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Abstract: This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate
metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism.
Although it was traditionally thought that phosphate–calcium homeostasis was controlled exclusively
by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence
of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate
and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate
metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular,
immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis.
Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses
challenges due to its potential side effects. However, the approval of drugs such as burosumab
represents a milestone in the treatment of FGF23-related diseases.
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1. Introduction

Fibroblast growth factor 23 (FGF23) is a protein belonging to the fibroblast growth
factor family, and is responsible for regulating phosphorus metabolism [1]. For a long time,
it was believed that phosphate–calcium homeostasis was exclusively under the influence of
parathyroid hormone (PTH) and 1.25-dihydroxyvitamin D3 (calcitriol) as shown in Figure 1.
However, pathophysiological studies with phosphate restriction revealed the existence of
other factors involved in the regulation of calcitriol and phosphate levels [2].

FGF23 consists of 251 amino acids and is mainly expressed in bone, specifically in
osteoblasts and osteocytes [3], although it can also be detected in various organs such as
the liver [4], brain [5], heart [6], thyroid [7], intestine [8], and skeletal muscle [9].

FGF23 acts as a potent inhibitor of renal phosphate reabsorption, inducing renal phos-
phate excretion and decreasing the surface expression of the sodium-associated phosphate
transporters NaPi-IIa and NaPi-IIc, which are located in the proximal tubule [10]. In
addition, at the renal level, FGF23 decreases the expression of cytochrome P450 family
27 subfamily B member 1 (CYP27B1), the key enzyme for the formation of calcitriol [11].
These effects are mediated by the α-klotho co-receptor.

Although the effects on phosphate metabolism are well established, recent research
has revealed the pleiotropic effects of the hormone on other physiological systems beyond
the renal system [12]. At the bone level, an increasing number of preclinical studies infer
local actions of FGF23 on bone remodeling, as well as its relationship in a clinical context
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with bone fragility and fracture risk in patients with or without kidney disease [13–15]. On
the other hand, FGF23 has been recognized as an important biomarker at the cardiovascular
level [16,17]. In addition, it appears to be involved in iron metabolism [18], immune
response [19], or glucose metabolism [20]. In this article, we will explore some of the
recently discovered non-classical effects of FGF23.
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Figure 1. Classical effects of FGF23. (A) Mechanism of action of FGF23. (B) Signaling pathways
of FGF23.

2. FGF23 Effects over Vitamin D, PTH, and Bone Metabolism
2.1. Vitamin D

The best-known effect of FGF23 on vitamin D metabolism is the decrease in calcitriol
on its passage at the renal level by α1-hydroxylase in an α-klotho-dependent, MAP kinase-
mediated mechanism [21]. Knockout mice for FGF23, α-klotho, or both exhibit higher
levels of calcitriol and α1-hydroxylase [21]. Furthermore, the infusion of FGF23 allowed a
reversal of hypervitaminosis in FGF23 knockout mice [22]. This phenotype is clinically sim-
ilar in patients with loss-of-function mutations in FGF23, resulting in hyperphosphoremia,
hypervitaminosis D, and calcinosis [23,24]. On the other hand, FGF23 induces the inactiva-
tion of calcitriol through an increased expression of 25-Hydroxyvitamin D-24-hydroxylase
(CYP24A1) [25].

In turn, calcitriol could regulate the expression of FGF23. It has been observed in
patients that paricalcitol supplementation potentiated the production of FGF23 in a mecha-
nism mediated by the vitamin D receptor (VDR) [26]. In mice, the genetic inactivation of
the VDR reduced the levels of active FGF23 compared to wild-type mice, which implies
the need for this receptor for vitamin D to mediate its effects on FGF23 [27]. Supporting
this concept, α1-hydroxylase knockout mice with functioning VDR resulted in a phenotype
with decreased FGF23, which increased with calcitriol administration [28]. In contrast,
the intraperitoneal injection of paricalcitol in vitamin D-deficient rats (via standard vita-
min D-deficient diet) caused FGF23 reduction in a vitamin D-mediated effect and PTH
reduction [29]. In humans, there is a discrepancy in these facts. A meta-analysis of random-
ized placebo-controlled clinical trials found that vitamin D administration was associated
with an increase in circulating FGF23 levels in a dose-dependent manner [30]. However,
another meta-analysis of randomized clinical trials did not confirm these findings [31].



