
Citation: Balykina, A.; Naida, L.;

Kirkgöz, K.; Nikolaev, V.O.; Fock, E.;

Belyakov, M.; Whaley, A.; Whaley, A.;

Shpakova, V.; Rukoyatkina, N.; et al.

Antiplatelet Effects of Flavonoid

Aglycones Are Mediated by

Activation of Cyclic Nucleotide-

Dependent Protein Kinases. Int. J. Mol.

Sci. 2024, 25, 4864. https://doi.org/

10.3390/ijms25094864

Academic Editor: Isabella Russo

Received: 29 March 2024

Revised: 23 April 2024

Accepted: 26 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Antiplatelet Effects of Flavonoid Aglycones Are Mediated by
Activation of Cyclic Nucleotide-Dependent Protein Kinases
Anna Balykina 1,2 , Lidia Naida 3, Kürsat Kirkgöz 4 , Viacheslav O. Nikolaev 4,5 , Ekaterina Fock 1,
Michael Belyakov 6 , Anastasiia Whaley 1,7 , Andrei Whaley 7, Valentina Shpakova 8 , Natalia Rukoyatkina 1

and Stepan Gambaryan 1,*

1 Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences,
Saint Petersburg 194223, Russia; balykina.hannah@gmail.com (A.B.); efock@mail.ru (E.F.);
anastasiya.ponkratova@yandex.ru (A.W.); natalia.rukoyatkina@gmail.com (N.R.)

2 Faculty of General Medicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
3 Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University,

Saint Petersburg 195251, Russia; nayda.lidiya@mail.ru
4 Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf,

20251 Hamburg, Germany; kuersat.kirkgoez@stud.uke.uni-hamburg.de (K.K.); v.nikolaev@uke.de (V.O.N.)
5 German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck,

20246 Hamburg, Germany
6 Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg 188663, Russia;

mihail-belyakov@yandex.ru
7 Department of Pharmacognosy, Saint Petersburg State Chemical and Pharmaceutical University,

Saint Petersburg 197022, Russia; andrey.ueyli@pharminnotech.com
8 Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading,

Reading RG6 6AS, UK; spakovavalentina@gmail.com
* Correspondence: stepan.gambaryan@uni-wuerzburg.de; Tel.: +7-921-88-11-759

Abstract: Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of
pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet
effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet
activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects
of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on
platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and
intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced
platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested
aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. No-
tably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase
activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot
analysis and liquid chromatography–tandem mass spectrometry demonstrated that the antiplatelet
properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent
signaling pathways. Specifically, we established by using Förster resonance energy transfer that the
molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2
and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical
application as antiplatelet agents.

Keywords: antiplatelet therapy; platelets; flavonoids; thromboxane synthase (TxS); cyclic adenosine
monophosphate (cAMP); cyclic guanosine monophosphate (cGMP); phosphodiesterase (PDE); PDE
inhibitors; protein kinase A (PKA); protein kinase G (PKG)

1. Introduction

Platelets are small anucleate cells derived from megakaryocytes, which play a fun-
damental role in hemostasis [1]. Platelets have a wide array of surface receptors that can
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be activated by platelet agonists, including thrombin, collagen, ADP, and thromboxane
A2 (TxA2). These stimuli promote platelet activation and aggregation, leading to their
adhesion to injured endothelium and the formation of localized thrombi [2].

In the absence of vascular damage, blood vessels release prostacyclin and nitric oxide
(NO), which promote a quiescent state of platelets by activating the main mechanisms of
platelet inhibition. These signals prevent spontaneous platelet activation via the increase in
platelet cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate
(cGMP) levels, respectively. Elevated cAMP and cGMP activate corresponding protein
kinases, protein kinase A (PKA) and protein kinase G (PKG) [3]. The control of cyclic
nucleotide activity is accomplished by phosphodiesterases (PDEs). Platelets contain PDE2A
(cGMP-stimulated PDE; hydrolyzes both cGMP and cAMP with similar affinities), PDE3A
(cGMP-inhibited PDE; hydrolyzes both, but preferentially cAMP), and PDE5A (specifically
degrades cGMP) [3]. Under pathological conditions, such as vascular injury, inflammation,
atherosclerosis, and cancer metastasis, the quiescent state of platelets may be disrupted [4,5].
In these scenarios, activated platelets contribute to formation of blood clots and progression
of underlying diseases.

