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Abstract: Previous studies have largely overlooked cellular differential alterations across
differentially affected brain regions in both disease mechanisms and therapeutic develop-
ment of Alzheimer’s disease (AD). This study aimed to compare the differential cellular
and transcriptional changes in the prefrontal cortex (PFC) and entorhinal cortex (EC) of
AD patients through an integrated single-cell transcriptomic analysis. We integrated three
single-cell RNA sequencing (scRNA-seq) datasets comprising PFC and EC samples from
AD patients and age-matched healthy controls. A total of 124,658 nuclei and 31 cell clusters
were obtained and classified into eight major cell types, with EC exhibiting much more
pronounced transcriptional alterations than PFC. Through network analysis, we pinpointed
hub regulatory genes that form interconnected networks driving AD pathogenesis, findings
validated by RT-qPCR showing more pronounced expression changes in EC versus PFC of
AD mice. Moreover, dysregulation of the LINC01099-associated regulatory networks in
the PFC and EC, showing correlation with AD progression, may present new therapeutic
targets for AD. Together, these results suggest that effective AD biomarkers and therapeutic
strategies may require simultaneous, precise targeting of specific cell populations across
multiple brain regions.

Keywords: Alzheimer’s disease; single-cell transcriptome sequencing; prefrontal cortex;
entorhinal cortex; cellular regulatory network

1. Introduction
Dementia represents a chronic, acquired, progressive neurocognitive disorder clinically

characterized by gradual intellectual decline and varying degrees of personality changes.
Current epidemiological statistics reveal about 50 million people with dementia worldwide
in 2018, which would triple to 152 million by 2050. Alzheimer’s disease (AD) has emerged
as a paramount challenge in aging societies due to the absence of disease-modifying
therapies. While a large number of genomic research approaches have identified many
AD susceptibility loci associated with clinical symptoms and pathological severity in AD
patients [1–3], the precise cellular and molecular mechanisms driving AD pathogenesis
remain poorly understood.

Recent advances in single-cell technologies, particularly single-nucleus RNA sequenc-
ing (snRNA-seq), have revolutionized our capacity to decode the cellular complexity of
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AD brains. SnRNA-seq enables high-resolution interrogation of cell-type-specific tran-
scriptional networks while overcoming technical challenges associated with intact cell
isolation from postmortem brain tissue. Previous hippocampal snRNA-seq studies have
already unveiled the presence of disease-associated astrocyte (DAA) and microglial (DAM)
subpopulations in AD models, characterized by distinct neuroinflammatory signatures and
phagocytic capacities [4,5]. Spatial transcriptomic approaches further revealed amyloid
plaque-induced gene networks in peri-plaque microenvironments [6]. Three snRNA-seq
studies of human AD cortices have begun mapping region-specific transcriptional alter-
ations [7–9], yet critical gaps remain in our understanding of how cellular networks differ
across vulnerable brain regions.

The human brain operates as an integrated network of functionally specialized regions,
each exhibiting unique cellular compositions and molecular signatures [10]. Different brain
regions undertake distinct complex functions determined by cell states, and this regional
specialization persists in disease states, potentially explaining the selective vulnerability
observed in AD neuropathology. In the disease state, dysregulation of the neural net-
work results in diverse clinical features in patients. A large-scale genomic analysis of
1053 postmortem brain samples from 125 AD patients across 19 cortical regions constructed
a region-specific co-expression network associated with AD progression [11] but failed to
resolve precisely brain regions specific to AD-related cellular changes.

Here, we presented an integrated snRNA-seq atlas of the prefrontal (PFC) and en-
torhinal cortex (EC) from AD and control donors and systematically compared eight major
cell types across these two regions, including oligodendrocytes, excitatory neurons, oligo-
dendrocyte progenitors, astrocytes, microglia, inhibitory neurons, endothelial cells, and
Unknown cells. Pronounced cellular population differences and widespread transcrip-
tomic dysregulation were demonstrated across all cell types, with EC exhibiting 20-fold
more differentially expressed genes (DEGs) than PFC regions. Our analysis reconstructed
cross-cellular regulatory networks implicating novel molecular pathways in AD pathogen-
esis, including five LINC01099-associated lncRNA-miRNA-mRNA axes. These findings
provide unprecedented resolution into the cellular basis of regional vulnerability in AD,
offering new frameworks for understanding disease mechanisms and developing targeted
therapeutic strategies.

2. Results
2.1. Single-Nucleus Transcriptomic Profiling Reveals Region-Specific Cellular Alterations in AD
Human Brain Cortex

To obtain a better understanding of the cell-type-specific transcriptomic differences
in the PFC and EC of AD patients, we integrated three snRNA-seq datasets containing
30 samples [7,9,12] using Stuart [13]. The integrated dataset included 8 PFC samples from
AD patients (PFC_AD), 10 PFC samples from age-matched healthy controls (PFC_Ct),
6 EC samples from AD patients (EC_AD), and 6 EC samples from age-matched healthy
controls (EC_Ct) (Tables 1 and S1). Following stringent quality control, 124,658 nuclei
were collected and analyzed (PFC_Ct: 55717, PFC_AD: 55845, EC_Ct: 6533, EC_AD:
6563) after successful batch-effect correction. Unsupervised clustering analysis and t-
distributed stochastic neighbor embedding (tSNE) visualization identified eight major
cell populations based on the transcriptomic differentially expressed genes (DEGs) and
established cell-type unique markers (Figures 1A–C, S1A and S2): GFAP+AQP4+ astrocytes
(Astro), CLDN5+FLT+ endothelial cells (Endo), SNAP25+CAMK2A+ excitatory neurons
(ExN), SNAP25+GAD1+GAD2+ inhibitory neurons (InN), PTPRC+CSF1R+ microglia (Mi-
cro), MBP+PLP1+ oligodendrocytes (Oligo), and OLIG1+OLIG2+ oligodendrocyte precursor
cells (OPC), and Unknown cells (lacking specific markers). Comparative analysis revealed
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distinct region-specific cellular alterations in AD (Figure 1D,E). Astro showed opposing
trends, with increased numbers in PFC_AD but decreased numbers in EC_AD versus
controls; Micro were reduced in both regions when compared with controls; Oligo in-
creased significantly in both regions; OPC increased in PFC but decreased in EC; neuronal
populations (both EnN and InN) were consistently reduced across two regions; and Endo
cells and Unknown cells showed no significant quantitative changes (Figure 1D,E).

2.2. Brain Aging Exacerbates Regional Vulnerability in AD

Aging is a major risk factor for AD, and its prevalence has become the most pressing
challenge to be tackled. To dissect the effects of brain aging on PFC and EC tissues in AD,
we performed gene set score analysis using human brain aging signatures and senescence-
associated secretory phenotype (SASP) (Figure 1F–H). As revealed, glial cells (Astro, Micro,
Oligo, and OPC) showed significantly elevated expression of upregulated aging-associated
genes, while neuron populations (ExN and InN) exhibited higher enrichment scores for
downregulated aging-associated genes (Figure 1F), suggesting progressive transcriptional
silencing with age. Regionally, the EC displayed stronger aging-related dysregulation
compared with the PFC in AD. The upregulated aging gene set score was elevated in
EC_AD versus PFC_AD, while the downregulated aging score was reduced (Figure 1G).
In addition, SASP signatures, indicative of cellular senescence, were markedly higher in
EC_AD neurons (both ExN and InN) than in PFC_AD (Figure 1H), reinforcing the EC’s
heightened susceptibility to aging. Altogether, our findings demonstrate that brain aging
exacerbates regional vulnerability in AD, with neurons showing pronounced transcriptional
decline and the EC being more affected than the PFC.