Int. J. Mol. Sci. 2024, 25, 4875 3 of 18

The discrepancy in the two studies could be mediated by the different forms of vitamin D
administration in the form of calcitriol or 25-hydroxyvitamin D3 (calcifediol) [32].

2.2. PTH

FGF23 is a negative regulator of PTH mRNA expression and secretion and can be
stimulated by non-oxidized PTH, particularly in the context of chronic kidney disease
(CKD) [33]. The relationship between FGF23 and PTH is further influenced by dietary
phosphate intake, with FGF23 levels decreasing on a low-phosphate diet and increasing
with a high-phosphate diet [34]. These findings suggest a complex interplay between
FGF23 and PTH in the context of CKD and dietary phosphate intake.

The relationship between PTH and FGF23 is fundamental to the regulation of
phosphate–calcium metabolism in the body. Both hormones play key roles in maintain-
ing adequate levels of phosphate and calcium in the body. Under normal physiological
conditions, there is an inverse relationship between PTH and FGF23 levels [35]. When
FGF23 levels increase, they tend to inhibit PTH release. This effect of FGF23 would be
carried out through two pathways: one mediated by the activation of the ERK1/2 pathway
in an α-klotho-dependent manner and another in a klotho-independent manner through
NAFT/calcineurin [36,37]. In addition, it has been observed that FGF23 can increase the
presence of vitamin D receptors (VDR) and calcium-sensitive receptors in parathyroid cells,
which could pathophysiologically decrease PTH expression [13].

In advanced kidney disease (CKD), FGF23 loses its ability to suppress PTH [13].
Prolonged exposure to FGF23 may even increase PTH secretion. In CKD, a state of hyper-
parathyroidism develops despite the increased and possibly inhibitory effect of FGF23. In
this uremic condition, chronic exposure to FGF23 seems to lead to the down-regulation
of Klotho and FGFR1c receptors on parathyroid cells, generating resistance to FGF23 [38].
Furthermore, in the clinical situation of hyperparathyroidism in CKD, extremely high levels
of FGF23 decrease calcitriol, which in turn increases PTH levels. Resistance to FGF23 would
result in increased PTH, increased phosphate, and decreased VDR.

At the bone level, there is conflicting evidence on the effect of PTH on FGF23 release.
In murine models, PTH administration after parathyroidectomy resulted in increased
FGF23 expression [39,40], whereas other studies showed the opposite effect, with reduced
FGF23 after PTH administration [41,42]. In human models, PTH infusion increased FGF23,
whereas supraphysiological PTH infusion reduced levels. These contradictory results could
be due to other factors, such as the hypophosphatemic effect of PTH, relative elevation
of calcitriol, and variations in calcium levels [43]. In another study, in patients with
hypoparathyroidism, an increase in FGF23 was observed without changes in calcitriol
concentration [44].

2.3. Bone Metabolism

In vitro studies with murine osteoblasts have shown that an increase in FGF23 leads to
an increase in bone mineralization, with a dose-dependent increase in osteocalcin, osteopon-
tin, and alkaline phosphatase, and this effect is independent of calciferol and Klotho [45].
However, the specific effects of FGF23 on osteoblast differentiation and mineralization
are still debated since others have suggested that FGF23 and soluble Klotho can inhibit
mineralization and osteoblast activity [46,47]. In CKD rats there appears to be an inhi-
bition of the Wnt/βcatenin pathway in osteoblasts [48]. These indications support an
auto/paracrine effect of FGF23 on the bone matrix [49]. However, a supraphysiological
concentration of FGF23 inhibited the effect of alkaline phosphatase by increasing extracel-
lular pyrophosphate, decreasing inorganic phosphate with a consequent decrease in bone
mineralization [50]. Therefore, the effect of FGF23 could be different depending on FGF23
concentrations [49].

The absence of VDR decreases FGF23 levels, causing a decrease in osteoclastogenesis.
Thus, FGF23 may be involved in the RANKL signaling pathway [51]. Another study
with human monocyte-derived osteoclasts showed a biphasic response to FGF23 with an
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inhibition of the early stages of osteoclastogenesis followed by an increase in osteoclastic
activity [52].

