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Abstract: Dynamic changes in genomic DNA methylation patterns govern the epigenetic develop-
mental programs and accompany the organism‘s aging. Epigenetic clock (eAge) algorithms utilize
DNA methylation to estimate the age and risk factors for diseases as well as analyze the impact of var-
ious interventions. High-throughput bisulfite sequencing methods, such as reduced-representation
bisulfite sequencing (RRBS) or whole genome bisulfite sequencing (WGBS), provide an opportunity
to identify the genomic regions of disordered or heterogeneous DNA methylation, which might be
associated with cell-type heterogeneity, DNA methylation erosion, and allele-specific methylation.
We systematically evaluated the applicability of five scores assessing the variability of methylation
patterns by evaluating within-sample heterogeneity (WSH) to construct human blood epigenetic
clock models using RRBS data. The best performance was demonstrated by the model based on a
metric designed to assess DNA methylation erosion with an MAE of 3.686 years. We also trained
a prediction model that uses the average methylation level over genomic regions. Although this
region-based model was relatively more efficient than the WSH-based model, the latter required the
analysis of just a few short genomic regions and, therefore, could be a useful tool to design a reduced
epigenetic clock that is analyzed by targeted next-generation sequencing.

Keywords: DNA methylation heterogeneity; epigenetic age; bisulfite sequencing; eAge clocks

1. Introduction

DNA methylation is considered a key epigenetic mark that plays a role in the reg-
ulation of gene expression, chromatin functions, genome stability, and spatial nuclear
architecture [1]. Since DNA methylation dynamics accompany normal development and
pathological processes, specific methylation patterns may serve as hallmarks of different cell
types in their particular state [2–4]. Therefore, with the development of high-throughput
sequencing and methylation microarrays, the analysis of DNA methylation is currently
widely used for disease diagnostics as well as the assessment of health risks and aging [5–7].
More specifically, algorithms of epigenetic age (eAge) clocks analyze DNA methylation to
predict chronological and biological age, and they serve as powerful tools for the assess-
ment of various age-related health risks, including diseases, mental disorders, and all-cause
mortality [2,8].

There are currently a few types of eAge clocks that have been developed for humans,
mice, and other animals [7]. Most human eAge clocks are based on the regression modeling
of microarray data that provides information about the individual methylation levels
for thousands of predefined CpGs simultaneously [7]. While initial models predicted
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age by several hundreds of CpGs, the detailed analysis of high-throughput methylation
arrays enables researchers to restrict the list of diagnostically relevant CpGs to a few items,
thereby making it possible to analyze samples with cost-effective real-time PCR, SnapShot,
pyrosequencing, or targeted bisulfite sequencing (BS-seq) methods [7].

Although microarrays are powerful tools for developing methylation clocks, this
technology has several drawbacks. First, widespread commercial high-throughput human
microarrays are limited to predefined sets of up to 860,000 CpGs that cover around 3% of all
CpG sites in the human genome [9]. Second, microarray analysis measures the methylation
level of each CpG independently and is unable to extract contiguous patterns of DNA
methylation as they are considered functional regulatory units [10]. These particular
limitations can be overcome by using whole-genome or reduced representation bisulfite
sequencing (WGBS or RRBS, respectively) methods that are based on the next-generation
short-read sequencing of randomly fragmented bisulfite-converted genome DNA [11].
Specifically, WGBS covers around 90% of CpGs, and RRBS enables the analysis of around
10–20% of CpG sites, depending on the sequencing depth [12]. The main disadvantage of
RRBS and WGBS is the non-uniform CpG-site coverage across samples due to the difference
in sequencing depth and library preparation. The resulting inter-sample variation can
be a source of uncertainty when a model built on one dataset is applied to separate
samples [13]. Microarray DNA methylation data are considered standardized in this regard.
However, WGBS and RRBS make it possible to analyze contiguous methylation patterns,
methylation haplotype blocks, and methylation heterogeneity. Given these advantages,
these methods are now widely used to discriminate cell types, and they have proven to
be beneficial for cancer research and “liquid biopsy” diagnostics using circulating plasma
DNA samples [5,10,14,15]. However, WGBS and RRBS are rarely used for eAge clock
development and analysis [13].

The data obtained with WGBS and RRBS, to some extent, are quite difficult to interpret
because it does not simply aggregate the average methylation levels of individual CpGs
across all cells like in DNA methylation microarrays; instead, they reflect sample-specific
sequential methylation patterns with single-molecule resolution. However, since it is
believed that reproducible aging-related dynamics in DNA methylation might be caused
by changes in organ cell composition due to differentiation, stem, and somatic cell loss or
by epigenetic drift [2,16–18], such high-resolution data could potentially improve eAge
clock development. Nevertheless, the first step when building a model using sequencing
data is to bring continuous methylation patterns from every individual DNA molecule
to the array of scores. This straightforward solution, which relies on the aggregation
of the average methylation levels of individual CpGs within overlapping reads in the
manner of microarray data, has been used previously for constructing RRBS-based eAge
models [13,19]. However, this approach completely loses information about the sample-
specific diversity of methylation patterns.

