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Abstract: The receptor for advanced glycation end-products (RAGE) has a central function in orches-
trating inflammatory responses in multiple disease states including chronic obstructive pulmonary
disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in
lung disease due to its naturally abundant pulmonary expression. Our previous research demon-
strated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS).
However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this
study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE
expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an ex-
posure system for six months and compared to control mice exposed to room air (RA). We specifically
compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from
WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point;
while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple
time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month
time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. No-
table gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements,
inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated
significant biological pathways differentially impacted by the presence of RAGE. We also observed
evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs
across multiple comparisons. These data collectively identify several opportunities to further dissect
RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.
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1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a progressive and irreversible
respiratory disorder characterized by the dual presence of chronic bronchitis and emphyse-
matous destruction of lung parenchyma. COPD has been identified as the third leading
cause of death globally, following only ischemic heart disease and stroke [1]. Despite signif-
icant advancements in our understanding of COPD, it remains incurable, with treatment
strategies predominantly aimed at symptom relief. The therapeutic spectrum ranges from
non-invasive interventions like bronchodilators, steroids, antibiotics, and oxygen therapy
to more invasive procedures such as lung volume reduction surgery, lung transplants, and
bullectomies, each tailored according to the disease’s severity [2]. Disease progression
is primarily attributed to prolonged exposure to tobacco smoke or occupational hazards,
whereas exacerbations are linked with long-term exposure to air pollutants or biomass
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particulates [3]. Chronic pulmonary inflammation, unregulated protease activity, and exces-
sive mucus production are pivotal in driving the alveolar damage, impaired gas exchange,
and airflow obstruction observed in COPD [4]. Consequently, patients experience a range
of symptoms including persistent dyspnea, fatigue, sputum production, and coughing,
which progressively intensify over time, potentially leading to mortality [5].

While primary smoking is a well-recognized risk factor for COPD, it is estimated
that about one-quarter of COPD patients have never smoked [6–9]. Secondhand smoke
(SHS) exposure emerges as a significant risk factor for COPD among non-smokers [3,10,11].
Despite a decline in SHS exposure in the United States, a considerable number of children
and adults continue to be exposed to passive smoke in public spaces and homes [12].
Chronic SHS exposure is associated with an elevated risk of COPD mortality in adulthood,
underscoring the need for continued public health efforts to reduce SHS exposure [13].

At the cellular level, the pathology of COPD involves numerous mechanisms and sig-
naling pathways, with the receptor for advanced glycation end-products (RAGE) identified
as a potential key player in the disease’s progression [14]. RAGE, a pattern recognition
receptor (PRR) of the immunoglobulin superfamily, binds to a variety of ligands, including
damage-associated molecular patterns (DAMPs) and advanced glycation end-products
(AGEs), which are notably present in cigarette smoke [15–18]. RAGE activation initiates
signaling cascades that lead to the nuclear translocation of NF-kB, thereby regulating genes
related to immune and inflammatory responses [19,20]. These parallel pathways result in
sustained inflammation, further exacerbated by RAGE’s expression in various cell types,
implicating it in a range of diseases, including COPD. Previous research has highlighted
RAGE’s role in acute pulmonary inflammatory responses to SHS, setting the stage for
this study’s aim to explore the signaling pathways activated by RAGE during chronic
pulmonary inflammation induced by SHS [21]. Understanding these pathways may unveil
novel therapeutic targets for mitigating inflammatory exacerbations in COPD patients.

Studies utilizing RNAseq in COPD cohorts have identified novel genes and signal-
ing pathways involved in inflammation, immune responses, and tissue remodeling [22].
Furthermore, RNAseq analyses have revealed significant alterations in gene expression
associated with oxidative stress, protease–antiprotease imbalance, and apoptosis in the
COPD lung [23]. Although transcriptomic studies that focus on COPD exist, none to date
evaluate expression data in the context of controlled RAGE expression. We therefore sought
to test the hypothesis that the availability of RAGE during sub-chronic or chronic exposure
to SHS differentially regulates pathologic signaling events. Pursuing this will provide
insights that will not only enhance our understanding of COPD pathogenesis but also pave
the way for identifying potential biomarkers and therapeutic targets.