Therefore, FGF23 could affect bone remodeling through its effects on bone mineral-
ization and osteoclastogenesis. According to some of the effects described, FGF23 could
increase bone resorption and therefore could lead to deleterious effects on bone. The
association between FGF23 and bone mass is contradictory. In a study of 3014 Swedish
men with osteoporosis, FGF23 levels showed a positive association with bone mass density
(BMD), but no correlation was found after adjustment for confounding factors [53]. In
another study of 5994 men with osteoporosis there was a similar neutral effect on femoral
neck BMD [54]. In contrast, in studies in postmenopausal women involving cohorts of 60
and 123 patients, there was a negative relationship between FGF23 and BMD [55,56]. This
detrimental effect in postmenopausal women of FGF23 on bone was reinforced in another
study where it was associated with a deterioration of bone trabecular microarchitecture [57].
Therefore, there is insufficient evidence to determine the role of FGF23 in the pathogenesis
of osteoporosis to date.

Despite contradictory evidence on BMD, increased levels of FGF23 could be a predictor
of fracture risk both in the population without CKD [58,59] and with or without end-
stage CKD [54,59,60]. FGF23 could play a role in the pathogenesis of bone disease in
CKD. In CKD, FGF23 does not inhibit PTH production and decreases calcitriol levels,
leading to further hypocalcemia and the generation of secondary hyperparathyroidism. In
addition, excess FGF23 could inhibit bone mineralization by reducing alkaline phosphatase
and pyrophosphate accumulation [61]. In animal models of CKD, the administration of
antibodies against FGF23 resulted in improved bone quality [62,63]. However, in other
studies with animal models this neutralization of FGF23 resulted in an exacerbation of
hyperphosphatemia, increased calcitriol, and increased arterial calcification [49].

3. Cardiovascular Effects

A number of studies have demonstrated the association between increased mortality
and increased levels of FGF23 independently of the presence of CKD, so the increased
mortality could be due to a greater increase in cardiovascular risk [64,65]. In a recent meta-
analysis, Menglu Liu et al. show the relationship between FGF23 levels and myocardial
infarction, stroke, heart failure, and cardiovascular mortality [66].

3.1. Endothelial Dysfunction

The results in different in vivo and ex vivo studies seem contradictory. Lindberg et al.
found no effect of FGF23 on endothelial function [67]; however, in other studies, they state
that FGF23 results in aortic endothelial dysfunction.

From a clinical perspective, elevated serum levels of FGF23 are associated with en-
dothelial dysfunction both in patients with stage 3–4 CKD [68] and in the general popula-
tion [69]. Similarly, after renal transplantation and the normalization of FGF23 levels, there
is an improvement in endothelial function [70].

3.2. Left Ventricular Hypertrophy

In clinical practice, an association between increased FGF23 levels and left ventricular
hypertrophy (LVH) has been observed independently of renal involvement [71], both in
patients with normal FGF23 levels and no CKD [72], and in those with increased FGF23
levels in the context of CKD [73]. This association has been confirmed experimentally,
where increased FGF23 on cardiomyocytes results in a change in gene expression leading
to myocardial hypertrophy. This effect has been replicated in mice in the absence of klotho,
confirming that the mechanism operates in a klotho-independent manner [73]. This process
appears to be mediated by the activation of the fibroblast growth factor receptor 4 (FGFR4)
and the PLCgamma/calcineurin/NFAT pathway in cardiomyocytes [74].

Conversely, other authors have not found these effects at the experimental level and
argue that myocardial damage is not due to the direct effect of FGF23 [30,75,76]. In addition,
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it has been observed that mice and children with X-linked hypophosphatemia (XLH) do
not present with LVH [77–79]. These studies suggest that phosphate may play an important
role in the cardiotoxic function of FGF23.

