Synthesis of Antioxidant Nano Zero-Valent Iron Using FeCl2 and Leucaena leucocephala Leaves’ Aqueous Extract and the Nanomaterial’s Potential to Promote the Adsorption of Tartrazine and Nigrosine
Abstract
1. Introduction
2. Results
2.1. Influence of the Temperature in the Extraction of Phenolics from the Leaves of Leucena
2.2. Influence of Time in the Extraction of Phenolics from the Leaves of Leucena
2.3. Influence of the pH and the Proportion of FeCl2:Extract in the Potential of nZVI to Promote Removal of Dyes
2.4. Characterization of nZVI
2.5. nZVI Removing Synthetic Organic Dyes from Aqueous Samples
2.6. Adsorption Kinetics
2.7. Antioxidant Activity Assay
3. Discussion
4. Materials and Methods
4.1. Collecting and Preparing the Synthesis Bio-Based Raw Material
4.2. Extraction at Different Temperatures
4.3. Dosage of Phenolics
4.4. Extraction at Different Time Intervals
4.5. nZVI Synthesis at Different pHs
4.6. The Removal of Tartrazine and Nigrosine by nZVI
4.7. nZVIs’ Characterization
4.8. Adsorption Kinetics Assay
4.9. Antioxidant Assay
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parida, S.; Mandal, A.K.; Behera, A.K.; Patra, S.; Nayak, R.; Behera, C.; Jena, M. A comprehensive review on phycoremediation of azo dye to combat industrial wastewater pollution. J. Water Process Eng. 2025, 70, 107088. [Google Scholar] [CrossRef]
- Zand, A.; Macharia, J.M.; Szabó, I.; Gerencsér, G.; Molnár, Á.; Raposa, B.L.; Varjas, T. The Impact of Tartrazine on DNA Methylation, Histone Deacetylation, and Genomic Stability in Human Cell Lines. Nutrients 2025, 17, 913. [Google Scholar] [CrossRef]
- Vinotha, S.; Rose, A.L. Congo Red and nigrosinee Dye Degradation using Dimethyl Dioxirane as an Oxidising Agent. Orient. J. Chem. 2021, 37, 5. [Google Scholar] [CrossRef]
- Chung, K.T.; Fulk, G.E.; Andrews, A.W. Mutagenicity testing of some commonly used dyes. Appl. Environ. Microbiol. 1981, 42, 641–648. [Google Scholar] [CrossRef]
- Mian, A.H.; Qayyum, S.; Zeb, S.; Fatima, T.; Jameel, K.; Rehman, B. Exploring indigenous fungal isolates for efficient dye degradation: A comprehensive study on sustainable bioremediation in the total environment. Environ. Technol. Innov. 2024, 34, 103615. [Google Scholar] [CrossRef]
- Ta, M.; An, Y.; Yang, H.; Bai, C.; Wang, T.; Zhang, T.; Cai, H.; Zheng, H. Attraction behavior induces the aggregation and precipitation of organic dyes: Improving efficiency through co-treatment strategy. J. Mol. Liq. 2024, 415 Pt A, 126331. [Google Scholar] [CrossRef]
- Monroy, L.H.; Tavares, J.R.; Dumont, M.J. Application of photocatalytic hydrogels used for the degradation of dyes, pharmaceuticals and other contaminants in water. Adsorption 2025, 31, 52. [Google Scholar] [CrossRef]
- Batool, F.; Tahira, M.; Gull, M.; Qadir, R.; Akhtar, T.; Ghumman, S.A.; Amin, M.; Sajjad, N.; Rehman, M.A.; Ditta, A. Bioremediation of nigrosinee anionic dye from wastewater employing copper nanocomposite-modified Cucumis melo seed powder: A comparison of performance evaluation between defatted and surface modified adsorbent. Biomass Convers. Biorefinery 2025, 2025, 1–20. [Google Scholar] [CrossRef]