Alternatively, one can use a set of numerical metrics called within-sample heterogene-
ity scores (WSH) that capture different sources of DNA methylation heterogeneity, such as
cell-type composition, allele-specific DNA methylation, or DNA methylation erosion, for
every single genome region [10,12,20,21]. However, until recently, it was not clear whether
such metrics were suitable for estimating chronological age since, strictly speaking, they
are not directly related to the total CpG methylation level. Nevertheless, the novel results
obtained on the mouse RRBS data showed that the dynamics of methylation patterns, as
reflected in the form of the epigenetic “disorder” criteria, are suitable for the construction
of the region-based epigenetic clocks [22]. In the present paper, we wanted to examine the
ability of different heterogeneity measures to predict chronological age using the RRBS
dataset from human whole blood DNA.

Here, we proposed an algorithm for epigenetic clock design based on the analysis of
DNA methylation heterogeneity patterns rather than the methylation level. To identify
genome regions showing an age-correlated increase or decrease in heterogeneity, we ap-
plied the previously described WSH metrics: MHL (Methylation Haplotype Load), PDR
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(Proportion of Discordant Reads), PM (Epipolymorphism), FDRP (Fraction of Discordant
Read Pairs), and qFDRP (quantitative Fraction of Discordant Read Pairs) [12]. Genomic
regions showing the strongest association between methylation heterogeneity and age were
associated with genes related to aging or linked with CpGs that are included in different
epigenetic age models. We built five epigenetic clock models based on the listed metrics,
and the highest performance was demonstrated by the epigenetic clock algorithm based on
the PDR metric, which is designed to detect DNA methylation erosion. We show that the
performance of WSH-based epigenetic clocks is mildly inferior in accuracy to conventional
RRBS-based eAge clocks that are built using average methylation in genomic windows.
However, WSH-based clocks only use a few loci in the genome for age prediction. As a
result, heterogeneity metrics may have an advantage when RRBS data are used to design a
reduced epigenetic clock.

2. Results
2.1. Development of WSH-Based Regional Blood eAge Clock Models

We used five WSH metrics: MHL (Methylation Haplotype Load), PDR (Propor-
tion of Discordant Reads), PM (Epipolymorphism), FDRP (Fraction of Discordant Read
Pairs), and qFDRP (quantitative Fraction of Discordant Read Pairs) (see Figure 1 for an
explanation) [10,12,20,21]. Different WSH scores enable the assessment of distinct aspects
or the biological phenomena of methylation pattern changes. Intra-molecule score PDR
might be considered as a metric of DNA methylation erosion since its elevated values,
which are due to stochastic demethylation, have been linked to epigenetic instability in
cancer cells [21]. Another intra-molecule score, MHL, captures the homogeneity of co-
methylation patterns and serves as an additional indicator of DNA methylation erosion, as
it takes on a maximum value of 1 when the region is fully methylated and it is strongly
reduced when extended stretches of methylated DNA are disrupted by stochastic demethy-
lation [10]. Inter-molecule score as PM is used to quantify cell-type heterogeneity and
describes the DNA methylation patterns in four-CpG windows [20]. FDRP and qFDRP
scores are some other metrics that are designed to capture cell-type heterogeneity that
analyzes the concordance between the same CpGs within different reads [12]. It should
be noted that the basic unit of heterogeneity measurement in the MHL, PDR, FDRP, and
qFDRP is a single CpG site, while for the PM, it is four contiguous CpG sites, bringing the
different number of analyzed features for each metric. For simplicity, we will hereinafter
refer to the listed DNA methylation heterogeneity units as heterogeneity loci regardless of
the metric type.