There is evidence of a paracrine effect of FGF23 in cardiomyocytes themselves. It has
been demonstrated that cardiomyocytes are capable of expressing FGF23 [80]. In clinical
studies, the presence of FGF23 has been observed in heart explants from patients with
ischemic or dilated heart disease in whom cardiac transplantation has taken place [81]. In
parallel, an increase in FGF23 has been observed at both bone and cardiac levels in mice
with myocardial infarction [82] and this increase in FGF23 in cardiac pathological situations
could also be observed in a model of LVH with aortic constriction in which an increase in
FGF23 expression at both cardiac and bone levels was determined [83]. These results are
consistent with those obtained at the clinical level where patients who required intra-aortic
balloon pumps exhibited higher levels of FGF23, which were associated with increased
mortality [84].

3.3. Cardiac Fibrosis

Fibrosis is an adaptive response to tissue damage, although excessive deposition in
the extracellular matrix leads to architectural disruption and damage to healthy tissue [85].
Although FGF23 has a clear effect on the myocardium, its effect on cardiac fibrosis is not
clear. FGF23 could induce myocardial fibrosis through the activation of β-catenin and
TGF-β1. In adult cardiac fibroblasts, FGF23 induces, in a dose-dependent manner, the
overexpression of profibrotic genes such as β-catenin and procollagen I and II [86]. In
addition, FGF23 increases the expression of TGF-β1 and procollagen I, along with the
proliferation of neonatal rat cardiofibroblasts. This effect on TGF-β1 could be mediated
by fibroblast growth factor 1 (FGFR1) and the paracrine secretion of FGF23 since the
blockade of FGFR1 prevents fibrosis [87]. These effects have also been observed in vivo
in klotho knockout mouse models with FGF23 elevation, where fibrosis developed in
a mechanism dependent on increased procollagen I and TGF-β1 [88]. The injection of
FGF23 by adenovirus in mice demonstrated a significant increase in cardiac fibrosis, the
detrimental effect of which was prevented by an inhibition of β-catenin. Thus, in the
first instance, FGF23 could have a benefit in healing after a cardiac ischemic event as it
stimulates fibroblasts for the initial development of fibrosis [89], but prolonged exposure to
high levels of FGF23 could result in pathological fibrosis [90].

3.4. FGF23 and the Renin–Angiotensin–Aldosterone System

The activation of the renin–angiotensin–aldosterone system (RAAS) is another recog-
nized factor in the fibrosis, hypertrophy, and inflammation of the myocardium [91]. In this
system, renin is converted into angiotensin I and into angiotensin II by the angiotensin-
converting enzyme (ACE), which is the factor that conditions fibrosis and hypertrophy.
Angiotensin II is metabolized by angiotensin-converting enzyme II (ACE2), whose prod-
ucts have vasodilatory and hypotensive effects. FGF23 has been shown to activate the
RAAS by inhibiting ACE2 [92]. On the other hand, the RAAS can induce FGF23 expression
by both angiotensin II and aldosterone [93], whereas calcitriol suppresses renin and thus
the RAAS [94]. It could be hypothesized that FGF23 inhibits the formation of calcitriol,
indirectly mediating in the RAAS. In conclusion, although the relationship between FGF23
and the RAAS is not clearly described, FGF23 could affect fibroblasts and cardiomyocytes
through a non-classical activation of the RAAS [95].

3.5. Atherosclerosis

Observational studies have noted an association between FGF23 levels and the pres-
ence of vascular calcifications [96,97]. FGF23 is expressed in carotid arteries with athero-
matous plaques and in the coronary arteries of transplant patients [98,99]. However, it
has not been determined whether FGF23 is a cause or a consequence of endothelial in-
jury [98]. In vitro results present contradictory positive and negative results regarding the
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formation of intravascular calcification [100,101]. While the overexpression of FGF23 in
rodents does not generate vascular calcification [102], FGF23 deficiency results in severe
calcifications [103]. Therefore, the role of FGF23 on atherosclerosis has not been reliably
determined.

4. FGF23 and Iron Metabolism
4.1. Iron Deficiency

Research on the interaction between FGF23 and iron metabolism originated from
clinical observations in patients with autosomal dominant hypophosphatemic rickets
(ADHR) and iron deficiency. It was noted that many female carriers of the disease had no
associated clinical symptoms, until menarche, related to iron deficiency [104]. To explore
this relationship between FGF23 and iron, it was observed that low iron levels correlated
with elevated levels of the inactive form of FGF23 (cFGF23), after the cleavage of the
active form (iFGF23), in both the ADHR population and healthy controls. This negative
correlation was maintained in patients with ADHR and iFGF23, but not in healthy controls
who maintained normal iFGF23 values [105].