2. Results
2.1. Initial Findings

Given the relatively large number of genotypes represented by the samples (Table 1),
we first wanted to better characterize the relationship between the various samples and
comparisons using principal component analysis (PCA; Figure 1). As a recurring theme,
we observed no differences between WT + RA and RKO + RA. Overall, we found that
the samples with the same genotype, time point, and type of exposure tended to cluster
together. To further characterize the associations between the various samples, we then
performed a correlation analysis between all samples (Figure 2). In general, we observed
that these correlations validate the PCA results.
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Table 1. Metadata for Analyzed Samples.

Genotype Exposure Type Duration of
Exposure Abbreviation Sample Size

Wild-type (WT)

Secondhand
smoke (SHS)

3 Months WT_SHS_3m n = 4

6 Months WT_SHS_6m n = 4

Room air (RA)
3 Months WT_RA_3m n = 4

6 Months WT_RA_6m n = 4

RAGE Knockout
(RKO)

Secondhand
smoke (SHS)

3 Months RKO_SHS_3m n = 4

6 Months RKO_SHS_6m n = 4

Room air (RA)
3 Months RKO_RA_3m n = 4

6 Months RKO_RA_6m n = 4
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Figure 1. Principal Component Analysis Between All Samples. Visualization shows the quadruplicate
samples tend to group primarily by WT or RKO, and secondarily by time point and exposure type.
Relationships among the color-coded samples are shown in two dimensions.

In addition to identifying sets of differentially expressed genes (DEGs) that were either
shared or unique between various comparisons (Supplementary Table S1), we generated a
heatmap of the transcriptional results across all samples (Supplementary Figure S1). We
also calculated the statistically significant pathways and Gene Ontology (GO) functional
terms that were enriched in the genes for the same comparisons (Supplementary Table S2).
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Figure 2. Correlation Analysis Between All Samples. Color-coded pairwise correlation values
between all samples are shown. Samples having darker shading are more closely correlated. The
diagonal, representing a self-to-self comparison, shows perfect correlation.

2.2. Comparison of WT + RA vs. WT + SHS Suggests Immune Component

We first examined the statistically significant DEG results between WT mice exposed
to SHS vs. WT animals exposed to RA at the three-month and six-month time points. We
found that the most statistically significant DEGs in these comparisons were Fasciculation
and elongation protein zeta-1 (FEZ1; log2 FC at three months = 4.2, p-value = 1.01 × 10−81),
Secretory leukocyte peptidase inhibitor (Slpi; log2 FC at three months = 3.97,
p-value = 8.52 × 10−33), and mesothelin (Msln; log2 FC at three months = 4.67,
p-value = 8.52 × 10−33), which were not found in the six-month time point. We also
observed that Serine (or cysteine) peptidase inhibitor, clade A member 3C (SERPINA
3C; log2 FC at six months = −1.59, p-value = 7.83 × 10−10; not significant at three
months) and endoplasmic reticulum protein 29 (Erp29; log2 FC at 6 months = −0.51,
p-value = 2.29 × 10−7) were only significantly different in animals treated for six months.

When we analyzed the significant pathway results, we found pathways associated
with the typical roles of RAGE, and others that were associated with cancer including “ECM–
receptor interaction” and “Regulation of actin cytoskeleton”; as well as “Proteoglycans in
cancer” and “Small cell lung cancer” at the three-month time point but were not significant
at the six-month time point (Supplementary Table S2) Interestingly, there appeared to
be a cluster of 11 significant pathways in the six-month time point that dealt with im-
mune responses including “Viral protein interaction with cytokine and cytokine receptor”,
“Asthma”, and “NF-kappa B signaling pathway”. We also found the “PI3K-Akt signaling
pathway” to be significantly changed at the three-month time point (p-value = 0.0045).