In the first step, we evaluated the relevance of WSH scores as an instrument for
epigenetic clock design. We analyzed the sequencing data of 182 bisulfite-converted blood
DNA samples from donors of different ages (19–56 years, mean age 28.6 years) [23]. We
obtained WSH scores for around 2 million CpGs in the case of FDRP and qFDRP scores,
well above 1 million CpGs for MHL and PDR, and around 0.7 million stretches comprising
four CpGs in the case of PM (Table 1). In order to reduce the diversity of features by
age-associated variants, we identified heterogeneity loci with a monotonic relationship
between the score value and age within each WSH metric type. Therefore, the scores for
each loci were correlated with age using Spearman’s rank correlation coefficient, and the
heterogeneity loci that showed a correlation less than |0.25| were filtered out (Table 1).
The mean score values for each metric, both positively and negatively correlated, exhibit a
quadratic relationship with chronological age (Figure 2), thereby indicating that changes
in global heterogeneity occur most rapidly in youth and slow down by old age. It is
noteworthy that a nonlinear change in heterogeneity during development was observed
in [22], wherein global methylation disorder was investigated in aging mice.
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Figure 1. Schematic representation of the procedure of heterogeneity scores calculation using read
sequencing data. (a) The PDR estimates the prevalence of disordered methylation patterns within
CpG spanning reads in the form of the proportion of discordant reads. It classifies each read
as discordant if it has both methylated and unmethylated CpGs or if it is concordant otherwise.
(b) The PM reflects the amount of heterogeneity of DNA methylation for a given genomic region of
4 CpG. The metric is calculated by the frequency of all the possible 4-CpG patterns. (c) The MHL
is measured by the fraction of fully methylated substrings (mCpG-substrings) of all the possible
lengths throughout all the reads spanning the given CpG. It reflects how well the co-methylation
haplotypes in a given region are conserved throughout the cell population. (d) The FDRP and qFDRP
capture within-sample methylation heterogeneity at single CpG resolution. While FDRP calculates
the fraction of discordant pairs between all the reads spanning the given CpG, qFDRP estimates the
mean Hamming Distance between all the pairs (i.e., the fraction of discordant common CpGs). Note
that the Hamming Distance for a concordant read pair is equal to zero.

Table 1. The diversity of heterogeneity loci for each metric in the dataset of donor blood samples. For
each metric, the number of loci with a selected Spearman’s correlation is also indicated.

Heterogeneity Metrics Number of Heterogeneity Loci Cor ≤ −0.25 Cor ≥ 0.25 |Cor| ≥ 0.5

FDRP 1,918,416 2311 16,108 10

MHL 1,287,083 934 40,393 22

PDR 1,291,638 3000 25,675 48

PM 696,871 2297 11,478 20

qFDRP 1,918,416 3548 34,856 27

The resulting sets of positively and negatively correlated heterogeneity loci for each
WSH score were annotated and associated with genes using ChiPseeker [24]. The total
number of genes that overlapped with age-correlated heterogeneity loci is presented in
Table S1. Functional annotation and GO term enrichment analysis revealed that genes
associated with positively age-correlated heterogeneity loci were enriched in plenty of
biological processes, the most significant being body systems development (GO:0048731,
GO:0007275, GO:0048856, GO:0032502, GO:0032501), neural tissue development and differ-
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entiation (GO:0007399, GO:0022008, GO:0048699, GO:0030182, GO:0048666), and cellular
differentiation (GO:0030154) (Table S2). Genes associated with negatively age-correlated
heterogeneity loci were significantly enriched in common terms related to organismal
development (GO:0048856, GO:0032502, GO:0007275, GO:0007399, GO:0048731), signaling,
and regulation of cellular communication (GO:0023051, GO:0010646) (Table S3).
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Figure 2. Age dependence of the mean heterogeneity score over positively and negatively age-
correlated loci in human blood RRBS datasets. Each point corresponds to the global average score
over the entire set of heterogeneity loci per single sample.

In the next step, we analyzed the heterogeneity loci, demonstrating the strongest
correlation with age (|Cor| ≥ 0.5). While the number of highly correlated heterogeneity loci
varies from 10 for FDRP to 48 for PDR (Table 1), all of the loci sets are densely within a few
genes, fitting into regions of no more than 300 bp in length (Tables S4–S8). Correspondingly,
for different WSH scores, the number of associated genes varied between 2 and 6 genes,
which often overlapped between metrics (Table 2). Interestingly, some of the listed genes
are related to aging or associated with CpGs that are included in different epigenetic age
models. For example, CpG sites near the genes GRM2, SCGN, and ZIK1 are used in region-
based epigenetic clocks, or they are described as age-associated CpGs [25–28]. Lin28b has
been found to delay vasculature aging, and ADRB1 beneficially impacts aging [29,30].

Using the corresponding highly correlated heterogeneity loci, a random forest re-
gression model was constructed for each WSH score. Figure 3a,b shows the variances of
the models on the training set. The PDR metric shows the best performance (R2 = 0.695,
MAE = 3.43). The PM and qFDRP metrics show relatively close performance (R2 = 0.595
and 0.510, MAE = 3.18, and 4.15, respectively), while the MHL (R2 = 0.436, MAE = 4.540)
and FDRP (R2 = 0.346, MAE = 4.863) performed worse. Next, we evaluated the model
on the test samples that were excluded from training and hyperparameter selection. The
PDR metric was proven to be the most effective metric (R2 = 0.806, MAE = 3.686) (Table 3,
Figure 3c). Just as in the case of evaluation on the training set, the FDRP and MHL metrics
showed the lowest performance on the test sample.