- Dokania, P.; Roy, D.; Banerjee, R.; Sarkar, A. Green synthesis of nanoparticles (NPs) for wastewater treatment. In Bio Refinery of Wastewater Treatment: Way to Generate Waste to Value, 1st ed.; Shah, M.P., Sarkar, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 171–202. [Google Scholar] [CrossRef]
- Homaeigohar, S. The Nanosized Dye Adsorbents for Water Treatment. Nanomaterials 2020, 10, 295. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, T.; Liu, S.; Du, L.; Chen, Q.; Li, X.; Dong, J.; Zhang, Z.; Lu, S.; Gong, Y.; et al. Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environ. Int. 2022, 158, 106980. [Google Scholar] [CrossRef]
- Hayat, M.; Bukhari, S.A.R.; Ashraf, M.I.; Hayat, S. Zero-valent Iron Nanoparticles: Biogenic Synthesis and their Medical Applications; Existing Challenges and Future Prospects. Curr. Pharm. Biotechnol. 2024, 25, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- Kadhum, S.Y.; Alkindi, G.Y.; Albayati, T.M. Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay. Chin. J. Chem. Eng. 2021, 36, 19–28. [Google Scholar] [CrossRef]
- Han, X.; Zhao, Y.; Zhao, F.; Wang, F.; Tian, G.; Liang, J. Novel synthesis of nanoscale zero-valent iron from iron ore tailings and green tea for the removal of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656 Pt A, 130412. [Google Scholar] [CrossRef]
- Ahsan, A.; Farooq, M.A.; Bajwa, A.A.; Parveen, A. Green Synthesis of Silver Nanoparticles Using Parthenium hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020, 25, 3324. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, K.; Zhao, Y.; Xing, Y.; Ge, H.; Cui, J.; Liu, T.; Wang, C. A Trait-Based Protocol for the Biological Control of Invasive Exotic Plant Species. Front. Ecol. Evol. 2021, 9, 586948. [Google Scholar] [CrossRef]
- da Costa, J.N.M.N.; Durigan, G. Leucaena leucocephala (Lam.) de Wit (Fabaceae): Invasive or ruderal? Rev. Árvore 2010, 34, 8. [Google Scholar] [CrossRef]
- Machado, M.T.S.; Drummond, J.A.; Barreto, C.G. Leucaena leucocephala (Lam.) de Wit in Brazil: History of an invasive plant. Estud. Ibero-Am. 2020, 46, 976–988. [Google Scholar] [CrossRef]
- Campbell, S.; Vogler, W.; Brazier, D.; Vitelli, J.; Brooks, S. Weed Leucena and its Significance, Implications and Control. Trop. Grassl.-Forrajes Trop. 2019, 7, 280–289. [Google Scholar] [CrossRef]
- Kristianto, H.; Tanuarto, M.Y.; Prasetyo, S.; Sugih, A.K. Magnetically assisted coagulation using iron oxide nanoparticles-Leucaena leucocephala seeds’ extract to treat synthetic Congo red wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 3561–3570. [Google Scholar] [CrossRef]
- Jeyasundari, J.; Praba, P.S.; Jacob, Y.B.A.; Vasantha, V.S.; Shanmugaiah, V. Green Synthesis and Characterization of Zero Valent Iron Nanoparticles from the Leaf Extract of Psidium guajava Plant and Their Antibacterial Activity. Chem. Sci. Rev. Lett. 2017, 6, 1244–1252. [Google Scholar]
- Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P. Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Adv. 2018, 8, 26144–26155. [Google Scholar] [CrossRef]
- Salimi, F.; Rahimi, H.; Karami, C. Removal of methylene blue from water solution by modified nanogoethite by Cu. Desalination Water Treat. 2019, 137, 334–344. [Google Scholar] [CrossRef]