2.3. Cellular and Molecular Differences in AD PFC and EC Regions

To comprehensively evaluate the molecular and cellular differences between the PFC
and EC in AD, we conducted transcriptomic differential expression analysis and functional
enrichment across eight major cell types in both healthy controls and AD patients. Our
outcomes revealed distinct region-specific patterns of dysregulation. Interestingly, the
functional enrichment of disease-associated DEGs for Astro and OPC exhibited certain
similarities between the two regions, while neuronal populations, Micro, and Endo showed
substantial differences. Notably, the number of DEGs was consistently higher in all cell
types within the EC_AD group than in the PFC_AD group, suggesting more pronounced
transcriptomic alterations in the EC during AD pathogenesis and progression. have a more
important role in the pathogenesis and development of AD. This observation aligns with
the known vulnerability of the EC in early AD pathogenesis and underscores its potential
role in driving disease mechanisms.

Table 1. Sample information.

Stage Age (Years) Sex Datasets Ref.

PFC_Ct

56 M GSE141552 [12]
56 M GSE141552 [12]
69 M GSE141552 [12]
74 F GSE157827 [9]
78 M GSE157827 [9]
79 F GSE157827 [9]
85 M GSE157827 [9]
90 M GSE157827 [9]
93 M GSE157827 [9]
94 F GSE157827 [9]
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Table 1. Cont.

Stage Age (Years) Sex Datasets Ref.

PFC_AD

60 F GSE157827 [9]
63 M GSE157827 [9]
69 M GSE157827 [9]
71 M GSE157827 [9]
72 M GSE157827 [9]
84 M GSE157827 [9]
85 M GSE157827 [9]
95 M GSE157827 [9]

EC_CT

67.3 F GSE138852 [7]
72.6 M GSE138852 [7]
75.6 M GSE138852 [7]
77.5 M GSE138852 [7]
82.7 F GSE138852 [7]
82.7 M GSE138852 [7]

EC_AD

67.8 F GSE138852 [7]
73 M GSE138852 [7]

74.6 M GSE138852 [7]
83 F GSE138852 [7]

83.8 M GSE138852 [7]
91 M GSE138852 [7]

2.4. Region-Specific Dysregulation of Astro in AD

Astro displayed opposing population trends between the two cortical regions in AD.
While their numbers decreased significantly in the EC_AD group compared with healthy
controls, they increased in the PFC_AD group (Figure 1D,E). At the molecular level, differ-
ential gene expression analysis identified both shared and distinct patterns between two
regions, with four genes co-upregulated (CD44, VCAN, PLCE1, and CNTNAP2), AQP4
being co-downregulated, and GFAP being upregulated in PFC Astro but downregulated
in EC Astro (Figure 2A,B, Table S2). GO enrichment analysis revealed that DEGs of EC
Astro were predominantly involved in gliogenesis, axon ensheathment, ensheathment
of neurons, myelination, glial cell differentiation, oligodendrocyte differentiation, axon
ensheathment in the central nervous system, central nervous system myelination, glial
cell development, and oligodendrocyte development (Figure 2C), processes critical for
neuronal support, and synaptic maintenance. These findings suggest that EC astrocytes
may contribute to AD-related cognitive decline through impaired neuron–glia interactions.
In contrast, PFC Astro showed no resemblance to EC Astro, with significant enrichment
in the aminoglycan catabolic process, glycosaminoglycan catabolic process, regulation of
lamellipodium organization, lamellipodium organization, mucopolysaccharide metabolic
process, aminoglycan metabolic process, carbohydrate derivative catabolic process, gly-
cosaminoglycan metabolic process, cellular response to interferon-gamma, and response to
interferon-gamma (Figure 2C), indicating region-specific inflammatory and metabolic dys-
regulation. In addition, intersected genes of Astro from two regions further underwent PPI
analysis, which demonstrated a core network involving CD44, VCAN, AQP4, CNTNAP2,
and GFAP, with six nodes and four edges (Figure 2D). This network likely represents key
molecular players in region-specific Astro responses to AD pathology.
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Figure 1. snRNA-seq analysis of PFC and EC in AD patients. (A) UMAP plot showing 31 cell clusters
obtained after data integration cluster analysis for four groups. (B) UMAP plot of the major cell types.
(C) Dot plot displays the expression of marker genes for each cell type. (C) The number of individual
cell types in the 124,658 samples. (D) The number of individual cell types in PFC_AD, EC_AD,
PFC_Ct, and EC_Ct groups. (E) Population percentage of eight cell types among different groups. (F)
Gene set score analysis for eight cell types using human brain aging signatures. (G) Gene set score
analysis for PFC_AD, EC_AD, PFC_Ct, and EC_Ct groups using human brain aging signatures. (H)
Gene set score analysis for ExN and InN in different groups using senescence-associated secretory
phenotype signature. Two-sided Wilcoxon rank-sum test, FDR < 0.01, log2 (mean gene expression
in AD/mean gene expression in control) > 0.25. Color-coded scale bar of gene expression indicates
z-scores after normalizing to all the cell types. Oligo: oligodendrocytes; ExN: excitatory neurons;
OPC: oligodendrocyte precursor cells; Astro: astrocytes; Micro: microglia; InN: inhibitory neurons;
Endo: endothelial cells; Ct: control; PFC: prefrontal cortex; EC: entorhinal cortex.
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Figure 2. GSEA analysis of DEGs in Astro and Micro. (A) Venny plots showing the number of Astro
DEGs in PFC and EC of AD patients. (B) The overlapping Astro DEGs between PFC and EC regions.
(C) GO enrichment analysis of Astro DEGs. (D) PPI analysis of genes jointly differentially expressed
in Astro. (E) Venny plots showing the number of Micro DEGs in PFC and EC of AD patients. (F) The
overlapping Micro DEGs between PFC and EC regions. (G) GO enrichment analysis of Micro DEGs.
(H) PPI analysis of genes jointly differentially expressed in Micro. Two-sided Wilcoxon rank-sum test,
FDR < 0.01, log2 (mean gene expression in AD/mean gene expression in control) > 0.25. Color-coded
scale bar of gene expression indicates z-scores after normalizing to all the groups.

2.5. Microglial Heterogeneity Across Two Cortical Regions in AD

Micro populations were reduced in both EC and PFC regions of AD patients relative
to healthy individuals (Figure 1D,E), with more pronounced transcriptomic changes in
the EC (Figure 2E). Among forty overlapping DEGs between two regions, we identified
fifteen consistently upregulated genes (PTPRG, APOE, DIRC3, TPRG1, PTPRC, CHSY3,
ZNF804A, MCTP1, LAT2, BST2, B2M, IQGAP2, and DTNA) and four downregulated genes
(RGS1, GRP183, FOS, and SRGN) (Figure 2E,F). Notably, 20 genes were downregulated
(KAZN, DISC1, GPC5, MSR1, PIK3R5, ERBB4, CTNNA2, DPP10, ARL15, CNTN5, FGF14,
NEBL, SAMD4A, TMEM156, PCED1B, PRKG1, TENM2, RYR3, ADGRV1, and NRXN3) in
the EC but upregulated in the PFC, and OXR1 showed the opposite pattern (Figure 2E,F).
Functional enrichment analysis revealed that DEGs of EC Micro were significantly enriched
for pathways related to synapse organization, neuron–glia interactions, and neuron migra-
tion regulation (Figure 2G). These findings suggested that EC Micro may contribute to AD
pathogenesis through defective synaptic pruning and altered neuron–glia communication.
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However, PFC microglia showed minimal functional enrichment beyond basic synaptic
organization, indicating a more limited role in disease progression in this region. PPI anal-
ysis of overlapping Micro DEGs from PFC and EC further displayed critical interactions
among PTPRC, MSR1, APOE, B2M, SRGN, and NRXN3 (Figure 2H). These hub genes likely
represent critical regulators of region-specific Micro responses in AD.