2.3. Comparison of RKO + SHS vs. WT + SHS Suggests a Lipid Contribution to Damage

We then wanted to compare the RAGE KO animals exposed to SHS vs. WT animals
also exposed to SHS at the three-month and six-month time points. This comparison would
reveal biological responses to SHS in animals that expressed (WT) or did not express (KO)
RAGE. As before, we first focused on the statistically significant DEGs.
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The two most statistically significant DEGs at the three-month time point were
advanced glycosylation end-product-specific receptor (Ager/RAGE; log2 FC at three
months = −7.25, p-value > 0; log2 FC at six months = −6.17, p-value = 4.46 × 10−22) and cy-
tochrome P450 1a1 (log2 FC at three months = −7.56, p-value = 1.54 × 10−171; not significant
at six months). The most significant differentially expressed gene products at the six-month
time point were solute carrier family 26 member 4 (Slc26a4; log2 FC at six months = 4.00,
p-value = 1.20 × 10−41; log2 FC at three months = 2.66, p-value = 5.45 × 10−11). When we
examined the signaling pathways for this set of comparisons, we found a subset that was
both statistically significant and biologically relevant to the RAGE KO phenotype including
“ECM–receptor interaction”, “AGE-RAGE signaling pathway in diabetic complications”,
and “MAPK signaling pathway”. We also identified a set of pathways that dealt with
lipids including “adipocytokine signaling pathway” at the three-month time point; as
well as “Arachidonic acid metabolism”, “Fatty acid metabolism”, “Cortisol synthesis and
secretion”, and “Ether lipid metabolism” at the six-month time point.

Comparing RKO + SHS vs. WT + SHS at the three-month time point has the highest
potential to improve our understanding of the role and mechanism of RAGE. As such, we
particularly focused on the most significant genes, GO functions, and signaling pathways
(Figure 3).
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Figure 3. Most Significant Signaling Pathways and Differentially Expressed Genes in the Comparison
of RKO + SHS vs. WT + SHS After Three Months: (A) Dot plot of significant signaling pathways
between RAGE-knockout animals and wild-type animals after three months of exposure to sec-
ondhand smoke. Dot size and color represent number of genes in the pathway and the adjusted
p-value, respectively. (B) Table showing the five most significant differentially expressed genes in a
comparison between RAGE-knockout animals and wild-type animals after three months of exposure
to secondhand smoke. (C) Table showing the top five most significant KEGG intracellular signaling
pathways in a comparison between RAGE-knockout animals and wild-type animals after three
months of exposure to secondhand smoke.

2.4. Comparison of RKO + SHS vs. WT + RA

Lastly, we compared the RAGE KO animals that were exposed to SHS vs. WT an-
imals exposed to RA at the three-month and six-month time points. Our analysis of
the statistically significant DEGs at the three-month time point identified Ager/RAGE
(log2 FC at three months = −5.90, p-value = 3.32 × 10−97; log2 FC at six months = −6.67,
p-value = 0), and transmembrane protein 151A (Tmem151A; log2 FC at three months = 3.61,
p-value = 3.31 × 10−77; not significant at six months). A similar analysis of the most sig-
nificant DEGs at the six-month time point identified G protein-coupled receptor family C
group 5 member a (Gprc5a; log2 FC at three months = 2.14, p-value = 1.68 × 10−24; log2
FC at six months = 2.47, p-value = 9.36 × 10−110) and dynein light chain Tctex-type 1B
(Dynlt1b; log2 FC at three months = 2.56, p-value = 0.04; log2 FC at six months = 5.97,
p-value = 1.46 × 10−77).
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Our comparison of the significantly enriched pathways for these contrasts included a
large number of pathways involved in inflammation and the immune response including
“AGE-RAGE signaling pathway in diabetic complications”, “ECM–receptor interaction”,
“Regulation of actin cytoskeleton”, as well as a subset that functions in lipid metabolism at
the three-month time point. The comparison at the six-month time point included many of
the same pathways revealed in the three-month time point assessment. In addition, the
longer period of exposure coincided with the activation of more immune-related pathways
including “Allograft rejection”, “Type I diabetes mellitus”, “Autoimmune thyroid disease”,
“Rheumatoid arthritis”, and others. We also observed the PI3K-AKT signaling pathway to
be significantly affected at both the three- and six-month time points (p-values = 0.014 and
0.033 respectively).

2.5. Multiple Comparisons Reveals Contribution of AKT and NF-kappa B Pathways

In addition to the above, we found additional evidence of an effect on AKT- and
NF-kappa B-related pathways when we reviewed the other comparisons. Specifically, we
observed that the “PI3K-Akt signaling pathway” was significantly affected in the 6 m
WT_RA vs. 3 m WT_RA comparison (p-value = 0.001), and the “NF-kappa B signaling
pathway” in the 6 m WT_RA vs. 3 m WT_RA comparison (p-value = 0.0184).