- Abdelfatah, A.M.; Fawzy, M.; Eltaweil, A.S.; El-Khouly, M.E. Green Synthesis of Nano-Zero-Valent Iron Using Ricinus communis Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS Omega 2021, 6, 25397–25411. [Google Scholar] [CrossRef] [PubMed]
- Eddy, D.R.; Nursyamsiah, D.; Permana, M.D.; Solihudin; Noviyanti, A.R.; Rahayu, I. Green Production of Zero-Valent Iron (ZVI) Using Tea-Leaf Extracts for Fenton Degradation of Mixed Rhodamine B and Methyl Orange Dyes. Materials 2022, 15, 332. [Google Scholar] [CrossRef]
- Irshad, K.; Khan, M.T.; Murtaza, A. Synthesis and characterization of transition-metals-doped ZnO nanoparticles by sol-gel auto-combustion method. Phys. B Condens. Matter 2018, 543, 1–6. [Google Scholar] [CrossRef]
- Seddio, S.M. Toward the Quantification of Calcium in Mineral Samples by EDS X-ray Microanalysis using the Ca L-Lines. Microsc. Microanal. 2023, 29, 860–861. [Google Scholar] [CrossRef]
- Miller, C.A.; Ashworth, E.; Deery, C.; Elsharkasi, L.; Moorehead, R.D.; Martin, N. Effect of demineralising agents on organic and inorganic components of dentine. Caries Res. 2021, 2021, 518463. [Google Scholar] [CrossRef]
- Chen, B.; Nayuki, K.; Kuga, Y.; Zhang, X.; Wu, S.; Ohtomo, R. Uptake and Intraradical Immobilization of Cadmium by Arbuscular Mycorrhizal Fungi as Revealed by a Stable Isotope Tracer and Synchrotron Radiation μX-Ray Fluorescence Analysis. Microbes Environ. 2018, 33, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Adeneye, J.A. A note on the nutrient and mineral composition of Leucaena leucocephala in Western Nigeria. Anim. Feed. Sci. Technol. 1979, 4, 221–225. [Google Scholar] [CrossRef]
- Kumar, K.M.; Mandal, B.K.; Kumar, K.S.; Reddy, P.S.; Sreedhar, B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 102, 128–133. [Google Scholar] [CrossRef]
- Wang, T.; Sua, J.; Jina, X.; Chen, Z.; Megharajc, M.; Naidu, R. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution. J. Hazard. Mater. 2013, 262, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lin, J.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod. 2014, 83, 413–419. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, D. Preparation of Biomass Activated Carbon Supported Nanoscale Zero-Valent Iron (Nzvi) and Its Application in Decolorization of Methyl Orange from Aqueous Solution. Water 2019, 11, 1671. [Google Scholar] [CrossRef]
- Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of Iron and Silver Nanoparticles at Room Temperature Using Aqueous Sorghum Bran Extracts. Langmuir 2010, 27, 264–271. [Google Scholar] [CrossRef]
- Benjakul, S.; Kittiphattanabawon, P.; Sumpavapol, P.; Maqsood, S. Antioxidant activities of lead (Leucaena leucocephala) seed as affected by extraction solvent, prior dechlorophyllisation and drying methods. J. Food Sci. Technol. 2014, 51, 3026–3037. [Google Scholar] [CrossRef]
- Singsai, K.; Sakdavirote, A.; Wechpanishkitkul, K.; Moonsamai, A. The comparison of phenolic compounds, flavonoids and antioxidant activities of the ethanolic extracts of shoots, leaves, fruits and seeds of Leucaena leucocephala. Naresuan Phayao J. 2020, 13, 66–73. [Google Scholar]