It is also noteworthy that the sequencing data that we used have reasonably high
coverage, while the usual RRBS datasets tend to be of lower quality. To assess the applica-
bility of the WSH scores to detect the dependencies of methylation heterogeneity change
with age in RRBS-data samples, we performed a similar analysis to detect the correlations
between the heterogeneity loci in RRBS-seq of mesenchymal stem cells samples (32 samples
in total, age range of 0–48 years) [31]. Despite the low number of samples and single-end
reads sequencing, it can be seen that there are clear associations between age and the
heterogeneity scores (Figure S1). Unfortunately, due to the paucity of the samples, we were
unable to build the model and assess MAE. However, the ground-age umbilical cord and
placenta samples display lower levels of heterogeneity for all of the metrics used, and all
of the WSH scores highly correlated with age (R2 > 0.8) for both positively and negatively
correlated heterogeneity loci.
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Table 2. List of genes associated with highly correlated heterogeneity loci in all WSH scores.

Metric Ensembl Gene ID Gene Symbol Gene Name Biological Process Gene Regions

MHL
ENSG00000164082 GRM2 glutamate metabotropic

receptor 2
negative regulation of

adenylate cyclase activity

Promoter; 5’ UTR;
Exon (1 of 4);
Intron (1 of 5)

ENSG00000158815 FGF17 fibroblast growth factor 17 positive regulation of
protein phosphorylation Exon (5 of 5)
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Table 2. Cont.

Metric Ensembl Gene ID Gene Symbol Gene Name Biological Process Gene Regions

PDR

ENSG00000043591 ADRB1 adrenoreceptor beta 1
positive regulation of

heart rate by epinephrine-
norepinephrine

Exon (1 of 1)

ENSG00000170549 IRX1 Iroquois homeobox 1
negative regulation of

transcription from RNA
polymerase II promoter

Exon (2 of 4)

ENSG00000122584 NXPH1 neurexophilin 1 NA Intron (2 of 2)

ENSG00000079689 SCGN secretagogin, EF-hand
calcium-binding protein

regulation of cytosolic
calcium ion concentration

5’ UTR; Exon
(1 of 10)

ENSG00000212719 LINC02693
long intergenic

non-protein coding
RNA 2693

NA Intron (2 of 6)

ENSG00000171649 ZIK1 zinc finger protein
interacting with K protein

regulation of transcription
from RNA polymerase

II promoter
5’ UTR

PM

ENSG00000150594 ADRA2A adrenoreceptor alpha 2A positive regulation of
cytokine production Exon (1 of 1)

ENSG00000043591 ADRB1 adrenoreceptor beta 1
positive regulation of

heart rate by epinephrine-
norepinephrine

Exon (1 of 1)

ENSG00000164082 GRM2 glutamate
metabotropic receptor

negative regulation of
adenylate cyclase activity

Promoter; Exon
(1 of 4); Intron

(1 of 5)

ENSG00000212719 LINC02693
long intergenic

non-protein coding
RNA 2693

NA Intron (2 of 6)

ENSG00000122584 NXPH1 neurexophilin 1 NA Intron (2 of 2)

FDPR

ENSG00000164082 GRM2 glutamate
metabotropic receptor

negative regulation of
adenylate cyclase activity

5’ UTR; Exon
(1 of 4); Intron

(1 of 5)

ENSG00000164093 PITX2 paired-like homeodomain
negative regulation of

transcription from RNA
polymerase II promoter

Exon (3 of 5)

qFDPR

ENSG00000043591 ADRB1 adrenoreceptor beta 1
positive regulation of

heart rate by epinephrine-
norepinephrine

Exon (1 of 1)

ENSG00000164082 GRM2 glutamate
metabotropic receptor

negative regulation of
adenylate cyclase activity

Promoter; 5’ UTR;
Exon (1 of 4);
Intron (1 of 5)

ENSG00000187772 LIN28B lin-28 homolog miRNA catabolic process 5’ UTR

ENSG00000212719 LINC02693
long intergenic

non-protein coding
RNA 2693

NA Intron (2 of 6)

ENSG00000164093 PITX2 paired-like homeodomain
negative regulation of

transcription from RNA
polymerase II promoter

Exon (3 of 5)

ENSG00000269897 COMMD3-
BMI1 COMMD3-BMI1 sodium ion transport Distal Intergenic

Table 3. Performance of WSH-based eAge models estimated on the test dataset.

Metrics
Test Sample

R2 MAE

FDRP 0.596 4.929
MHL 0.424 5.334
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Table 3. Cont.