2.6. Molecular Characterization of Oligo Dysfunction in AD Cortical Regions

Our investigation uncovered a significant increase in Oligo numbers across both the
PFC and EC in AD patients compared with healthy controls (Figure 1D,E). Despite this com-
mon population trend, molecular profiling uncovered striking regional differences in gene
expression patterns. Only two genes overlapped: LINC01099 (upregulated in PFC, down-
regulated in EC) and CTNNA2 (consistently downregulated in PFC and EC) (Figure 3A,B).
GO enrichment analysis on DEGs of EC Oligo was mainly associated with learning, cog-
nition, and the chondroitin sulfate proteoglycan biosynthetic process (Figure 3C). These
implied Oligo and Astro interactions in the EC could modulate learning, memory, and cog-
nitive function in patients with AD. The overlapping two genes were mainly enriched for
regulation of actin nucleation, neuronal migration, and hindbrain development (Figure 3C).
Long intergenic non-protein coding RNA 1099 (LINC01099) emerged as a particularly inter-
esting candidate. While its biological functions remain to be fully elucidated, genome-wide
association studies (GWAS) have linked this molecule to several neurological conditions,
including Huntington disease, AD, posterior cortical atrophy, and lipid metabolism regula-
tion (specifically triacylglycerol 46:0 measurement). Through the lncRNASNP2 database
prediction [14], we identified 16 potential micro non-coding RNAs (microRNAs) that may
interact with LINC01099 (Figure S3A, Table S3). Subsequent functional characterization
of these microRNAs using the DIANA-miRPath v3.0 tool [15] revealed their involvement
in several critical biological processes, including cellular nitrogen compound metabolic
process, biosynthetic process, cellular protein modification process, transcription/DNA-
templated, small molecule metabolic process, response to stress, catabolic process, immune
system process, and cellular component assembly (Figure S3G). Further KEGG enrichment
analysis demonstrated that these miRNAs predominantly participate in multiple signaling
pathways regulating the pluripotency of stem cells, Hippo and Wnt signaling pathways,
various cancer-related pathways, synaptic plasticity mechanisms (including long-term
depression and potentiation), and neurodegenerative processes such as those observed in
glioma and TGF-β signaling (Figure S3J).

By integrating data from multiple miRNA target prediction platforms, miRDB [16],
miRTarBase [17], and Targetscan [18], we constructed five potential lncRNA-miRNA-mRNA
axes that may underlie regional differences in Oligo responses to AD pathology (Supplemen-
tary Table S3), including LINC01099/miR-758-3p/RORA (EC_down), LINC01099/miR-146a-
5p/LRP2 (EC_up), LINC01099/miR-221-23p/FOS (EC_up), LINC01099/miR-222-3p/FOS
(EC_up), and LINC01099/miR-377-5p/NRXN3 (PFC_up). These findings collectively sug-
gest that LINC01099 may serve as an important region-specific regulator in AD pathogene-
sis, potentially exerting its effects through diverse microRNA-mediated mechanisms that
differ between cortical areas.

2.7. Regional Heterogeneity of OPC Responses in AD

Our analysis of OPC revealed regional dichotomy in AD-related changes, with in-
creased OPC numbers in the PFC and decreased numbers in the EC compared with healthy
controls (Figure 1D,E). This opposing pattern was mirrored at the transcriptomic level, with
the EC exhibiting a greater number of DEGs than the PFC (Figure 3D). Among these DEGs,
we identified six genes that showed consistent regulation patterns across both cortical
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areas, including four upregulated genes (RNF220, NEAT1, XYLT1, and ST18) and two
downregulated genes (KCTD8 and SHISA9) (Figure 3D,E). GO functional enrichment anal-
ysis provided important insights into the potential roles in region-specific AD pathology.
In the EC, OPC DEGs were prominently associated with biological processes related to
gliogenesis and Oligo differentiation, synapse organization and neurotransmission, as well
as proteoglycan biosynthesis and metabolism (Figure 3F). While OPC in the PFC showed
involvement in similar functional categories, the statistical significance of these associa-
tions was markedly lower (Figure 3F), suggesting that EC OPC may play a more central
role in AD-related pathological processes. This regional disparity in OPC responses may
contribute to the differential vulnerability of these cortical areas to AD progression, particu-
larly considering the importance of OPC in maintaining axonal integrity and supporting
neuronal function.
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Figure 3. GSEA analysis of DEGs in Oligo and OPC. (A) Venny plots showing the number of Oligo
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PFC and EC of AD patients. (E) The overlapping OPC DEGs between PFC and EC regions. (F) GO
enrichment analysis of DEGs in OPC. Two-sided Wilcoxon rank-sum test, FDR < 0.01, log2 (mean
gene expression in AD/mean gene expression in control) > 0.25. Color-coded scale bar of gene
expression indicates z-scores after normalizing to all the groups.

2.8. ExN Vulnerability and Dysregulation Patterns in AD

The examination of ExN revealed significant population declines in both cortical re-
gions of AD patients relative to healthy controls (Figure 1D,E). However, transcriptomic
analysis demonstrated more extensive gene expression alterations in EC neurons com-
pared with their PFC counterparts (Figure 4A). Among 21 overlapping DEGs identified
between two regions, 17 exhibited inverse regulation patterns—downregulated in the
PFC but upregulated in the EC (KHDRBS2, CHRM3, CBLN2, HS6ST3, CNP, RGS7, DGKB,
CACNA2D3, SNTG1, DPP6, ATRNL1, SLC1A3, SLC6A1, GRIA4, CAMK2A, ERBB4, CLU),
and four genes (ATMN2, NOVA1, VSNL1, MARCKS) were downregulated in both two
cortical regions (Figure 4A,B). GO enrichment analysis revealed that DEGs of EC ExN
showed strong enrichment for biological processes related to synaptic transmission and
plasticity, forebrain development, gliogenesis, and myelination (Figure 4C). In contrast,
PFC ExN was more associated with pathways involving glutamate transport dynamics,
blood–brain barrier function, various vascular processes, amino acid import, and neuron
migration (Figure 4C). PPI analysis on overlapping genes displayed several key hub genes,
including CAMK2A (a critical kinase for synaptic plasticity), SLC6A1 (a GABA transporter),
GRIA4 (an AMPA receptor subunit), and STMN2 (a regulator of microtubule dynamics),
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which formed a network of 21 nodes and 15 edges (Figure 4D), suggesting their potential
collective role in mediating region-specific ExN dysfunction in AD.
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Figure 4. GSEA analysis of DEGs in ExN and InN. (A) Venny plots showing the number of DEGs for
ExN in PFC and EC of AD patients. (B) The overlapping ExN DEGs between PFC and EC regions.
(C) GO enrichment analysis of DEGs in ExN. (D) PPI analysis of genes jointly differentially expressed
in ExN. (E) Venny plots showing the number of DEGs for InN in PFC and EC of AD patients. (F) The
overlapping InN DEGs between PFC and EC regions. (G) GO enrichment analysis of DEGs in InN.
(H) PPI analysis of genes jointly differentially expressed in InN. Two-sided Wilcoxon rank-sum test,
FDR < 0.01, log2 (mean gene expression in AD/mean gene expression in control) > 0.25. Color-coded
scale bar of gene expression indicates z-scores after normalizing to all the groups.

2.9. InN Impairment in AD Cortex

Parallel to ExN, InN populations showed significant reductions in both the PFC and
EC of AD patients (Figure 1D,E). Transcriptomic profiling revealed more extensive gene
expression changes in EC InN, with all 24 overlapping DEGs (SLIT2, LRFN5, SNTG1,
CTNNA2, EPHA6, SLC8A1, LRRC4C, GRIA3, ZMAT4, CADPS, GRM5, CACNB4, KCNAB1,
RYR2, NEGR1, NXPH1, MDGA2, SOX5, LRRTM4, TENM2, FGF12, ATRNL1, SOX6, and
KIAA1217) displaying inverse regulation patterns (decreased in PFC but increased in EC)
(Figure 4E,F). GO functional enrichment analysis demonstrated that DEGs of EC InN
were particularly enriched for regulation of cation transmembrane transport, regulation
of transporter activity, regulation of ion transmembrane transporter activity, regulation
of transmembrane transporter activity, regulation of membrane potential, synapse orga-
nization, regulation of neuron projection development, and regulation of cation channel
activity (Figure 4G). While PFC InN showed involvement in similar membrane potential
regulation pathways, these associations were less extensive and robust compared with the
EC (Figure 4G). PPI analysis revealed a statistically significant network (PPI enrichment
p-value < 1.44 × 10−8), comprising 24 nodes and 12 edges, with GRM5 and MDGA2 emerg-
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ing as central interactors (Figure 4H). These findings suggest that region-specific alterations
in InN function may contribute differentially to cortical circuit dysfunction in AD, with
potentially more pronounced impacts in the vulnerable entorhinal cortex.