- Campisi, S.; Schiavoni, M.; Chan-Thaw, C.E.; Villa, A. Untangling the Role of the Capping Agent in Nanocatalysis: Recent Advances and Perspectives. Catalysts 2016, 6, 185. [Google Scholar] [CrossRef]
- Raju, S.; Ashok, D.; Boddu, A.R. Leucaena Leucocephala Mediated Green Synthesis of Silver Nanoparticles and Their Antibacterial, Dye Degradation and Antioxidant Properties. Int. J. Nanosci. Nanotechnol. 2022, 18, 65–78. [Google Scholar]
- Guo, B.; Li, M.; Li, S. The comparative study of a homogeneous and a heterogeneous system with green synthesized iron nanoparticles for removal of Cr(VI). Sci. Rep. 2020, 10, 7382. [Google Scholar] [CrossRef]
- Filippov, S.K.; Khusnutdinov, R.; Murmiliuk, A.; Inam, W.; Zakharova, L.Y.; Zhang, H.; Khutoryanskiy, V.V. Dynamic light scattering and transmission electron microscopy in drug delivery: A roadmap for correct characterization of nanoparticles and interpretation of results. Mater. Horiz. 2023, 10, 5354–5370. [Google Scholar] [CrossRef]
- Hoseini, B.; Jaafari, M.R.; Golabpour, A.; Momtazi-Borojeni, A.A.; Karimi, M.; Eslami, S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci. Rep. 2023, 13, 18012. [Google Scholar] [CrossRef] [PubMed]
- Jiamphun, S.; Chaiyana, W. Enhancing Skin Delivery and Stability of Vanillic and Ferulic Acids in Aqueous Enzymatically Extracted Glutinous Rice Husk by Nanostructured Lipid Carriers. Pharmaceutics 2023, 15, 1961. [Google Scholar] [CrossRef] [PubMed]
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar] [CrossRef]
- Serrano-Lotina, A.; Portela, R.; Baeza, P.; Alcolea-Rodriguez, V.; Villarroel, M.; Ávila, P. Zeta potential as a tool for functional materials development. Catal. Today 2023, 423, 113862. [Google Scholar] [CrossRef]
- Silva, C.S.; Tonelli, F.M.P.; Delgado, V.M.S.; Lourenço, V.d.O.; Pinto, G.d.C.; Azevedo, L.S.; Lima, L.A.R.d.S.; Furtado, C.A.; Ferreira, D.R.C.; Tonelli, F.C.P.; et al. Nanoremediation and Antioxidant Potential of Biogenic Silver Nanoparticles Synthesized Using Leucena’s Leaves, Stem, and Fruits. Int. J. Mol. Sci. 2024, 25, 3993. [Google Scholar] [CrossRef]
- Lin, D.; Hu, L.; Lo, I.M.C.; Yu, Z. Size Distribution and Phosphate Removal Capacity of Nano Zero-Valent Iron (nZVI): Influence of pH and Ionic Strength. Water 2020, 12, 2939. [Google Scholar] [CrossRef]
- Almeelbi, T.; Bezbaruah, A. Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res. 2012, 14, 900. [Google Scholar] [CrossRef]
- Altuntas, K.; Debik, E. DDT Removal by Nano Zero Valent Iron: Influence of Ph on Removal Mechanism. Eurasia Proc. Sci. Technol. Eng. Math. 2017, 1, 339–346. [Google Scholar]
- Devi, K.; Kanna, V.G.; Krishnan, S.G.; Kannan, P.G.; Parthiban, K.G. Zeta Potential: A Key Factor in Drug Delivery. World J. Pharm. 2024, 3, 280–291. [Google Scholar] [CrossRef]
- Lu, G.W.; Gao, P. Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems Non-Invasive and Minimally-Invasive Drug Delivery Systems for Pharmaceutical and Personal Care Products, 1st ed.; Kulkarni, V.S., Ed.; William Andrew: New York, NY, USA, 2010; pp. 59–94. [Google Scholar] [CrossRef]