These findings were confirmed using ADHR mice, where increased bone FGF23 mRNA
and increased serum cFGF23 levels were observed in both affected mice and controls.
In contrast, ADHR mice showed higher iFGF23 levels and hypophosphatemia during
iron deficiency, whereas wild-type controls maintained normal iFGF23 and phosphorus
levels [106]. Therefore, these data support the idea that iron deficiency can stimulate both
the transcriptional and post-transcriptional activity of FGF23, maintaining normal iFGF23
levels in healthy patients [107].

In chronic kidney disease (CKD), alterations in FGF23 cleavage mechanisms are also
observed, although the underlying mechanisms are unknown. In CKD, both absolute iron
deficiency, characterized by a decrease in total iron, and relative iron deficiency, which is
due to a reduced ability to utilize circulating iron from its stores, are present [108]. This iron
deficiency, either absolute or relative, has been associated with increased levels of the active
form of FGF23 (iFGF23) in animal models with CKD [109]. In addition, elevated levels of
FGF23 have been observed in patients with CKD and iron deficiency [110]. Therefore, iron
deficiency in CKD patients could contribute to the increase in FGF23 [111].

In situations of acute anemia, an increase in cFGF23 levels without significant changes
in iFGF23 has also been observed, both in animal models and in patients requiring red
blood cell transfusions in intensive care. In the animal model, these effects appear to be
mediated by the reduction in the enzyme polypeptide N-acetylgalactosaminyltransferase 3,
which prevents FGF23 cleavage by keeping cFGF23 and iFGF23 levels balanced [112].

4.2. Hypoxia

There are no clear mechanisms by which iron deficiency appears to increase FGF tran-
scription [30]. One of the proposed mechanisms is the activation of hypoxia-induced factors
(HIF). It has been observed that increased HIF1α resulted in increased FGF23 transcription
by binding to its promoter in osteoblast cultures [113]. In this regard, iron-deficient mice
with HIF1α blockade modified FGF23 levels upward. Therefore, it is suggested that HIF1α
may be one of the mediators of increased FGF23 in iron deficiency, anemia, or inflammation
even though HIF1α does not appear to be a necessary factor for FGF23 expression since the
knockout of HIF1α in mature osteoblasts does not affect FGF23 levels in wild-type mice or
those with XLH [114].

4.3. Erythropoietin (EPO)

EPO stimulates erythropoiesis by stimulating erythroblast differentiation, survival,
and proliferation [115]. Additionally, it ameliorates iron deficiency by reducing hepcidin
through the release of iron from intracellular compartments [116]. Similar to iron deficiency,
both endogenous and exogenous EPO increases transcription through the cleavage of
FGF23 [117,118]. Furthermore, patients with mutations that increase EPO production
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have increased levels of cFGF23 without changes in iFGF23 [119]. In patients with CKD,
the acute administration of EPO also results in modest increases in iFGF23 relative to
cFGF23 [117,118]. Furthermore, this EPO-mediated increase in FGF23 is due to increased
mRNA expression in bone marrow hematopoietic precursors [117,120]. However, up to
40% of the increase in cFGF23 is maintained after bone marrow ablation. This could be due
to a possible secretion of cFGF23 by osteoblasts [121].

4.4. Iron Repletion

By correcting iron deficiency, cFGF23 levels are reduced, due to a decrease in its tran-
scription, while in healthy patients without CKD iFGF23 levels do not change with iron
repletion; in CKD patients, one would expect that restoring iron levels would result in a
reduction in iFGF23, although this effect is not fully confirmed [122,123]. A clinical trial
in hemodialysis patients showed that the restoration of iron levels by oral iron intake de-
creased iFGF23 levels from baseline [110]. In parallel, the same effect was observed in CKD
mice given iron [124]. An analogous effect was achieved in the ADHR model, where there
was also an increase in iFGF23 due to transcriptional upregulation and the impossibility of
post-transcriptional cleavage. ADHR mice with iron deficiency exhibited normal levels of
iFGF23 and phosphorus after the restoration of iron levels [125]. This effect also appeared
to translate to ADHR patients, where a case is reported with a cessation of symptomatology
after IV iron administration, and in a clinical trial where iron supplementation reduced
iFGF23 levels and hypophosphatemia [107].