Metrics
Test Sample

R2 MAE

PDR 0.806 3.686
PM 0.709 3.969

qFDRP 0.668 4.278

2.2. Assessment of Regional Blood Epigenetic Clock Performance

To date, several approaches have been described for constructing epigenetic clock
algorithms based on RRBS data, the most productive being the analysis of average methyla-
tion over genomic regions of different sizes [13,19]. To compare the efficacy of this regional
approach with the heterogeneity-based one, we built an epigenetic clock model that is
similar to a previously described method for mice blood RRBS eAge clocks [13]. Briefly, the
average methylation frequency over genomic windows of different sizes was calculated,
windows containing methylation data were deduplicated, and age-correlated windows
were used for further analysis (Table S9). The hyperparameters for LASSO regression were
selected on the training set and estimated with the testing set. The performance of the
models depending on the window size is shown in Figure 4. It should be noted that, as the
window size decreases, the model shows better R2 value and MAE. The best prediction
accuracy was achieved using a 100 bp sliding window with a 20 bp step size (100_20 in
Figure 4 with R2 = 0.885 and MAE = 2.164). Usage of windows of smaller sizes (100–1000 bp)
performed better, thereby demonstrating R2 in the range from 0.837 to 0.874 and MAE
ranging from 2.527 to 2.266 (Figure 4, Table 4). Models based on larger genomic intervals
(2000–9000 bp) showed an R2 that does not exceed 0.8 and an MAE of 3 or more years. The
number of regions with non-zero regression coefficients increases with decreasing window
size: from 14 for the 9000 bp window to 53 for the 100 bp sliding window.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  8  of  16 
 

 

Briefly, the average methylation frequency over genomic windows of different sizes was 

calculated, windows containing methylation data were deduplicated, and age-correlated 

windows were used for further analysis (Table S9). The hyperparameters for LASSO re-

gression were selected on the training set and estimated with the testing set. The perfor-

mance of the models depending on the window size is shown in Figure 4. It should be 

noted that, as the window size decreases, the model shows better R2 value and MAE. The 

best prediction accuracy was achieved using a 100 bp sliding window with a 20 bp step 

size (100_20 in Figure 4 with R2 = 0.885 and MAE = 2.164). Usage of windows of smaller 

sizes (100–1000 bp) performed better, thereby demonstrating R2 in the range from 0.837 to 

0.874 and MAE ranging from 2.527 to 2.266 (Figure 4, Table 4). Models based on larger 

genomic intervals (2000–9000 bp) showed an R2 that does not exceed 0.8 and an MAE of 3 

or more years. The number of regions with non-zero regression coefficients increases with 

decreasing window size: from 14 for the 9000 bp window to 53 for the 100 bp sliding win-

dow. 

 
Figure 4. Training performance of regional epigenetic clocks depends on the different genomic win-

dows that were used to calculate average DNA methylation. (a) Observed mean absolute error and 

(b) determination coefficient R2. 

Table 4. Performance of the regional epigenetic clocks models on the blood dataset. 

Window Size 
Cross Validation  Test Sample  Number of Regions with Non‐Zero Coefficient in 

Regression Model R2  MAE  R2  MAE 

9000 bp  0.556  4.192  0.764  3.814  14 

8000 bp  0.665  3.698  0.774  3.504  16 

7000 bp  0.668  3.671  0.752  4.096  12 

6000 bp  0.718  3.437  0.743  3.889  13 

5000 bp  0.735  3.288  0.785  3.416  18 

4000 bp  0.760  3.187  0.823  3.043  13 

3000 bp  0.756  3.273  0.788  3.460  17 

2000 bp  0.791  3.019  0.812  3.305  16 

1000 bp  0.837  2.527  0.837  3.052  20 

500 bp  0.862  2.392  0.887  2.713  28 

250 bp  0.873  2.266  0.889  2.633  32 

150 bp  0.858  2.379  0.884  2.750  43 

100 bp  0.874  2.299  0.879  2.712  42 

100 bp sliding window 

(20 bp step size) 
0.885  2.164  0.877  2.866  53 

The evaluation of the test dataset revealed the best performance of the 250 bp win-

dow model, although models built on 100–500 bp windows showed R2 above 0.85 and 

Figure 4. Training performance of regional epigenetic clocks depends on the different genomic
windows that were used to calculate average DNA methylation. (a) Observed mean absolute error
and (b) determination coefficient R2.



Int. J. Mol. Sci. 2024, 25, 4967 9 of 16

Table 4. Performance of the regional epigenetic clocks models on the blood dataset.

Window Size
Cross Validation Test Sample Number of Regions with Non-Zero

Coefficient in Regression ModelR2 MAE R2 MAE

9000 bp 0.556 4.192 0.764 3.814 14
8000 bp 0.665 3.698 0.774 3.504 16
7000 bp 0.668 3.671 0.752 4.096 12
6000 bp 0.718 3.437 0.743 3.889 13
5000 bp 0.735 3.288 0.785 3.416 18
4000 bp 0.760 3.187 0.823 3.043 13
3000 bp 0.756 3.273 0.788 3.460 17
2000 bp 0.791 3.019 0.812 3.305 16
1000 bp 0.837 2.527 0.837 3.052 20
500 bp 0.862 2.392 0.887 2.713 28
250 bp 0.873 2.266 0.889 2.633 32
150 bp 0.858 2.379 0.884 2.750 43
100 bp 0.874 2.299 0.879 2.712 42