Cardiovascular diseases and their prevention in subjects at high risk of cardiovascular
events remain the main reasons for the administration of antiplatelet therapy [6]. Dual an-
tiplatelet therapy with aspirin and P2Y12 receptor antagonists is standard for patients with
acute myocardial infarction and ischemic stroke [7,8]. Nevertheless, the following develop-
ment of drug resistance, hypersensitivity [9–12], and serious adverse effects, among which
are peptic ulcers, gastrointestinal bleeding, and aspirin-induced asthma, are associated with
the application of this therapy [13–16]. Despite these challenges, diverse effects not related
to platelet function, and cost-effectiveness, make aspirin a priority medication [17,18]. In
this regard, the search for novel compounds with antiplatelet activity and beneficial effects
is of particular interest.

Flavonoids are a diverse group of polyphenolic compounds found in plants, respon-
sible for their metabolism, color, and flavor [19,20]. Fruits, vegetables, plant-derived
beverages, and honey are the prevalent dietary sources of flavonoids [21,22]. Depending
on the presence of sugar residues, flavonoids are classified into aglycones and glycosides.
These phytochemicals have become the subject of intense research due to a wide range
of beneficial effects on human health, such as antioxidant and anti-inflammatory [23–25].
Additionally, flavonoids demonstrate anticancer effects by inhibiting growth and induc-
ing apoptosis in cancer cell lines [26–29], and have the ability to enhance cell survival in
non-tumor cells [30–33]. Considered safe with a wide therapeutic window [34], flavonoids
emerge as promising candidates for medical application, causing particular interest in inves-
tigating their biological effects. Recent clinical trials have shown the ability of flavonoids to
improve post-COVID-19 olfactory dysfunction, reduce hypercoagulability and symptoms
of rheumatoid arthritis [35–37].

A growing body of evidence supports the efficacy of flavonoid aglycones in treating
thrombosis. Flavonoids isolated from Leuzea carthamoides, Premna foetida, and Ginkgo biloba
have demonstrated strong antiplatelet effects [38–40]. Previous data indicated inhibitory
effects of isolated flavonoid aglycones, including luteolin, myricetin, quercetin, eriodictyol,
kaempferol, and apigenin, on platelet activation induced by various agonists [38,41–44].
Noteworthy, the antiplatelet effect of aglycones was stronger in comparison with the ef-
fects exhibited by flavonoid glycosides [35]. In a recent study, myricetin demonstrated
an antiplatelet effect over six times more robust than aspirin when assessed under sim-
ilar conditions [42]. In mouse models, luteolin inhibited mesenteric artery thrombosis
and collagen-adrenergic-induced pulmonary thrombosis without affecting coagulation,
hemostasis, or platelet production [43]. The antiplatelet effect of aglycones may be mediated
by inhibition of immunoreceptor tyrosine-based activation motif (ITAM), protein kinase B
(PKB), phospholipase C (PLC), and mitogen-activated protein kinase (MAPK) [43,45].

Limited information exists on the effect of flavonoid aglycones on cyclic nucleotide-
related pathways in platelets, although this effect has been observed in diverse models. In a
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rat model of pentylenetetrazole-induced seizures, luteolin pretreatment suppressed seizure
induction and severity of symptoms by activating the PKA pathway [46]. In rat corpus
cavernosum smooth muscle cells, the inhibitory effect of flavonoids was mediated by PDE5
inhibition, leading to increased cGMP levels [47]. In addition, flavonoid aglycones may
increase the expression and activity of endothelial NO-synthase (eNOS) with a subsequent
enhancement of NO generation [48–51]. On this matter, it remains crucial to clarify whether
the antiplatelet effects of flavonoid aglycones are orchestrated by the direct activation
of cyclic nucleotide-related inhibitory pathways. As this molecular mechanism emerges
as the primary pathway underlying the antiplatelet effect, it may downgrade previously
established molecular mechanisms to secondary effects.