Paradoxically, cases of hypophosphatemia have been reported after intravenous IV
iron administration [18]. In a clinical trial with 55 women using dextran iron versus car-
boxymaltose iron, cFGF23 levels were shown to be reduced in both groups, while the
carboxymaltose group increased iFGF23 and half of the patients developed hypophos-
phatemia [122]. This effect was further corroborated in a clinical trial of 2000 patients with
anemias of different origins [123]. The mechanism by which iron carboxymaltose produces
an increase in iFGF23 may be similar to the ADHR model. When these phosphaturic
preparations are administered in the situation of iron deficiency with increased FGF23
transcription, they would inhibit the FGF23 cleavage process leading to an increase in
iFGF23. It is proposed that the sugar compounds in the preparation could increase the
glycation processes that prevent the cleavage of the molecule [122].

5. FGF23 and Renal Failure

As previously described, there is a close association between the levels of FGF23 and
CKD. Although its value as a clinical biomarker remains under discussion, some studies
showed that FGF23 is an independent predictor of adverse outcomes in CKD patients,
observing an association between high FGF23 levels with increased cardiovascular risk and
progression to end-stage renal disease requiring renal replacement therapy (RRT) [126–129].
In an observational study of 180 healthy adults and 18 adults with stage 3–5 CKD, Smith
et al. determined that there was a high variability in FGF23 measures, specifically iFGF23,
as a diagnostic tool, suggesting that risk-related thresholds of cFGF23 measures may be
more appropriate for clinical decision-making [130]. In contrast, another study conducted
in 2544 Canadian patients with CKD estimated that the measurement of new biomarkers
such as FGF23 does not imply an improvement in the prediction of RTT when added to
conventional risk factors; however, it improved the prediction of death at one year [131].

Regarding acute kidney injury (AKI), several studies indicate that there is a significant
increase in FGF23, postulating it as a promising early biomarker of AKI [132–134]. Compar-
ative studies between mice and humans show consistent results in the increase in FGF23
related to AKI after cardiac surgery [132]. Compared with other cardiac surgeries, plasma
FGF23 levels were consistently higher in those who developed AKI than those who did not;
specifically, cFGF23 levels were more robust and significantly associated with an increased
risk of severe AKI and the need for RRT or death [133]. To date, the mechanisms by which
FGF23 increases after the onset of AKI remain unknown. However, a study in murine
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models observed a decrease in the severity of AKI induced by ischemia–reperfusion in mice
pretreated with FGF23, suggesting a protective role of FGF23 in AKI, and the promotion
of renal tubular regeneration and vascular repair [135]. Thus, FGF23 alterations in AKI
highlight the importance of the bone–kidney–heart axis

6. Inflammation and Immune System

FGF23 stimulates the secretion of proinflammatory cytokines. In an animal model,
elevated levels of FGF23 in mice increased serum and hepatic levels of C-reactive protein
(CRP) and interleukin-6 (IL-6) [136]. This increase in inflammatory markers can also be
observed in patients with moderate CKD the higher the level of FGF23 [137]. The effect
seems to be mediated by fibroblast growth factor receptor 4 (FGFR4), since its blockade
in nephrectomized mice with elevated FGF23 resulted in a reduction in inflammatory
markers. Similarly, inhibition with cFGF23 reduces inflammation and improves renal
function in a mouse model of diabetic nephropathy [138]. In a feedback loop, different
proinflammatory cytokines such as TNFα, IL-β1, and IL-6 have been shown to increase the
expression of FGF23 [109,139–141]. This mechanism would be similar to that previously
presented for iron deficiency and EPO, with increased transcription and, at the same time,
post-transcriptional excision, but which in situations with an alteration of this control, such
as CKD, would give rise to increased iFGF23 [109]. In patients with CKD, higher levels of
FGF23 are associated with increased infection-related mortality [142] and hospitalizations
for infection [143]. In addition, FGF23 has been shown to dysregulate the immune response
in mouse models, altering the leukocyte response and bacterial clearance. This effect could
be reversed by antibodies against FGF23 [144].