100 bp sliding
window (20 bp

step size)
0.885 2.164 0.877 2.866 53

The evaluation of the test dataset revealed the best performance of the 250 bp window
model, although models built on 100–500 bp windows showed R2 above 0.85 and MAE
below 3 years (Table 4, Figure 5). Next, the associated genomic windows comprising
250 bp, 150 bp, and 100 bp/sliding windows models yielded a list of 52 genes, with
17 being common to all three genome segmentation approaches (Tables S10–S13). The
associated genes are involved in the regulation of apoptosis, control of metabolism, cell
division, and differentiation, according to the DAVID database [32].
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2.3. Regional Blood and WSH-Based Models for Minimized Epigenetic Clocks Design

As mentioned hereinabove, WSH-based epigenetic clock models are based on hetero-
geneity analysis in just a few genomic regions and, therefore, they might be considered as
minimized per se. To estimate the minimum number of windows that can be used to predict
age by region-based model without a loss of accuracy, we applied the Recursive Feature
Elimination (RFE) method that was implemented in the scikit-learn package. For this
purpose, all of the genomic windows with non-zero coefficients in the LASSO regression for
250-bp (32 regions), 150-bp (43 regions), and 100 bp sliding windows (53 regions) models
were extracted from each dataset and used to retrain and test the reduced models. We
consecutively reduced the number of genomic windows used in each model and tested the
accuracy of the resulting eAge models (Figure 6a, Tables S14–S16). We obtained a similar
performance of the 250 bp model that was reduced from 32 to 13 windows (R2 = 0.889,
MAE = 2.633 and R2 = 0.896, MAE = 2.618, respectively). The model based on a
150 bp window was reduced up to 33 genomic regions without substantial loss in perfor-
mance (R2 = 0.887, MAE = 2.744). The accuracy of the 100 bp (step 20) sliding window
model was conserved until the set of windows was reduced to less than 17 (R2 = 0.872,
MAE = 2.884) (Table S17). As long as the full 100 bp sliding window model showed the
best performance in the initial setup, we analyzed the genes that localized closely to the
regions included in the reduced model (Table 5). A few of them were associated with
age-associated differentially methylated CpG positions in the blood (PDCD1LG2, NRG2,
C1orf132) and with the CpGs included in other epigenetic age estimators (C1orf132), while
the others were involved in the control of apoptosis, proliferation, and metabolism [33–38].
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Figure 6. (a) Performance of reduced regional eAge models built. Each diagram represents the
dependence of R2 (red) and MAE (blue) from a number of windows (plotted on the X-axis) selected
for model evaluation on test data. The minimum number of loci required to build a predictive model
without compromising accuracy is indicated by the vertical dashed line. (b,c) Performance of the
age prediction models that were designed using the reciprocal strategy of feature selection. (b) The
performance of PDR-based clocks built on a set of heterogeneity loci within 100 bp (step 20 bp) sliding
windows with age-correlated average methylation. (c) Performance of the region-based model built
on a set of 100 bp (step 20 bp) sliding windows overlapping 48 highly age-correlated PDR loci.
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Table 5. List of genes that were associated with minimized 100 bp/sliding window regional eAge
model.

Ensembl Gene ID Gene Symbol Gene Name Biological Process

ENSG00000114738 MAPKAPK3 MAPK-activated protein kinase 3 MAPK cascade

ENSG00000197142 ACSL5 acyl-CoA synthetase long-chain family
member 5

long-chain fatty acid
metabolic process

ENSG00000164082 GRM2 glutamate metabotropic receptor 2 negative regulation of adenylate cyclase
activity

ENSG00000148734 NRFFR1 neuropeptide FF receptor 1 G-protein coupled receptor
signaling pathway

ENSG00000115594 IL1R1 interleukin 1 receptor type 1 inflammatory response
ENSG00000142235 LMTK3 lemur tyrosine kinase 3 protein phosphorylation
ENSG00000158458 NRG2 neuregulin 2 signal transduction
ENSG00000010322 NISCH nischarin apoptotic process
ENSG00000197646 PDCD1LG2 programmed cell death 1 ligand 2 adaptive immune response
ENSG00000106772 PRUNE2 prune homolog 2 with BCH domain apoptotic process
ENSG00000163239 TDRD10 Tudor domain containing 10 P-granule organization
ENSG00000165626 BEND7 BEN Domain-Containing Protein 7
ENSG00000203709 MIR29B2CHG/C1orf132 MIR29B2 And MIR29C Host Gene gene silencing by miRNA
ENSG00000236333 TRHDE-AS1 TRHDE antisense RNA 1

ENSG00000166135 HIF1AN hypoxia-inducible factor 1 subunit alpha
inhibitor peptidyl-histidine hydroxylation

ENSG00000180720 CHRM4 cholinergic receptor muscarinic 4 carbohydrate metabolic process
ENSG00000164197 RNF180 ring finger protein 180 protein polyubiquitination

Since the heterogeneity metrics are not directly related to the methylation level, but
it does provide complementary information about the methylation pattern at loci, we
wanted to test whether age prediction could be improved by combining WSH scores
and average methylation by the reciprocal filtering of loci. Therefore, we first modeled
heterogeneity-based age prediction using the loci from previously selected 100 bp (step
20 bp) age-correlated sliding windows (Figure 6b, Table 4). Applying heterogeneity metrics
only impaired the prediction accuracy despite the fact that filtering by average methylation
correlation performed best in a sliding window. We also failed to improve age prediction
by generating a 100 bp step 20 sliding window region-based model on regions overlap-
ping 48 previously selected heterogeneity loci with age-correlated PDR metrics, which
demonstrated the best performance across WSH scores in the context of age prediction
(Figure 6c).