In this study, we demonstrated the impact of six flavonoid aglycones (the structures are
presented in the Supplementary Materials, Figure S1): luteolin, myricetin, quercetin, eriod-
ictyol, kaempferol, and apigenin, on human platelet activation. These compounds inhibited
thrombin-induced platelet activation and the formation of reactive oxygen species (ROS)
without affecting platelet viability, apoptosis induction, or the formation of procoagulant
platelets. Unexpectedly, luteolin, myricetin, quercetin, and apigenin increased thrombin-
induced thromboxane synthase (TxS) activity. We also demonstrated in living cells that
flavonoid aglycones suppress platelet activation by amplifying the cyclic nucleotide-related
pathways via the inhibition of PDE2 and/or PDE5 activity.

2. Results
2.1. Flavonoid Aglycones Inhibit Thrombin-Induced Platelet Activation

Flavonoid aglycones are known to inhibit platelet activation induced by different
agonists, including thrombin [52]. In experiments with human and rodent platelets,
flavonoid aglycones exhibited antiplatelet properties within the concentration range of
2.5–300 µM [53]. Consistent with this, our study showed significant inhibition of sub-
threshold thrombin-induced platelet activation by the phytochemicals at a concentration
of 100 µM (Figure 1). Among the tested compounds, quercetin demonstrated the highest
potency, whereas eriodictyol exhibited the lowest, albeit comparably robust, activity. The
observed inhibitory effects of the flavonoid aglycones were comparable to the effect of
sodium nitroprusside (SNP), an NO donor, which is known for its strong antiplatelet effect.
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excluding control (C), and the reaction was stopped by dilution with phosphate buffer (PBS) buffer 
(1:40). (a) Flavonoid aglycones inhibit thrombin-induced platelet αIIbβ3 integrin activation. Data are 
presented as means ± SD. Thrombin sample was taken as 100%, n = 8, non-parametric Mann–Whit-
ney test. *—p < 0.05 compared to a thrombin sample. (b) The representative histogram (from eight 

Figure 1. Flavonoid aglycones inhibited thrombin-induced platelet activation. Washed platelets
(1 × 108 cells/mL) were incubated with sodium nitroprusside (SNP; 1 µM, 2 min) or the tested
flavonoid aglycones (100 µM, 30 min): luteolin (Lut), myricetin (Myr), quercetin (Qrc), eriodictyol (Erd),
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kaempferol (Kmp), and apigenin (Api). Thrombin (Thr; 50 mU/mL, 2 min) was added to all probes,
excluding control (C), and the reaction was stopped by dilution with phosphate buffer (PBS) buffer
(1:40). (a) Flavonoid aglycones inhibit thrombin-induced platelet αIIbβ3 integrin activation. Data
are presented as means ± SD. Thrombin sample was taken as 100%, n = 8, non-parametric Mann–
Whitney test. *—p < 0.05 compared to a thrombin sample. (b) The representative histogram (from
eight independent experiments) demonstrates the change in thrombin-induced fibrinogen binding to
αIIbβ3 integrin when exposed to the effect of eriodictyol.

2.2. Flavonoid Aglycones Reduce ROS Formation in Thrombin-Activated Platelets

Platelet activation is associated with increased ROS formation [54,55], and flavonoid
aglycones demonstrate antioxidant activity in different cell types [56,57]. Nonetheless, it
remains unclear whether their effect is related to the ROS formation decrease in platelets.
Therefore, we investigated whether the antiplatelet effects of the tested compounds are me-
diated by the reduction in ROS levels in activated platelets. We employed a cell-permeable
DCF-DA dye, which acquires fluorescence upon oxidation by ROS. Our experiments indi-
cated that the aglycones reduce ROS levels in platelets activated by thrombin (Figure 2).
Luteolin, eriodictyol, kaempferol, and apigenin reduced ROS levels exceeding 70%, whereas
myricetin and quercetin demonstrated a decrease of 50% in ROS formation.
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iable results, we investigated the effect of the phytochemicals on thrombin-induced TxA2 
synthesis. Unexpectedly, we found that luteolin, myricetin, quercetin, and apigenin at a 
concentration of 100 µM significantly increase thrombin-induced TxS activity (Figure 3), 
whereas kaempferol and eriodictyol did not change the activity of TxS in platelets. These 
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Figure 2. Flavonoid aglycones decreased the level of thrombin-induced ROS formation. Washed
platelets (1 × 108 cells/mL) were incubated with DCF-DA (10 µM; 30 min) and the tested flavonoid
aglycones (100 µM, 30 min): luteolin (Lut), myricetin (Myr), quercetin (Qrc), eriodictyol (Erd),
kaempferol (Kmp), and apigenin (Api). (a) Thrombin (Thr; 50 mU/mL, 2 min) was added to all
probes, excluding control (C), and the reaction was stopped by dilution with PBS buffer (1:40). Data
are presented as means ± SD. The ROS level was designated as 100%, n = 6, non-parametric Mann–
Whitney test. *—p < 0.05 compared to a thrombin sample. (b) The representative histogram (from
six independent experiments) demonstrates the change in thrombin-induced ROS formation when
exposed to the effect of luteolin.

