curcuma longa) synergizes with MSCs to mitigate neurological damage in ischemic
stroke by activating the AKT/GSK-3β/β-TrCP/Nrf2 axis [139]. Resveratrol (found in
grapes and peanuts) enhances MSC osteogenesis through Hippo/YAP and SIRT7/NF-κB
pathways while inhibiting senescence [140]. These compounds exemplify TCM’s role as a
“biocompatible adjuvant” that optimizes MSC performance for bone, neural, and vascular
repair. Despite these mechanistic insights, translational barriers persist: (1) 72% of TCM
effects lack single-cell multiomics validation (e.g., scRNA-seq/CITE-seq) [141]; (2) only 9%
of TCM components meet Food and Drug Administration (FDA) botanical guidelines for
quality-by-design (QbD), compared to 34% under NMPA standards [141]; and (3) no Phase
III randomized controlled trials (RCTs) have evaluated TCM–cell therapy combinations
(ClinicalTrials.gov: 0/126).

To address these gaps, we propose establishing standardized TCM-compound libraries
with IC50 profiling and adopting organ-on-chip platforms for real-time interaction analysis.
Concurrently, regulatory alignment between NMPA and FDA guidelines is critical to ac-
celerate global validation. Future research must prioritize RCTs comparing combination
therapies to monotherapies, ensuring rigorous safety and efficacy assessments. By bridg-
ing mechanistic discovery with clinical translation, the integration of TCM and cellular
therapeutics may redefine regenerative and immunomodulatory medicine.
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Abbreviations
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WOMAC Western Ontario and McMaster Universities Osteoarthritis Index
TCM Traditional Chinese Medicine
CXCR4 C-X-C Motif Chemokine Receptor
ATMPs Advanced Therapy Medicinal Products
CAR-T Chimeric Antigen Receptor T cells
MSC Mesenchymal Stem cell
CRS Cytokine Release Syndrome
ICANS Immune Effector Cell-Associated Neurotoxicity Syndrome
hESCs Human Embryonic Stem Cells
hiPSCs Human induced Pluripotent Stem Cells
NMPA China’s National Medical Products Administration
NK Natural Killer Cells
TIL Tumor Infiltrating Lymphocytes
DC Dendritic Cells
CAR-NK Chimeric Antigen Receptor- Natural Killer Cells
UCMSCs Umbilical Cord Mesenchymal Stem Cells
ADMSCs Adipose-Derived Mesenchymal Stem Cells
BMSCs Bone Marrow-Derived Mesenchymal Stem Cells
EMSCs Endometrial Mesenchymal Stem Cells
HSCs Hematopoietic Stem Cells
AMSCs Amniotic Mesenchymal Stem Cells
PMSCs Placental Mesenchymal Stem Cells
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DPMSCs Dental Pulp Mesenchymal Stem Cells
IQR Interquartile Range
SAEs Severe Adverse Events
OA Osteoarthritis
PRP Platelet-Rich Plasma
HAMA-PBA Hyaluronic Acid Methacrylate-Phenylboronic Acid
PD Parkinson’s Disease
AD Alzheimer’s Disease
IS Ischemic Stroke
PGE2 Prostaglandin E2
TSG-6 Tumor-Necrosis-Factor-Inducible Gene 6 Protein
PR Progesterone Receptor
GR Glucocorticoid Receptors
WTAP Wilms’ Tumor 1-Associated Protein
18F-DOPA PET Fluorine-18 Fluorodopa Positron Emission Tomography
T2DM Type 2 Diabetes Mellitus
IPCs Insulin-Producing Cells
ESCs Embryonic Stem Cells
PGC-1α Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α
ROS Reactive Oxygen Species
NLRP3 NACHT, LRR, and PYD Domains-Containing Protein 3
TNTs Tunneling Nanotubes
CMs Cardiomyocytes
ISO Isoproterenol
EGF Epidermal Growth Factor
RA Rheumatoid Arthritis
SLE Systemic Lupus Erythematosus
EVs Extracellular Vesicles
DAS28 Disease Activity Scores In 28 Joints
anti-CCP Anti-Circular Citrullinated Peptide
COPD Chronic Obstructive Pulmonary Disease
ARDS Acute Respiratory Distress Syndrome
FEV1 Forced Expiratory Volume In One Second
PFS Progression-Free Survival
NMRD Negative Measurable Residual Disease
hPSC Human Pluripotent Stem Cell
ctDNA Circulating Tumor DNA
TCR T Cell Receptor
CK Ginsenoside Compound K
GLUT1 Glucose Transporter 1
FDA Food and Drug Administration
QbD Quality-By-Design
RCTs Randomized Controlled Trials
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