Therefore, the combined approach did not improve the performance of the original
models, thereby suggesting that changes in the average methylation level and DNA methy-
lation heterogeneity with aging are not interchangeable in terms of predicting age and
might detect different aspects of DNA methylation dynamics. At the same time, it should
be noted that the model based on PM and qFDRP metrics shows the best performance in
regions where an age-dependent methylation pattern change is observed (Table 6). Since
these metrics are designed to capture DNA methylation disorder related to cell-type het-
erogeneity, this may imply that similar biological causes, at least to some extent, might
underlie the heterogeneity changes detected by regional blood epigenetic clocks.

Table 6. The performance of WSH-based models built on genomic windows comprising
100 bp/sliding window regional eAge model.

Metrics
Test Sample

R2 MAE

FDRP 0.635 4.662
MHL 0.648 4.444
PDR 0.563 4.993
PM 0.697 4.293

qFDRP 0.722 3.962
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3. Discussion

The analysis of RRBS and WGBS data for epigenetic age estimation is associated with
a number of technical difficulties, primarily due to the uneven coverage of the genome
and the uneven representation of CpG information in different datasets. To date, several
models of region-based epigenetic clocks based on the analysis of RRBS data have been
proposed [13,19]. For mice, two models of epigenetic blood clocks might be considered
the most effective [13]. The first model (regional-based blood clocks, RegBCs) is based
on averaged methylation levels from individual CpGs within fixed-size regions that are
used for LASSO regression against chronological age [13]. The second one is based on the
detection of CpG clusters by the DBSCAN algorithm followed by modeling by LASSO
regression (DRegBCs) [13]. Such models outperform the existing analogs based on the
analysis of methylation levels of individual CpGs; for example, RegBCs showed a higher
correlation with age and lower error (R2 = 0.91, MAE = 3.38 months) compared to the
previously described blood-specific Pekovich clock (R2 = 0.86, MAE = 3.52 months) [13,39].

In our work, an approach similar to the RegBC algorithm was used as a reference,
and it demonstrated high accuracy and correlation on human blood samples, achieving R2

0.885 and MAE: 2.164, which is comparable to the most precise blood eAge models based
on DNA methylation microarray data with RMSE from 2.04 years [7]. It is noteworthy that
RRBS is rarely used for human epigenetic age analysis, e.g., an algorithm called intersection
clocks is based on the analysis of individual CpGs, overlapped between the training and
testing datasets, which maximizes the use of informative CpG sites but requires training
new epigenetic clocks for each dataset [19].

The motivation for our work was to assess changes in the DNA methylation het-
erogeneity during aging and the applicability of such a marker for estimating age and
constructing epigenetic clocks. Indeed, as mentioned above, reproducible changes in the
methylation patterns are observed during aging, which might be associated with changes in
the cellular composition of organs and tissues, changes in the functional state of cells, and
dysfunction of DNA methylation maintenance systems [2,16–18,21,40]. Despite the lack of
consensus on the physiological causes of aging that the epigenetic clock detects, a plethora
of works evaluate stochastic changes in the methylation pattern, which is also referred
to as epigenetic drift in the context of aging [18,41,42]. Therefore, metrics assessing DNA
methylation disorder and heterogeneity, such as regional disorder and regional entropy,
have been successfully used to predict age and assess the influence of common lifespan
manipulation, development, and cellular dedifferentiation on epigenetic age estimates in
mice [22].

Using five different WSH scores, we constructed WSH-based eAge clocks models.
Interestingly, the best performance was shown by epigenetic clocks based on the PDR score,
which is designed to capture methylation erosion rather than cellular heterogeneity. This
finding, to some extent, echoes the observation that variability in blood cellular composition
is unable to fully account for the detected methylation drift [41]. However, all heterogeneity
metrics revealed disordered regions associated with genes that are related to aging or
associated with CpGs that are included in different epigenetic age models. Our results
show that the epigenetic clock model based on the analysis of average methylation within
selected regions showed better performance than WSH-based eAge models. However, it is
important to note that the minimized region-based eAge clock model requires the analysis
of at least 13 genomic regions, while WSH-eAge models are based on the analysis of a
smaller number of genomic regions of comparable size. It is conceivable that the WSH-
eAge modeling may be the preferred approach for the design of minimized epigenetic
clocks analyzed by targeted BS-seq. This requires experimental validation, but the accuracy
that we have modeled is potentially consistent with the most accurate minimized eAge
blood clocks that are currently available, demonstrating the error in the range from 3.5
to 8.8 years [7]. It is important to mention that WSH-eAge modeling requires relatively
high genomic coverage of the regions to allow WSH score calculation; therefore, it should
be applied for deep-sequenced samples or targeted bisulfite sequencing data. Another
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possible issue in the usage of WSH-eAge models might arise from uneven coverage of
RRBS data in separate experiments, which could require retraining of the model based
on the genomic regions that are sequenced in all datasets, e.g., in a manner similar to the
described algorithm of intersection clock [19].