Our enrichment analysis also identified pathways that were statistically significant
across multiple time points involving the RKO + SHS animals. For example, components
of the “Human papillomavirus infection” as statistically significant in both time points
of the RKO + SHS vs. WT + RA (p-values = 2.065 × 10−6 and 2.775 × 10−6) and the
RKO + SHS vs. WT + SHS (p-values 0.0241 and 0.0149) comparisons. “Phagosome” was
significant across both RKO + SHS vs. WT + RA time points and the later RKO + SHS vs.
WT + SHS comparison, while both “ECM–receptor interaction”, “Cell adhesion molecules”,
“Proteoglycans in cancer”, “Regulation of actin cytoskeleton”, and others were identified
as significant across at least one time point in each of the three comparisons. We did not
observe any statistically significant effects on apoptosis-related pathways in any of the
comparisons.

3. Discussion

The goal of this study was to clarify possible intersecting roles for RAGE following
sub-chronic (3 months) or chronic (6 months) exposure to SHS. To do so, we generated
RNA-sequencing data and performed multiple computational comparative analyses that
revealed a large number of differentially expressed genes and signaling pathways.

While this publication cannot address every DEG that we discovered in the analyses,
our results did include several findings that have been shown previously. For example,
the RAGE pathway was significantly affected in the KO animals, which confirms the
phenotype of these animals and serves as an internal validation control in the relevant
comparisons. In our comparison of WT animals exposed to either SHS or RA, finding
SERPINA 3C as a differentially expressed gene agrees with past findings that SERPINA 3C
is found in the extracellular space and is part of the response to various stressors including
COPD [24,25]. The superfamily of Serpins is the largest, most broadly distributed group
of protease inhibitors. They are extracellular molecules that regulate proteases involved
in blood coagulation, inflammation, tissue remodeling, and immune responses [26]. We
also found that the Slc26a4 gene, which we showed to be significantly upregulated in
both time points from the RKO + SHS vs. WT + SHS comparison, plays a key role in
airway inflammation [27–29]. Slc26a4 is a gene that codes for pendrin, a molecule that
is often upregulated at the apical edge of airway epithelial cells involved in mucus over-
production [28]. The current work confirms a role for Slc26a4, most likely as a means of
coordinating the expression of MUC5AC, a major product of mucus abundantly expressed
during COPD progression, and further implicates a role for RAGE in its activity.

The discovery that lipid biology was differentially impacted by RAGE signaling
supports a previously seen link between RAGE and fatty acid metabolism [30]. For instance,
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Wang et al. demonstrated that the loss of RAGE differentially impacted apoptosis and
inflammation, which resulted in restored fatty acid oxidation [31]. Further, clarifying a
link between RAGE signaling and the elaboration of adipocytokines further implicates
RAGE in recently researched axes of metabolic syndrome, cancer, and obesity. Such
connections include differential leptin and RAGE levels in patients with lung disease [32],
chronic RAGE-mediated inflammation observed in cardiovascular metabolic disruption
and neoplasia [33], and RAGE effects on adipocytokine levels in obese asthmatic mice [34].
These RNAseq data provide a compelling case for immediate research into the functional
aspects of RAGE-mediated alteration of lipid synthesis and metabolism.

Our observation that the PI3K-Akt signaling pathway was significantly enriched in
DEGs at multiple time points in RAGE KO and WT animals exposed to SHS or RA was
somewhat expected. This agrees with prior work showing that the effect of RAGE on the
PI3K-Akt pathway can induce autophagy and apoptosis [35–37]. We also found the NF-
kappa B signaling pathway to be significantly affected in the WT + SHS vs. WT + RA at six
months and the WT + RA animals at six months vs. the WT + RA animals at three months in
our system, which also agrees with previous general findings [38–40]. Of particular interest
is the discovery that the MAPK signaling pathway was a prominent axis clarified by KEGG
pathway analysis (Figure 3C). We have previously identified increased Ras activation, a
molecule GTPase that perpetuates RAGE signing into the cell following interaction with
ligands [41]. Furthermore, this previous work revealed RAGE-mediated activation of NF-
kB and a role for RAGE in the secretion of numerous pro-inflammatory cytokines including
IL-13, Eotaxin, MIP-1γ, IFN-γ, Lymphotaxin, MCP-1, MCSF, MIG, TECK, TNF-α, sTNR-R1,
and sTNF-RII following SHS exposure [41]. Our confirmation that MAPK signaling is a
central pulmonary response to SHS foreshadows at least 113 additional gene targets that
likely orchestrate responses to exposure.