- Kristianto, H.; Prasetyo, S.; Sugih, A.K. Green synthesized iron nanoparticles using Leucaena leucocephala crude extract as Fenton-like catalyst. AIP Conf. Proc. 2022, 2493, 050001. [Google Scholar] [CrossRef]
- Zheng, F.; Gonçalves, F.M.; Abiko, Y.; Li, H.; Kumagai, Y.; Aschner, M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol. 2020, 34, 101475–101491. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.Z.; Bassuiny, R.I.; Abdel-Aty, A.M.; Mohamed, S.A. Diabetic complications and oxidative stress: The role of phenolic-rich extracts of saw palmetto and date palm seeds. J. Food Biochem. 2020, 44, e13416. [Google Scholar] [CrossRef] [PubMed]
- Chau, T.P.; Brindhadevi, K.; Krishnan, R.; Alyousef, M.A.; Almoallim, H.S.; Whangchai, N.; Pikulkaew, S. A novel synthesis, analysis and evaluation of Musa coccinea based zero valent iron nanoparticles for antimicrobial and antioxidant. Environ. Res. 2022, 209, 112770. [Google Scholar] [CrossRef] [PubMed]
- Nughwal, A.; Bharti, R.; Thakur, A.; Verma, M.; Sharma, R.; Pandey, A. Green synthesis of iron oxide nanoparticles from Mexican prickly poppy (Argemone mexicana): Assessing antioxidant activity for potential therapeutic use. RSC Adv. 2025, 15, 10287. [Google Scholar] [CrossRef]
- Shabbir, M.A.; Naveed, M.; Rehman, S.; Ain, N.; Aziz, T.; Alharbi, M.; Alsahammari, A.; Alasmari, A.F. Synthesis of Iron Oxide Nanoparticles from Madhuca indica Plant Extract and Assessment of Their Cytotoxic, Antioxidant, Anti-Inflammatory, and Anti-Diabetic Properties via Different Nanoinformatics Approaches. ACS Omega 2023, 8, 33358–33366. [Google Scholar] [CrossRef]
- Jafari, A.; Hatami, M. Foliar-applied nanoscale zero-valent iron (nZVI) and iron oxide (Fe3O4) induce differential responses in growth, physiology, antioxidative defense and biochemical indices in Leonurus cardiaca L. Environ. Res. 2022, 215, 114254. [Google Scholar] [CrossRef]
- Foster, S.L.; Estoque, K.; Voecks, M.; Rentz, N.; Greenlee, L.F. Removal of Synthetic Azo Dye Using Bimetallic Nickel-Iron Nanoparticles. J. Nanomater. 2019, 2019, 9807605. [Google Scholar] [CrossRef]
- Gowda, S.A.M.; Goveas, L.C.; Dakshayini, K. Adsorption of methylene blue by silver nanoparticles synthesized from Urena lobata leaf extract: Kinetics and equilibrium analysis. Mater. Phys. Chem. 2022, 288, 126431. [Google Scholar] [CrossRef]
- Ahmad, R.; Kumar, R. Adsorption studies of hazardous malachite green onto treated ginger waste. J. Environ. Manag. 2010, 91, 1032–1038. [Google Scholar] [CrossRef]
- Saleh, T.A. Chapter 3: Kinetic models and thermodynamics of adsorption processes: Classification. Interface Sci. Technol. 2022, 34, 65–97. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Finney, D.J. Probit Analysis, 1st ed.; Cambridge University Press: Cambridge, UK, 1980; p. 333. [Google Scholar]
Temperatures (°C) | Phenolics (mg GAE/g of Extract) |
---|---|
20 | 232.95 ± 0.02 |
40 | 243.52 ± 0.05 |
60 | 253.07 ± 0.03 |
80 | 329.94 ± 0.05 *** |
100 | 262.25 ± 0.02 |
Time (Min) | Phenolics (mg GAE/g of Extract) |
---|---|
10 | 278.59 ± 0.05 |
20 | 386.42 ± 0.32 ** |
30 | 375.22 ± 0.09 |
40 | 380.34 ± 0.25 |
50 | 382.94 ± 0.05 |
60 | 381.19 ± 0.26 |