2.10. Endo Cell Responses to AD Pathology Across Different Brain Regions

In contrast to other cell types, Endo cell numbers remained relatively stable in
both PFC and EC regions of AD patients compared with controls (Figure 1D,E). How-
ever, transcriptomic analysis uncovered substantial gene expression changes in the EC,
with 231 shared DEGs showing complex regulation patterns between regions (Figure 5A,B).
Among these DEGs, 44 genes were upregulated and 41 were downregulated consistently
in both regions. While 75 genes downregulated in the PFC were upregulated in the EC,
another 71 genes showed the opposite trend (Figure 5A,B). GO enrichment analysis re-
vealed that DEGs of EC Endo were mainly associated with gliogenesis, extracellular matrix
organization, and pathways related to regulation of nervous system development, peptidyl-
tyrosine phosphorylation, and peptidyl-tyrosine modification (Figure 5C). Whereas PFC
Endo demonstrated augmented involvement in synaptic modulation, glutamatergic pro-
cesses, and cell junction assembly function (Figure 5C). The extensive protein interaction
network identified through PPI analysis (comprising 225 nodes and 432 edges) positioned
EGFR as a central hub gene (Figure 5D). This finding suggests that epidermal growth
factor receptor signaling may play an important role in mediating vascular contributions
to AD pathogenesis, potentially through region-specific mechanisms. The preservation of
endothelial cell numbers despite significant transcriptomic alterations implies that func-
tional changes in the cerebrovasculature, rather than outright cell loss, may represent an
important aspect of AD pathology in these cortical regions.

2.11. Characterization of Unknown Cell Populations in AD Cortical Regions

The unidentified cell population, which lacked expression markers characteristic of the
seven major defined cell types, showed numerical and DEG patterns similar to endothelial
cells across two cortical regions (Figure 1D,E). Likewise, a greater number of DEGs were
found in the EC than the PFC, and 155 common DEGs were obtained after the intersection
between the two regions (Figure 5E). Of them, 34 genes were upregulated and 31 were
downregulated consistently in both PFC and EC. However, 38 genes were upregulated in
the EC were downregulated in the PFC, and other 52 genes presented inverse expression in
these two regions (Figure 5E,F). Functional enrichment analysis delineated that DEGs of EC
Unknown cells were mainly involved in such biological processes as synaptic regulation, ex-
tracellular matrix organization, axonogenesis, regulation of small GTPase-mediated signal
transduction, and axon guidance (Figure 5G). The biological processes strongly enriched
by DEGs of PFC Unknown cells included modulation of chemical synaptic transmission,
regulation of trans-synaptic signaling, synapse organization, forebrain development, and
regulation of GTPase activity (Figure 5G). Protein interaction network analysis identified
GRIN2B as a pivotal node in a network comprising 152 nodes and 181 edges (Figure 5H).
This finding raises the intriguing possibility that these Unknown cells may participate in
glutamatergic signaling pathways, potentially contributing to region-specific aspects of AD
pathophysiology. Further investigation will be required to precisely define the nature and
functional significance of this cell population in AD progression.
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Figure 5. GSEA analysis of DEGs in endothelial and Unknown cells. (A) Venny plots showing the
number of DEGs of Endo in PFC and EC tissues of AD patients. (B) The overlapping Endo DEGs
between PFC and EC regions. (C) GO enrichment analysis of DEGs in Endo. (D) PPI analysis of
common DEGs of Endo in PFC and EC of AD patients. (E) Venny plots showing the number of DEGs
of Unknown cells in PFC and EC of AD patients. (F) The overlapping Unknown cell DEGs between
PFC and EC regions. (G) GO enrichment analysis of DEGs in Unknown cells. (H) PPI analysis of
common DEGs in Unknown cells. Two-sided Wilcoxon rank-sum test, FDR < 0.01, log2 (mean gene
expression in AD/mean gene expression in control) > 0.25. Color-coded scale bar of gene expression
indicates z-scores after normalizing to all the groups.
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2.12. Comparison Integration of Single-Nucleus and Bulk RNA Sequencing Revealed Conserved
Molecular Networks in AD

To bridge the gap between single-cell resolution and whole-tissue analyses, we per-
formed an extensive integrative analysis comparing snRNA-seq datasets with a large-scale
bulk RNA-seq study by Wang M et al. [11] that examined 1053 postmortem brain samples
across 19 cortical regions from 125 AD patients. This multi-level comparison yielded 94
significantly overlapping DEGs (FDR-corrected p < 0.01 by two-sided Wilcoxon rank-sum
test) out of 2229 DEGs from the bulk RNA-seq data and 485 DEGs from our snRNA-seq
data (Figure 6A, Table S4). This importantly identifies a core set of conserved molecular
changes that are detectable across different technological platforms and analytical ap-
proaches. To elucidate the association among overlapped genes in the eight cell types,
we constructed a PPI network analysis, which revealed robust interaction relationships
among 18 key regulatory genes spanning all eight cell types (highest confidence: 0.9)
(Figure 6B, Tables S5 and S6). The expression patterns of these 18 genes in AD patients
across the PFC and EC regions were demonstrated using our integrated snRNA-seq data
(Figure 6C). Notably, genes including DCN, EGFR, LPAR1, VCAN, CD44, CHL1, GFAP, and
AQP4 show differential expression patterns across the two brain regions. SRGN, MSN,
RGS1, RGS7, GRIA3, GRIA1, CAMK2A, GRIA4, GRM5, and DLGAP1 were consistently
upregulated or downregulated in these two regions. We further present the expression
patterns of the same gene set in an integrated analysis of published AD organoid single-
cell sequencing data [19], which demonstrated conserved expression changes for several
genes (CD44, CHL1, MSN, RGS7, GRIA1, CAMK2A, DLGAP1, GFAP) between human brain
tissue and organoid models, while also identifying model-specific differences (Figure 6D).
Additional functional enrichment analysis demonstrated that the network components
participated in several fundamental biological processes that are particularly relevant to
AD pathogenesis: synaptic signaling and neurotransmission, glutamatergic signaling, and
extracellular matrix processes (Figure 6C, Table S7). The molecular functions enriched
by these genes primarily included glutamate receptor activity, neurotransmitter receptor
activity, transmitter-gated channel activity, postsynaptic neurotransmitter receptor activity,
extracellular ligand-gated ion channel activity, amyloid-beta binding, ligand-gated cation
channel activity, and hyaluronic acid binding (Figure 6D, Table S8). At the subcellular
level, these genes localized prominently to postsynaptic specializations, including den-
dritic spines and neuron spines (Figure 6E, Table S9). Interestingly, we also observed
enrichment in endocytic vesicles and basolateral plasma membranes (Figure 6E, Table S9),
implicating these genes in both synaptic function and cellular trafficking processes. Further
KEGG pathway analysis revealed a significant enrichment of these genes in such important
signaling pathways as synaptic plasticity pathways, neurodegenerative signaling, and neu-
romodulatory systems (Figure 6F, Table S10). To validate these findings, we also performed
enrichment analysis using the key regulatory genes identified through the aforementioned
snRNA-seq datasets. Remarkably, this separate analysis recapitulated nearly identical
biological themes to those of 94 overlapped genes. As for biological processes, modula-
tion of synaptic transmission, glutamate receptor signaling pathway, and regulation of
neurotransmitter receptor activity were significantly enriched (Figure S4A). The molecular
functions enriched by these regulatory genes also primarily included glutamate receptor
activity, neurotransmitter receptor activity, and amyloid–beta binding (Figure S4B). The cell
components’ outcomes of them unveiled nearly identical cellular localizations (Figure S4C).
Meanwhile, such overlapping signaling pathways as glutamatergic synapse, amphetamine
addiction, proteoglycans in cancer, circadian entrainment, dopaminergic synapse, long-
term potentiation, and neuroactive ligand-receptor interaction were significantly involved
by these key regulatory genes (Figure S4D). This strong concordance between different
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analytical approaches significantly strengthens the biological validity of these findings and
suggests we have identified core molecular networks that are consistently altered in AD
across multiple dimensions of analysis.
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Figure 6. The integrated analysis of bulk RNA-seq and snRNA-seq. (A) The overlapped DEGs of bulk
RNA-seq (limma moderated t-statistics, false discovery rate (FDR) < 0.01, FC > 1.5) and snRNA-seq
(two-sided Wilcoxon rank-sum test, FDR < 0.01, log2 (mean gene expression in AD/mean gene
expression in control) > 0.25). (B) PPI network of key regulatory genes out of the 94 overlapped genes
in the eight cell types. The minimum required interaction score is highest confidence (0.900). (C) The
expression patterns of key regulatory genes across different brain regions in our integrated human
AD snRNA-seq data. (D) The expression patterns of the same gene set in published AD organoid
single-cell sequencing data [19]. (E–G) GO enrichment analysis of the overlapped genes between
bulk RNA-seq data and snRNA-seq data, BP (E), MF (F), and CC (G). (H) Analysis of KEGG signaling
on the overlapped genes between bulk RNA-seq data and snRNA-seq data.
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2.13. Expression Variation of Key Network Genes in the PFC and EC of AD Mice