7. FGF23 and Obesity

The relationship between obesity and FGF23 levels is not completely clarified. In
the last decade, the possibility has arisen that the fibroblast growth factor FGF23 may
be linked to fat content and alterations in lipid and glucose metabolism. One study has
observed elevated serum levels of FGF23 in individuals with obesity, especially those with
abdominal obesity. Another study conducted in 1599 normoglycemic individuals, including
men and premenopausal and postmenopausal women, found independent associations
between the presence of abdominal obesity and increased serum levels of FGF23 in specific
groups. This suggests that serum FGF23 levels could indicate the risk of metabolic and
cardiovascular disease in men and postmenopausal women [145]. In contrast, another
study in obese young people with or without insulin resistance observed that the group
of patients with insulin resistance had lower levels of FGF23 [146]. However, a study
by Hanks and colleagues with 1040 participants reported a positive association between
insulin resistance and FGF23 levels in the absence of chronic kidney disease. Furthermore,
they found a positive relationship between resistin levels and FGF23, without observing an
association with adiponectin [147]. Figure 2 schematizes the endocrine effects of FGF23
described above.

The mechanism by which adipokines regulate FGF23 secretion is not completely
understood. However, some studies have observed that adiponectin and leptin impact
FGF23 secretion in different ways. High levels of adiponectin reduce renal Klotho secretion
and FGF23 production by osteocytes. This mechanism is mediated by the renal adipokine
receptors ADIPOR1 and ADPR2 [148].

Leptin increases the expression of bone FGF23 but not renal Klotho, which reduces
the production of calcitriol and consequently enhances PTH secretion. Additionally, leptin
directly stimulates PTH secretion. The combined elevation of FGF23 and PTH leads to
increased phosphaturia [149].
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8. FGF 23 as a Biomarker

There are several hypophosphatemic diseases associated with increased FGF23, such
as autosomal dominant and recessive hypophosphatemic rickets/osteomalacia (ADHR,
ARHR) [150,151], X-linked hypophosphatemic rickets/osteomalacia (XLH) [152], hypophos-
phatemic rickets/osteomalacia associated with McCune–Albright syndrome (MAS)/fibrous
dysplasia (FD) [153], or epidermal nervous syndrome [154]. Other diseases that cause
acquired hypophosphatasemia due to increased levels of FGF23 are tumor-induced rick-
ets/osteomalacia (TIO) [155], hypophosphatemia following intravenous iron infusion [156],
and biliary atresia [157].

On the contrary, deficiencies in FGF23 levels, either due to genetic mutations or due
to treatments, lead to hyperphosphatemic diseases such as Hyperphosphatemic Tumor
Calcinosis [158]. Finally, in CKD, a hyperphosphatemic state occurs despite the high
production of FGF23. This particular case could be due to an attempt to compensate for
phosphate levels by FGF23 [159].

Due to the wide range of systems in which FGF23 participates, this protein has
emerged as a potential biomarker for cardiovascular risk, with high levels associated with
adverse outcomes such as heart failure and arrhythmias [90]. It is also a promising marker
for identifying high-risk patients in chronic and acute diseases, particularly chronic kidney
disease, where it is strongly linked to excess morbidity and mortality [160]. In patients
with type 2 diabetes, serum levels are elevated in those with diabetic nephropathy [161];
however, the exact role of FGF23 in these conditions, and whether its association with
clinical events is causal, remains a topic of debate [162]. FGF23’s involvement in phosphate–
calcium metabolism further underscores its potential as a biomarker for various pathologies
such as the risk of bone fractures [163].

9. FGF23 as a Therapeutic Target

Conventional therapy for hypophosphatemic rickets adult patients typically involves
oral phosphate salts administered twice daily, along with active vitamin D metabolites. The
treatment goal is symptom improvement rather than serum phosphate level normalization.
A close monitoring of plasma calcium, PTH, creatinine, and 24-h urinary calcium excretion
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is essential to prevent tertiary hyperparathyroidism due to phosphate overdose and hy-
percalciuria leading to nephrocalcinosis and renal insufficiency from excessive calcitriol
treatment [164,165].