Proportion FeCl2: Extract | Removal of Tartrazine (%) | Removal of Nigrosine (%) |
---|---|---|
1:1 | 37.21 | 43.27 |
2:1 | 20.63 | 28.12 |
1:2 | 61.25 | 67.37 |
3:1 | 19.35 | 13.15 |
3:2 | 42.27 | 56.35 |
1:3 | 87.47 | 93.78 |
2:3 | 52.35 | 62.15 |
1:4 | 82.42 | 90.12 |
Proportion FeCl2: Extract | Removal of Tartrazine (%) | Removal of Nigrosine (%) |
---|---|---|
1:1 | 40.23 | 42.89 |
2:1 | 27.32 | 20.38 |
1:2 | 65.12 | 68.27 |
3:1 | 17.21 | 19.15 |
3:2 | 49.23 | 49.28 |
1:3 | 97.54 | 96.14 |
2:3 | 65.17 | 65.64 |
1:4 | 94.59 | 92.14 |
Proportion FeCl2: Extract | Removal of Tartrazine (%) | Removal of Nigrosine (%) |
---|---|---|
1:1 | 33.15 | 32.45 |
2:1 | 18.32 | 15.36 |
1:2 | 55.26 | 49.84 |
3:1 | 14.21 | 13.51 |
3:2 | 42.02 | 45.35 |
1:3 | 63.52 | 63.17 |
2:3 | 58.25 | 53.46 |
1:4 | 61.58 | 61.35 |
nZVI Concentration (μg/mL) | nZVI % of Inhibition | BHT % of Inhibition |
---|---|---|
1 | 0.66 ± 0.05 | 5.06 ± 0.11 |
10 | 6.39 ± 0.12 | 6.06 ± 0.24 |
100 | 21.81 ± 0.15 | 40.19 ± 0.17 |
250 | 46.18 ± 0.24 | 71.04 ± 0.05 |
500 | 58.66 ± 0.48 | 91.30 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonelli, F.M.P.; Silva, C.S.; Pinto, G.d.C.; Azevedo, L.S.; Santos, J.C.C.; Ferreira, D.R.C.; Patricio, P.d.R.; Lembrança, G.A.C.; Lima, L.A.R.d.S.; Furtado, C.A.; et al. Synthesis of Antioxidant Nano Zero-Valent Iron Using FeCl2 and Leucaena leucocephala Leaves’ Aqueous Extract and the Nanomaterial’s Potential to Promote the Adsorption of Tartrazine and Nigrosine. Int. J. Mol. Sci. 2025, 26, 5751. https://doi.org/10.3390/ijms26125751
Tonelli FMP, Silva CS, Pinto GdC, Azevedo LS, Santos JCC, Ferreira DRC, Patricio PdR, Lembrança GAC, Lima LARdS, Furtado CA, et al. Synthesis of Antioxidant Nano Zero-Valent Iron Using FeCl2 and Leucaena leucocephala Leaves’ Aqueous Extract and the Nanomaterial’s Potential to Promote the Adsorption of Tartrazine and Nigrosine. International Journal of Molecular Sciences. 2025; 26(12):5751. https://doi.org/10.3390/ijms26125751
Chicago/Turabian StyleTonelli, Fernanda Maria Policarpo, Christopher Santos Silva, Geicielly da Costa Pinto, Lucas Santos Azevedo, Jhenifer Cristina Carvalho Santos, Danilo Roberto Carvalho Ferreira, Pamela da Rocha Patricio, Giullya Amaral Cordeiro Lembrança, Luciana Alves Rodrigues dos Santos Lima, Clascídia Aparecida Furtado, and et al. 2025. "Synthesis of Antioxidant Nano Zero-Valent Iron Using FeCl2 and Leucaena leucocephala Leaves’ Aqueous Extract and the Nanomaterial’s Potential to Promote the Adsorption of Tartrazine and Nigrosine" International Journal of Molecular Sciences 26, no. 12: 5751. https://doi.org/10.3390/ijms26125751
APA StyleTonelli, F. M. P., Silva, C. S., Pinto, G. d. C., Azevedo, L. S., Santos, J. C. C., Ferreira, D. R. C., Patricio, P. d. R., Lembrança, G. A. C., Lima, L. A. R. d. S., Furtado, C. A., Tonelli, F. C. P., & Parreira, A. G. (2025). Synthesis of Antioxidant Nano Zero-Valent Iron Using FeCl2 and Leucaena leucocephala Leaves’ Aqueous Extract and the Nanomaterial’s Potential to Promote the Adsorption of Tartrazine and Nigrosine. International Journal of Molecular Sciences, 26(12), 5751. https://doi.org/10.3390/ijms26125751