To validate these results, we selected the generally accepted mouse model of AD for
experimental studies due to the difficulty of obtaining human samples. Our previous
studies suggested that cognitive impairment (water maze test) and pathological changes
(Aβ) began to appear in AD mice at 9–10 months of age. Therefore, 10-month-old mice
were selected for subsequent studies. Using quantitative RT-PCR, we systematically ex-
amined the cortical expression patterns of the 18 key network genes identified in our
human studies. Under normal conditions (WT mice), except for GRIA4, 17 of 18 genes
showed statistically significant expression differences between PFC and EC (Figure 7). This
widespread transcriptional divergence underscores the inherent molecular specialization
of different cortical areas, even in healthy states. The expression of these key genes in AD
mice varies between the PFC and EC regions (Figure 7A–R). Compared with wild-type
mice, CD44, RGS1, and GFAP showed consistent upregulation, but LPAR1, DCN, AQP4,
GRIA4, and DLGAP exhibited consistent downregulation in AD mice across two regions.
The other eight genes (SRGN, EGFR, VCAN, CHL1, MSN, CAMK2A, GRM5, GRIA3, and
GRIA1) showed opposite expression patterns in EC and PFC (Figure 7). On the whole,
the gene expression difference in EC is significantly stronger than that of PFC; expression
alterations of CD44, RGS7, AQP4, and DLGAP1 in EC were significantly more pronounced
compared with PFC, indicating that EC plays a more important role in the occurrence and
development of AD.
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(A–R) The expression levels of 18 hub genes in Figure 6B were determined by RT-qPCR in the PFC
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3. Discussion
Our integrated snRNA-seq analysis of PFC and EC tissues from AD patients revealed

gene dysregulation across major neural cell types, including ExN, InN, OPC, Astro, Micro
and Oligo. In addition, we also identified significant transcriptional alterations in Endo
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cells and a distinct population of Unknown cells. EC exhibited pronounced molecular
changes, with approximately 20-fold more DEGs compared with PFC across all cell types.
Interactions between the key regulatory genes of the different cell types constitute the
cellular regulatory networks associated with AD pathogenesis. These findings were further
validated in AD mouse models, where RT-qPCR analysis of 18 key network genes revealed
significantly different expression between AD and WT mice, with more prominent gene
expression differences observed in EC than PFC regions.

The complexity of neurodegenerative disorders like AD necessitates a detailed un-
derstanding of each cell type’s contribution to disease progression. Recent advances in
scRNA/snRNA-seq technology have provided possibilities to characterize the cell-type-
specific dysregulation in normal and pathological conditioned brain tissues [7,9,12]. In
the present study, functional enrichment analyses revealed that DEGs of EC Astro were
mainly involved in pathways related to ensheathment of neurons and oligodendrocyte
differentiation, while DEGs in EC Oligo participated in learning, memory, and cognition
pathways. These suggested crucial Astro–Oligo interactions in EC may potentially underlie
cognitive impairment in AD. However, DEGs of PFC Astro Oligo differed significantly
from those in the EC cells. PPI analysis identified an interconnected network of Astro key
regulators—VCAN, CD44, GFAP, AQP4, and CNTNAP2. Differential expression of these
genes between PFC and EC suggests a region-specific dysregulation of critical astrocytic
functions in AD. Among these genes, AQP4 showed opposite expression alterations in
the two brain regions. Previous studies reported the absence of Astro AQP4 in animal
models exhibited a 70% reduction in CSF influx and stromal solute clearance through
the glymphatic system, suggesting that most of the liquid flow between the inflow and
outflow routes of these anatomical structures was correlated with the expression of Astro
AQP4 [20,21]. AQP4 mediates the clearance of soluble Aβ and tau in the CNS [20,22,23], and
disrupted AQP4 expression results in rapid accumulation of pathological soluble proteins
and abnormal tau [20,22,24,25]. The opposite changes in AQP4 expression observed across
PFC and EC regions in AD patients suggested that the glymphatic system of these two
cortical tissues may exhibit different functions in AD patients. Further investigations on the
dynamics of specific regions of human CSF by longitudinal imaging studies are promising
and will provide a basis for the early diagnosis of AD or related diseases. Simultaneously,
region-specific therapeutic strategies targeting AQP4 may be potentially beneficial for the
diagnosis and treatment of AD.

DEGs of EC Micro were prominently involved in glutamatergic synaptic transmission
and nervous system development, potentially contributing to neuronal loss and volume
reduction in EC of AD patients. Key Micro regulators revealed by the PPI network included
PTPRC, MSR1, APOE, B2M, and NRXN3. Multiple large-scale genome-wide association
studies and genome-wide association meta-analyses have demonstrated that the APOEε4
allele is the strongest genetic risk factor for sporadic AD [26]. APOE and TREM2 risk
variants are associated with a significant reduction in CD163-positive amyloid-reactive
Micro [27]. However, few studies have reported on treatment strategies targeting APOE.
B2M is a component of major histocompatibility complex class 1 (MHCI) molecules, which
negatively regulates hippocampal function in an age-dependent manner. In a previous
study, systemic accumulation of B2M in the blood of aging individuals (mice and humans)
promotes age-related cognitive dysfunction and impairment of neurogenesis [28]. Our
study revealed elevated B2M expression in both PFC and EC Micro, suggesting its potential
as a therapeutic target for AD research. Antioxidant molecule 1 (OXR1) is a protein-
coding gene that plays a role in resisting oxidative stress [29]. Individuals with OXR1
deficiency have severe neurodevelopmental impairments [30]. A transcriptome analysis
revealed that OXR1 overexpression in neurons would significantly delay the non-cell-
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autonomous neuroinflammatory response, activation of the classical complement system,
and STAT3 activation [31]. A separate study pointed out that OXR1 depletion aggravated
neurodegenerative disorders in Parkinson’s disease [32]. These findings position OXR1 as a
promising target for neuroprotective strategies across multiple neurodegenerative diseases.