4. Materials and Methods
4.1. Source Data

Bisulfite sequencing data of 182 human blood samples were downloaded from the
ENA database via BioProject identifier PRJNA531784 [23]. In addition, a dataset containing
32 RRBS samples from mesenchymal stem cells was downloaded via BioProject identifier
PRJNA349025 [31].

4.2. Data Processing and WSH Scores Calculation

Each sample was treated as follows. In the first step, adapter removal and quality
control of short paired-end reads were performed using TrimGalore! v0.6.10 with -rrbs
option [43]. The processed reads were then aligned on a GRCh38 (hg38) reference genome
assembly using Bismark v0.24.2 with Bowtie 2 v2.5.2 [44]. The resulting BAM alignments
were sorted by coordinate using SAMtools v1.6 [45]. The sorted BAM files were then used
for the calculation of methylation heterogeneity metrics using Metheor v0.1.8 with the
default parameters [46]. Overall, five metrics of heterogeneity (PM, FDRP, MHL, PDR,
qFDRP) were calculated for each sample independently. The coverage files produced by
Bismark, which provide information about the level of methylation for each CpG in a
sample, were used for the calculation of average CpG methylation.

4.3. Heterogeneity Loci Processing and Annotation

To identify the age-related heterogeneity loci within the blood samples, Spearman’s
rank correlation between the given heterogeneity score and donor age, along with the
FDR-adjusted p-value, was calculated for each loci using a custom script. Next, within
each score type, the loci were divided into three subsets: (1) loci with a negative correlation
(cor ≤ −0.25, Padj < 0.05), (2) loci with a positive correlation (cor ≥ 0.25, Padj < 0.05), and
(3) with a modulus correlation above 0.5 (|cor| ≥ 0.5, Padj < 0.05). Each subset of loci was
then annotated using ChiPseeker (distance to TSS = 0) and gProfiler, and subset (3) was
used for building a score-specific Random Forest Regression (RFR) model [24,47].

4.4. WSH-Based Epigenetic Clock Construction Using Random Forest Regression

RFR modeling was performed using the scikit-learn v1.4.0 Python package [48]. In
this analysis, the dataset was divided into a training (80%) and a test (20%) set of samples.
The hyperparameters were selected through five-fold cross-validation on the training
samples. The best hyperparameters were used to evaluate the stability and reliability of the
model through five iterations of ten-fold cross-validation. In the last stem, the model was
evaluated on the test set, which did not undergo the training process.

4.5. Genome Segmentation and Calculation of Average Methylation Level

For a window-based estimation of CpG methylation, all CpG positions with coverage
of less than five were filtered out. Next, the proportion of methylated CpGs in selected
sets of genome intervals was calculated for each sample using a custom script. For these
purposes, 14 sets of intervals were produced. To obtain the coordinates for each set, the
genome (excluding X, Y, and M) was divided into consecutive fragments in different ways:
using equal-sized bins of 100 bp–9 kb or using a sliding window algorithm (100 bp intervals
with 20 bp step). The resulting BED formatted tables with the same interval set were
combined by coordinates. All of the intervals without any CpG or with undetermined
average methylation in at least one sample were filtered out.

To reduce the number of analyzed interval features in average methylation datasets,
the Pearson correlation coefficient was calculated between the average methylation and the
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age value for each interval. Intervals were filtered if their absolute correlation value was
less than 0.5 (Padj < 0.05). For the interval set, which was produced with a sliding window
algorithm, deduplication was also performed to remove of identical rows. Produced data
tables were then used for the LASSO regression modeling of age.

4.6. Region-Based Epigenetic Clock Construction Using LASSO Regression

To build an age prediction model on the genomic interval-based average methylation
data, LASSO regression was chosen. The model was built using the scikit-learn v1.4.0
package in Python [48]. Each dataset was divided into a training set (80%) and a test
set (20%). The selection of the alpha hyperparameter was carried out through ten-fold
cross-validation on the training set. Next, the best hyperparameter alpha was used to build
and evaluate the model on the training dataset and for evaluation on the test set.
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//www.mdpi.com/article/10.3390/ijms25094967/s1.
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