We believe it is important to point out at least a subset of the possible limitations
of the current study. First, the animal model that was characterized in this study does
suggest multiple potential roles of RAGE in SHS exposure; however, future work will be
needed to determine whether these changes are replicated in other model systems and
in humans. Second, although RNAseq is highly quantitative and some of our results
concur with prior work, future validation experiments will serve to confirm our findings.
Lastly, our study was focused on the role of RAGE in the context of SHS exposure, with
additional experiments needed to determine its role in other respiratory conditions. These
data collectively identify several opportunities to further dissect RAGE signaling in the
context of SHS exposure and foreshadow possible therapeutic modalities.

4. Materials and Methods
4.1. Mice and SHS Treatments

Female mice in a C57Bl/6 background were maintained in a pathogen-free environ-
ment under a 12 h light/dark cycle with unrestricted access to food and water. Adolescent
mice, aged 40 days (PN40), were subjected to either secondhand smoke (SHS) or ambient
room air (RA) over a 6-month span (about 24 weeks). Both wild-type (WT) and RAGE
knockout (RKO) mice, (n = 4 per group) experienced SHS exposure using a nose-only inhala-
tion system (InExpose System, Scireq, Montreal, QC, Canada), following protocols outlined
in prior research [41,42]. Exposure sessions were conducted five days per week, based on
preliminary experiments and existing studies that determined the necessary duration to
induce physiological changes. Mice in the RA control groups were also restrained and
exposed to room air under similar conditions, with no fatalities reported during the study
among animals in any group. At the end of the 6 months, mice were euthanized; while the
left lung was dedicated to obtaining bronchoalveolar lavage fluid (BALF) not described
in the current investigation, the non-lavaged right lungs were excised and snap-frozen in
liquid nitrogen for subsequent analysis of total RNA. The study protocols were approved
by Brigham Young University’s Institutional Animal Care and Use Committee (IACUC),
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conforming to all relevant guidelines, under protocol number 21-0203, with approval valid
from 17 March 2021 to 16 March 2024.

4.2. RNA Extraction, Library Preparation, and Sequencing

Total lung RNA was isolated using the Direct-zol RNA MiniPrep kit w/TriReagent
(Zymo Research, Irvine, CA, USA, Cat No. R2053-A). Briefly, resected lung tissue was
homogenized at high speed in tri reagent and then centrifuged. Supernatants were collected
and then mixed with equal parts of 100% ethanol before being transferred to a zymo-spin
IICR column. DNase I treatment was performed as recommended in the manufacturer’s
protocol, and all other column filtration washes were performed according to instructions
included in the kit. After the washes, RNA was eluted with 25 µL of DNase/RNase-Free
Water, and then stored at −80 ◦C until library preparation. The mRNA from the samples
was purified in preparation for cDNA synthesis using poly-dT oligo-attached magnetic
beads. First-strand cDNA was subsequently synthesized using random hexamer primers,
followed by second-strand cDNA synthesis, end repair, A-tailing, Illumina adapter ligation,
size selection, amplification, and purification. The sequencing library was then quantified
using a Qubit instrument (Fisher Scientific, Waltham, MA, USA) and real-time PCR, and a
Bioanalyzer (Fisher Scientific) was used to characterize size distribution. Paired-end Illu-
mina sequencing was then performed on the normalized and pooled barcoded quantified
libraries using an Illumina NovaSeq instrument (Novogene, Sacramento, CA, USA).

4.3. Read Mapping, Quantification, and Differential Expression

The paired-end sequencing reads were trimmed for quality and adapters with com-
mercial software. Read mapping was performed using Hisat2 (version 2.0.5) [43] using
the indexed mus musculus reference genome and annotation files from Ensembl (version
107) [44]. The featureCounts software (version 2.0.6) was then used to count the number of
reads that mapped to the reference genome, with over 90% of reads uniquely mapped [45].
The read counts were then normalized to fragments per kilobase of transcript sequence
per million (FPKM) method. Differential expression analysis was performed using the DE-
Seq2 algorithm (R package version 1.20) with genes having a false-discovery rate-adjusted
p-value < 0.05 categorized as statistically significant [46].

4.4. Functional Enrichment Analyses

The clusterProfiler method and Gene Set Enrichment Algorithm (GSEA) were used
to perform the KEGG and Reactome intracellular signaling pathway enrichment as well
as the Gene Ontology (GO) enrichment analysis [47–51], with adjusted p-values < 0.05
categorized as statistically significant. Similar enrichments for diseases (using the Disease
Ontology) and gene-disease associations (using DisGeNET data) were also performed.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms25094940/s1.
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