It is worth pondering that the number of Oligo increased significantly either in PFC or
EC of AD patients. Transcriptional regulation showed modest changes, with two genes
overlapping—CTNNA2 and LINC01099. In primate brain structures, catenin protein family
members are thought to play important roles in the folding and laminarization of the
cerebral cortex, which has a unique pattern of neuronal gene expression characterized
by high folding and stratification. High levels of these transcripts support the catenin
functioning even in the adult brain [33]. In the present study, CTNNA2 expression was
downregulated in PFC/EC Oligo and PFC InN. Whole genome sequencing (WGS) showed
an association of CTNNA2 variation signals with risk in AD patients [34]. CTNNA2
might be closely related to the occurrence and development of AD. LINC01099 expression
was upregulated in PFC Oligo but downregulated in EC Oligo. Little is known about
the major function of LINC01099. However, genome-wide association studies (GWAS)
revealed the association of LINC01099 with multiple neurodegenerative diseases such as
Huntington disease and AD. On this basis, we identified five lncRNA-miRNA-mRNA
axes: LINC01099/miR-758-3p/RORA, LINC01099/miR-146a-5p/LRP2, LINC01099/miR-377-
5p/NRXN3, LINC01099/miR-221-3p/FOS, and LINC01099/miR-222-3p/FOS.

AD is often accompanied by disruption of cellular cholesterol balance, and miR-
758 has been identified as a potent post-transcriptional regulator of lipid metabolism
genes [35]. RORA is upregulated in the AD hippocampus and significantly correlates
with AD pathology [36–39]. Moreover, several genes in the network interacting with
RORA, such as APP, DNM1L, and TIA1, are all associated with AD, solidifying the critical
role of RORA in the pathology/etiology of AD [40]. In this study, the expression of both
LINC01099 and RORA was downregulated in EC Oligo, suggesting the potency of the
LINC01099/miR-758-3p/RORA axis in AD pathogenesis. MicroRNA-146a-5p regulates the
inflammatory response, and the functional SNP of miR-146a is associated with AD risk [41].
The elevated expression of miR-146a-5p in AD patient serum and blood extracellular vesicles
was associated with AD severity [42–44]. In addition, the low-density lipoprotein receptor-
associated protein-2 (LRP2) is known to play important roles in AD pathogenesis [45–48].
These results indicated that the LINC01099/miR-146a-5p/LRP2 axis may serve as a key
pathway for AD intervention. In the AD population, the prevalence of obstructive sleep
apnea (OSA) was five times higher than in cognitively non-impaired individuals, and
miR-377-3p is significantly elevated in the plasma of AD patients with OSA [49]. GWAS
revealed that NRXN3 was correlated with male AD susceptibility [50,51]. Our integrated
data demonstrated the elevated levels of LINC01099 and NRXN3 in PFC, suggesting a
possible regulation among LINC01099, miR-377-5p, and NRXN3 in AD. MiR-221 may
promote the accumulation of Aβ protein in AD brain tissue, overexpression of which in
SH-SY5Y causes a decrease in ADAM10 expression, an α-secretase that decomposes the
Aβ protein precursor in the AD non-amyloid protein formation pathway [52]. In addition,
miR-222 downregulation was ever found in APPswe/PS∆E9 mice (AD model) [53], in
CSF [54], and in serum [55,56] of AD patients. Aberrant expression of miR-222 may
contribute to dysregulation of the AD cell cycle by affecting p27Kip1 expression [53].
Researchers found that disease-associated Micro (DAM) (i.e., PAK1, MAPK14, and CSF1R)
and disease-related Astro (DAA) (i.e., NFKB1, FOS, and JUN) were all significantly enriched
for neuroinflammatory pathways and known genetic variants [57]. The number of JUN-
and FOS-positive neurons increased in hippocampal regions in almost all AD patient
postmortem brain samples [58]. JUN and FOS immunoreactivity was also associated with
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GFAP-positive Astro that are distributed in the AD cortex and around AD brain thiamin-
stained plaques [59]. Members of the FOS family play important roles in Aβ and tau
accumulation, nerve fiber tangles, and programmed cell death [60]. Thus, LINC01099
may influence FOS expression through two different pathways—miR-221-3p and miR-
222-3p. As described above, FOS initiates the inflammatory response in Micro, while
in this study, FOS downregulation was observed in PFC and EC Micro but increased in
EC Oligo. This implied that Oligo may be involved in the initiation of the inflammatory
response in EC Micro. These two pathways, LINC01099/miR-221-3p/FOS (EC_up) and
LINC01099/miR-222-3p/FOS (EC_up), might be central to the inflammatory response
modulation in Oligo-triggered Micro. Differential expression of LINC01099 and FOS across
different brain regions (PFC, EC, and hippocampus) necessitates more detailed elucidation
of precise cellular and molecular signatures in distinct brain regions for AD treatment.

Our results revealed consistent expression patterns of overlapped DEGs for PFC and
EC OPC, and these DEGs were significantly associated with functions related to glial
formation and synaptic transmission. Among these shared DEGs, NEAT1 and ST18 have
been well documented in AD pathogenesis [61–64], showing consistent upregulation in
AD patients and animal models that promotes the disease progression [62–64]. While the
roles of XYLT1, RNF220, KCTD8, and SHISA9 have not been previously linked to AD, their
known functions related to nervous system development [65–72], white matter dystro-
phy [73], affective-related behavior [74], synaptic plasticity [75–79], visual integration [80],
and schizophrenia [81] suggest potential roles in AD pathogenesis. This is particularly
relevant given the established connections between AD and various conditions, includ-
ing brain development [82,83], type II diabetes [84–87], cancer [88], schizophrenia [89,90],
and periodontitis [91–95].

Both ExN and InN exhibited parallel degenerative patterns in AD patients, with reduc-
tions in cell numbers across the AD PFC and EC regions. However, transcriptomic analysis
revealed substantially more DEGs in both neuronal populations of the EC region compared
with the PFC. The PPI network uncovered several pivotal DEGs, including CAMK2A,
SLC6A1, GRIA4, and STMN2. CAMK2A dysregulation potentially disrupts the synaptic
plasticity mechanisms crucial for memory formation [96–99]. Equally compelling was the
involvement of SLC6A1, encoding the GABA transporter GAT-1, whose altered expression
could significantly impact the delicate balance of cortical inhibition [100,101]. The AMPA
receptor subunit GRIA4 [102,103] and microtubule regulator STMN2 [104,105] completed
this network of dysfunction, together painting a picture of compromised excitatory trans-
mission and impaired neuronal maintenance. These dysregulations in the different brain
regions of AD patients might be crucially functional in the pathophysiology of AD, and
their precise pathogenic mechanisms remain to be fully elucidated. Turning to InN, GRM5
and MDGA2 are key nodes revealed by PPI networks. The metabotropic glutamate receptor
GRM5 showed opposite alterations in PFC and EC InN. The GRM5-involved signaling
pathway activates the phosphatidylinositol–calcium second messenger system, and GRM5
helps maintain neural network activity and synaptic plasticity [106–114]. Accumulating
evidence demonstrated that GRM5 is involved in the pathological feature formation of AD
and represents a potential target for disease-modifying intervention [115,116]. MDGA2 is a
potential specific factor affecting the presynaptic neurotransmitter recruitment of gliin-2
at inhibitory synapses [117]. Targeted mutations in MDGA1 and MDGA2 enhance both
inhibitory and excitatory synapses in mouse hippocampal pyramidal neurons, respectively.
However, MDGA2 blocked the interaction of gliin-1 with neuroligin and inhibited the devel-
opment of excitatory synapses. The relative levels and subcellular distribution of neuroligin
and neuroligin determine the synaptic-specific tissue properties of MDGA [118–121]. Dif-
ferential expression of GRM5 and MDGA2 in the PFC and EC suggests that the imbalance
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degree of excitatory and inhibitory synapses in different brain regions of AD patients may
contribute to the diverse clinical features of AD patients. This nuanced understanding of
synaptic disruption could prove invaluable for developing targeted therapies that address
specific symptom domains in AD.