FGF23 has been identified as a potential therapeutic target in several diseases [166].
Excessive levels of FGF23 have been associated with adverse effects, particularly in pa-
tients with chronic kidney disease [162]. Targeting FGF23 signaling with antibodies and
inhibitors has shown promise in improving disease phenotypes in model mice and clinical
trials. However, the specific mechanisms and potential benefits of FGF23 inhibition in CKD
patients require further investigation [167]. The loss of FGF23 can generate serious draw-
backs such as hypophosphatemia and soft tissue calcifications. Regarding CKD models, an
increase in mortality has been observed in preclinical trials using a high-affinity blockade of
FGF23 [62]; however, an increase in survival has been observed in end-stage CKD patients
using calcimimetics as the inhibition of PTH production results in a modest reduction in
FGF23 levels [168].

Burosumab, a low-affinity monoclonal antibody targeting fibroblast growth factor 23,
has been approved for the treatment of XLH. Clinical trial results show a normalization of
phosphate homeostasis and healing of rickets with a favorable safety profile [169,170].

More recently, studies in adults with XLH and subjects with tumor-induced osteomala-
cia have also been published with successful results. In both cases, the regulatory agencies
have approved this new indication [171,172].

The FGF23-FGF/Klotho receptor pathway has been postulated as a promising phar-
macological target for the treatment of phosphate disorders. One of the most successful
treatments has been the direct inhibition of FGF23 using monoclonal antibodies (buro-
sumab) [169,170]. Another approach would be the inhibition of FGF23 binding to the
Klotho coreceptor by binding small molecules to the glycosyl hydrolase (GS1 and GS2)
domains of Klotho [173]. Additionally, there is another strategy that proposes the inhibition
of the FGF receptor to increase blood phosphate and calcitriol levels. This strategy is based
on the inhibition of downstream signals of the FGF receptor such as the MAPK pathway
and it has been tested in solid tumors [174]. While the direct inhibition of FGF23 is used
as a treatment in patients, the inhibition of Klotho binding and inhibition of the FGF23
receptor signal are still in the development phase. However, the preclinical studies suggest
that there are multiple approaches to inhibit excessive FGF23 activity, thereby addressing
FGF23-related hypophosphatemic disorders.

Regarding future therapeutic perspectives, different FGF23 inhibitor compounds are
being studied. The C-terminal fragment of FGF23 is generated by proteolytic cleavage at
the RXXR motif that acts in the Klotho interaction domain. This peptide has been tested
in mice, showing improvements in hematopoietic as well as iron deficiency levels [175].
Furthermore, small molecules based on vHTS affording 1 are being developed with promis-
ing results in cell cultures [176]. Finally, in murine models, analogs of ZINC13407541 were
discovered to pharmacologically inhibit FGF23. The administration of either of these com-
pounds resulted in the blockade of FGF23 signaling and led to elevated serum phosphate
and calcitriol levels in Hyp mice. Furthermore, the long-term parenteral administration of
these analogs promoted linear bone growth, enhanced bone mineralization, and narrowed
the growth plate in Hyp mice [177].

10. Conclusions

In summary, FGF23 plays a pivotal role across various physiological systems, no-
tably in the regulation of phosphorus metabolism. Its impact extends beyond phosphate
homeostasis, influencing bone metabolism, cardiovascular health, iron homeostasis, im-
mune response, and metabolic disturbances associated with obesity. The intricate interplay
between FGF23, vitamin D, PTH, and bone metabolism underscores its multifaceted in-
volvement in maintaining mineral balance and bone integrity. Furthermore, the FGF23
association with cardiovascular pathologies, such as left ventricular hypertrophy and
atherosclerosis, underscores its potential as a biomarker for assessing cardiovascular risk.
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Despite promising therapeutic implications in targeting FGF23 signaling, further research
is imperative to elucidate its precise mechanisms and potential therapeutic benefits, particu-
larly in chronic kidney disease where elevated FGF23 levels contribute to adverse outcomes.
Nevertheless, the approval of drugs like burosumab for the treatment of hypophosphatemic
rickets signifies a significant advancement in leveraging FGF23 modulation for therapeutic
purposes, offering hope for patients afflicted with related disorders.
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