Beyond classical neuronal populations, Endo and Unknown cells displayed significant
alterations across two brain regions in AD patients. Both Endo and Unknown cells in EC
embody more DEGs as compared with the PFC. However, their functional contributions
to AD pathogenesis appear distinct. Endo cells showed a particularly strong association
with synaptic signaling, suggesting an underappreciated role in maintaining neuronal
communication. Our PPI network pinpointed EGFR as a central regulator in Endo pathol-
ogy. This finding gains clinical relevance from emerging evidence that EGFR inhibitors
can ameliorate pathological and behavioral conditions in neurodegenerative diseases, in-
cluding AD and amyotrophic lateral sclerosis (ALS). While these preliminary findings are
promising, the precise mechanisms underlying vascular EGFR signaling influencing AD
progression present an important avenue for future research. Unknown cells demonstrated
transcriptomic profiles linked to nervous system development. The PPI network identified
GRIN2B, encoding the NR2B subunit of NMDA receptors, as a key regulatory node in these
cells. We observed the upregulation of GRIN2B in the PFC and downregulation in the
EC of AD patients, aligning with previous reports of elevated GRIN2B expression in the
frontal regions of MCI and AD mice [101]. Comprehensive analysis of miRNA and mRNA
expression profiles of postmortem brain samples from AD patients identified GRIN2B as
one of the key genes in DEGs modules [122]. GWAS analysis linked GRIN2B SNP loci
to AD risk [123–125]. Although the exact pathogenic role of GRIN2B in AD remains am-
biguous, our present findings uncovered its involvement in synaptic dysfunction through
region-specific expression alterations or genetic association with disease risk. The con-
trasting regulation of GRIN2B between cortical regions may contribute to the differential
vulnerability observed in AD, potentially explaining why certain brain areas succumb to
pathology earlier than others.

Our study characterized gene expression changes across multiple independent cell
types in AD-affected PFC and EC. To contextualize these findings within established AD
molecular subtypes, we performed a comparative analysis with the results of Neff RA
et al. [126], which grouped 155 AD participants into three major classes (A, B, and C) and
five subtypes annotated as A, B1, B2, C1, and C2. In general, our molecular characteristics
were strongly consistent with Neff’s broad classifications (A, B, and C). The similarity
between PFC/EC DEGs (our work) and DEGs in AD subtypes (Neff) was smaller when
analyzed with finer subtypes (A, B1, B2, C1, C2) (Figure S5A). When analyzed with broad
subtypes (A, B, C), a greater transcriptomic similarity was observed between our work and
Neff’s study (Figure S5B). However, this concordance was not shared by each individual
AD subtype, and opposite trends were found in PFC and EC (Figure S5B). Gene expression
changes in the PFC showed consistency with class A and B subtypes, whereas the EC
alterations mirrored class C subtypes (Figure S4B). Functionally, both EC and class C
profiles showed significant enrichment for Aβ-binding activity.

Our outcomes unveiled complex cell networks involved in neurotransmitter activity,
ion transport, synaptic plasticity, Aβ protein binding. and other AD-related essential
pathways. Crucial AD-associated genes were identified in each cell type, including RGS1,
GRIA1, GRIA3, GRIA4, DLGAP1, MSN, CHL1, DCN, LPAR1, EGFR, GRM5, CAMK2A, APOE,
AQP4, GFAP, and CD44, showing potential involvement in AD. Importantly, cross-model
validation using human AD organoids demonstrated conserved dysregulation of several
key genes (CD44, CHL1, MSN, RGS7, GRIA1, CAMK2A, DLGAP1, GFAP) between post-
mortem brain tissue and organoid models, while also revealing model-specific differences
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that highlight both the utility and limitations of current in vitro systems for AD research.
The dysregulation of this cell regulatory network varies in different brain regions in AD pa-
tients, and the generalizability of these data will depend on independent validation of other
AD cohort studies. While our multi-model approach (incorporating human snRNA-seq,
APP/PS1 mice, and organoid data) strengthens the biological relevance of these findings,
we acknowledge several limitations: (1) The APP/PS1 model primarily recapitulates amy-
loid pathology without full tauopathy or neurodegeneration; (2) organoid models, while
valuable for studying human-specific pathways, lack the complete cellular diversity and
architectural organization of native brain tissue; and (3) the generalizability of our regional
findings requires validation in additional cohorts with different genetic backgrounds and
disease stages. Our study also has limitations regarding sex balance. The predominance of
male samples in our human snRNA-seq analysis may affect generalizability, given estab-
lished sex differences in AD risk and progression. While our mouse validation experiments
used balanced sex groups, the small sample sizes limited our ability to thoroughly investi-
gate sex-specific effects. Future studies with larger, sex-balanced cohorts will be important
to determine whether the cellular networks we identified show sex-dependent regulation.

Nonetheless, this work provides a cellular-resolution framework for understanding
AD heterogeneity. Differential dysregulation of cellular regulatory networks across the PFC
and EC allows investigating brain region-specific precision medicine therapies and cell-type
targeted interventions, such as repetitive transcranial magnetic stimulation (rTMS), tran-
scranial direct current stimulation (tDCS) [127], and selective endogenous encapsidation
for cellular delivery (SEND) RNA delivery technology [128]. While the generalizability of
these findings requires validation in additional cohorts, our work establishes an important
paradigm for understanding AD as a disorder of cellular networks, with distinct patho-
logical processes unfolding in different brain regions. The regional specificity of cellular
dysregulation patterns uncovered in our study suggests that future therapeutic strategies
may need to account for both cell type and anatomical location to achieve optimal efficacy.
Importantly, our findings bridge the gap between bulk tissue analyses and cellular patho-
physiology, providing a robust foundation for developing next-generation AD treatments
that move beyond one-size-fits-all approaches.

4. Materials and Methods
4.1. Datasets Collection

SnRNA-seq datasets integrated in this study (GSE141552, GSE157827, and GSE138852)
were downloaded from Gene Expression Omnibus (GEO) of National Center for Biotech-
nology Information (https://www.ncbi.nlm.nih.gov/geo/) (accessed on 10 June 2021).
GSE141552 and GSE157827 were obtained using the 10× Genomics and NovaSeq 6000
sequencing platform (Illumina, Inc., San Diego, CA, USA), and GSE138852 was generated
using the 10× Genomics and NextSeq 500 sequencing platform (Illumina, Inc., San Diego,
CA, USA) [7,9,12]. The integrated 3 snRNA-seq datasets comprised 8 PFC_AD, 10 PFC_Ct,
6 EC_AD, and 6 EC_Ct samples (Tables 1 and S1). The scRNA-seq data of brain organoids
used in this study are available under accession number GSE164089 [19], which was gener-
ated with 10× Genomics and NovaSeq 6000 sequencing platform.

4.2. SnRNA-Seq Data Analysis
4.2.1. Preprocessing, Quality Control, and Data Integration

The gene barcode matrices for each sample were loaded into R software v.4.2.2 using
the Read 10× function in the Seurat R package v.4.2.0 [129]. The Seurat Object, correspond-
ing to each sample, was created using the CreateSeuratObject function with the input gene
barcode matrix provided as the raw data. The datasets were integrated using the method

https://www.ncbi.nlm.nih.gov/geo/
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of Stuart et al. [13]. Data quality was strictly controlled prior to integration. Nuclei with
≤200 genes, ≥2500 unique molecular identifiers, or ≥5% mitochondrial genes were filtered
out to exclude potential dead cells and cell debris. In total, 124,658 high-quality nuclei were
obtained for subsequent analyses. For the integration analysis, the highly variable features
of each sample were identified using the FindVariableFeatures function, with parameter
set as selection.method = vst, nfeatures = 2000. The features of the samples were anchored
using the FindIntegrationAnchors function with the parameter dims = 1:20. All samples were
integrated using the IntegrateData function with the parameter dims = 1:20.

4.2.2. Data Dimension Reduction and Clustering Analysis

We scaled the expression matrix and performed a linear dimension reduction using
the RunPCA function with the parameter npcs = 50. The p-value distribution of each
major component was visualized using the JackStrawPlot function and selected to perform
graph-based clustering using the first 30 principal components. K-nearest neighbor (KNN)
clustering was followed using the FindClusters function with the parameter resolution = 1,
and UMAP clustering visualized a total of 31 cell clusters using the RunUMAP function
with the parameter dims = 1:30. Wilcoxon rank-sum test was performed to identify DEGs in
each cell cluster using the FindAllMarkers function with the parameters logfc.threshold = 0.25
and test.use = Wilcox. Then, a cell-type identity was assigned to each cell cluster based on
expression patterns of known cell-type markers and additional cell-type-specific marker
genes. For cell-type markers, the level of statistical significance was set at an adjusted
p-value < 0.1.

4.2.3. Examination of Cell Type-Specific Transcriptomic Changes

To examine the cell-type-specific transcriptomic changes in AD, we compared the
transcriptome profiles of individual cell types among PFC_AD samples, EC_AD samples,
PFC_Ct, and EC_Ct by the Wilcoxon rank-sum test using the FindMarkers function with the
parameters logfc.threshold = 0.25 and test.use = Wilcox.

4.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genomes and Genes (KEGG) Signaling
Pathway Enrichment Analysis

In this study, DEGs were all mapped to the GO terms in the GO database (https:
//geneontology.org/) (accessed on 18 July 2021), and the number of genes for each term
was calculated. Pathway-based analysis was used to characterize the biological functions of
the genes. Pathway enrichment analysis identified significant signal transduction pathways
in the KEGG database (http://www.genome.jp/kegg/) (accessed on 18 July 2021). R
software v.4.2.2 (http://www.r-project.org) (accessed on 10 July 2021) and multiple R
packages, such as clusterProfiler, org.Hs.eg.db, enrichplot, and ggplot2, were used to map the
bars, bubble maps, and signaling pathway maps of GO and KEGG enrichment analysis.

4.4. Protein-Protein Interactions (PPI) Network Analysis

The STRING database (https://www.string-db.org/) (accessed on 20 July 2021) was
used for DGE-associated protein interaction analysis and to construct a PPI network.
Cytoscape 3.8.0 was used (https://cytoscape.org/) (accessed on 20 July 2021) to construct
the cell differential expression network.

4.5. Animal Care and Grouping

Ten-month-old APP/PS1 transgenic mice (AD mice, n = 6, 3 males and 3 females) and
wild-type mice (WT mice, n = 6, 3 males and 3 females) of C57BL/6 strain were provided
by the Experimental Animal Center of Kunming Medical University. Animals were kept
under standard conditions in the SPF laboratory. This study was approved by Animal Care

https://geneontology.org/
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and Use Committee of Kunming Medical University (kmmu2019058). All experimental
procedures, including animal care and testing, were conducted in accordance with the
United States Public Health Service’s Policy on Humane Care and Use of Laboratory
Animals. All mice were deeply anesthetized before euthanasia and were immediately
perfused with precooled 0.9% normal saline until the liver turned white. Their brains were
harvested, with PFC and EC regions collected for the following experiment.

4.6. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

The total RNA fraction was extracted using Trizol reagent (Takara Bio Inc., Otsu,
Japan) and reverse transcribed into complementary DNA (cDNA) using RevertAid First
Strand cDNA Synthesis System (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA).
Quantitative PCR reactions were carried out with Power SYBR (DBI Bioscience, Shanghai,
China) according to the manufacturer’s instructions. The expression level of targeted gene
was normalized to that of GAPDH using the 2−∆∆ct method. Primers used for the reactions
are shown in Table 2.

Table 2. Primer sequences of detected genes.

Genes Primers Sequences

VCAN
Forward primer GGTGTCACAACCCGCATTTG
Reverse primer TAACAGGTGGGCTGGTTTCC

DCN
Forward primer GTGCTATGGAGTAGAAGCAGGA
Reverse primer ACACTGCACCACTCGAAGAT

EGFR
Forward primer AGCTGGCATCATGGGAGAGA
Reverse primer CTGCCATTGAACGTACCCAGA

CD44
Forward primer CACCTTGGCCACCACTCCTAAT
Reverse primer TGACTTGGATGGTTGTTGTGGG

CHL1
Forward primer GGATCTCTGTGGGCAGATCG
Reverse primer GAGGCAACGTGCAAAGACTG

SRGN
Forward primer CCAGGCAGGTCAGAGGAAACTG
Reverse primer AAGCCATTCGGTTTGCAGCG

MSN
Forward primer TGAGAACATGCGACTGGGAC
Reverse primer GGCTCCAGCACAGTGTTAGT

LPAR1
Forward primer CCTTTGGCCAGGCTTACAGTT
Reverse primer GCCAACATGATGAACACGCA

RGS1
Forward primer CCATCTCCATGCCAAGGTTGA
Reverse primer CATTTTGACCTGTCTGGTTGGC

RGS7
Forward primer CTCCGGGTCAGACATTGTTCA
Reverse primer TGAAACCGGTAGAAGGTGCC

GRIA1
Forward primer ATGTGGAAGCAAGGACTCCG
Reverse primer GGATTGCATGGACTTGGGGA

GRIA3
Forward primer CGAGAGCAAGTTGAGGGGAG
Reverse primer CTGTGCTCCTGTACCGTGTT

GRIA4
Forward primer AAGGCTATGGTGTAGCGACG
Reverse primer TCAAGGCACTCGTCTTGTCC

CAMK2A
Forward primer CTGACCATCAACCCGTCCAA
Reverse primer CAGAAGATTCCTTCACACCATCG

GRM5
Forward primer TTGCCTGCTTCTCAGTTGTCT
Reverse primer CTCAGGAAGCACCACTAGGAC

DLGAP1
Forward primer CATCTGCTCTGGGACTTGCT
Reverse primer GCTTGTGGTCTGAGTGGTGT

AQP4 Forward primer GACAAGTGCCCGTAATCTGAC
Reverse primer ACAGTCACAGCGGGATTGAT

GFAP
Forward primer AAGCTCCAAGATGAAACCAAC
Reverse primer TTCTCTCCAAATCCACACGA
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4.7. Data Visualization and Statistical Analysis

The sequencing data were analyzed using R software v.4.2.2 and Cell Ranger v.6.0.1.
All data are presented as the primary data or mean ± SEM. Statistical analyses for RT-qPCR
were performed using SPSS 19.0 software. One-way analysis of variance (ANOVA) with
Tukey’s post hoc test was applied for comparison among multiple groups. The data were
visualized using Seurat’s DoHeatmap, DotPlot function, TBtools v.1.098, and Cytoscape
v.3.8.0 where appropriate. GraphPad Prism software v.7.0 (GraphPad Software Inc., San
Diego, CA, USA) was used for quantification and histogram generation. p value < 0.05 was
considered to be statistically significant.

5. Conclusions
Through integrated analysis of snRNA-seq data from the PFC and EC of AD patients,

we systematically uncovered the cellular network dysregulation underlying disease patho-
genesis. Our findings revealed profound transcriptional disturbances across major neural
cell types, including Oligo, ExN, InN, OPC, Astro, and Micro, as well as in non-neural
populations such as Endo and a distinct cluster of uncharacterized cells. Notably, the
EC emerges as the molecular epicenter of early AD pathology, exhibiting a much greater
burden of DEGs compared with the PFC. Our reconstructed cross-cellular interaction net-
work identifies key regulatory genes forming multidimensional regulatory axes to drive
AD pathogenesis. RT-qPCR validation not only recapitulated the expression patterns of
18 core genes identified in human samples but further demonstrated substantially greater
expression divergence in EC versus PFC. These findings suggest that neurovascular units
and enigmatic cell clusters may cooperatively participate in tau hyperphosphorylation and
Aβ deposition through specialized signaling cascades. This study fundamentally reshapes
our understanding of AD as a disorder of integrated cellular networks, providing transfor-
mative insights into cell type-specific vulnerability patterns and opening new avenues for
targeted therapeutic development against AD.
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Oligo oligodendrocytes
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OPC oligodendrocyte precursor cells
Astro astrocytes
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Endo endothelial cells
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