2.3. Luteolin, Myricetin, and Quercetin Induce Thromboxane Synthase Activity in Platelets

Inhibition of thrombin-induced platelet activation may be associated with the re-
duced release of secondary mediators, such as TxA2 [2]. Recent studies have shown that
flavonoids can suppress platelet TxA2 signaling pathway by binding to TxA2 receptors
and inhibiting cyclooxygenase-1 (COX-1) [58,59]; however, inhibitory impact of the tested
flavonoid aglycones on thrombin-induced TxS activity was not shown before. Due to
variable results, we investigated the effect of the phytochemicals on thrombin-induced
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TxA2 synthesis. Unexpectedly, we found that luteolin, myricetin, quercetin, and apigenin at
a concentration of 100 µM significantly increase thrombin-induced TxS activity (Figure 3),
whereas kaempferol and eriodictyol did not change the activity of TxS in platelets. These
results demonstrate that the antiplatelet effects of the tested flavonoids are not connected
to the inhibition of TxA2 synthesis. On the contrary, luteolin, myricetin, quercetin, and
apigenin may potentiate TxS activity through unestablished mechanisms.
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synthase activity. Washed platelets (5 × 108 cells/mL) were incubated with gossypol (Gos; 40 µM,
10 min) or the indicated compounds (100 µM, 30 min): luteolin (Lut), myricetin (Myr), quercetin (Qrc),
eriodictyol (Erd), kaempferol (Kmp), apigenin (Api), in the presence or absence of indomethacin.
Thrombin (Thr; 50 mU/mL, 3 min) was added to all probes, excluding control (C), and the reaction
was stopped by trichloroacetic acid. The proteins were precipitated, and the level of malondialdehyde
(MDA) in the supernatant was estimated from the fluorescence of the product derived from the
reaction with thiobarbituric acid. Data are presented as means ± SD. Thrombin sample was taken as
100% and highlighted with a dash line, n = 7–9, t-test and Wilcoxon signed–ranks test for matched
pairs. *—p < 0.05 compared to the activator.

2.4. Flavonoid Aglycones Do Not Cause Apoptosis or Formation of Procoagulant Phenotype
in Platelets

The formation of apoptotic or procoagulant platelets significantly prevents platelet
activation and is related to phosphatidylserine (PS) surface exposure [60–62]. It was
reported that flavonoid aglycones exhibit a proapoptotic effect in cancer cells [63,64] and
an anti-apoptotic one in non-cancer cells [65,66]; however, it is not known whether the
tested flavonoid aglycones induce the formation of apoptotic or procoagulant platelets.
Considering the established link between these platelet phenotypes and inhibition of
platelet activation, we evaluated PS exposure on the platelet surface after pre-incubation
with the flavonoid aglycones. For positive control, platelets were incubated with an
apoptosis inducer, ABT-737 (1 µM, 60 min). The tested flavonoids at a high concentration
of 100 µM incubated for 30 min did not induce PS exposure on the outer layer of platelet
membrane (Figure 4). Consistent with this, the tested compounds did not cause apoptosis
or the formation of a procoagulant phenotype in human platelets.
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Washed platelets (1 × 108 cells/mL) were incubated with the tested flavonoid aglycones (100 µM,
30 min): luteolin (Lut), myricetin (Myr), quercetin (Qrc), eriodictyol (Erd), kaempferol (Kmp), and
apigenin (Api). (a) Apoptosis inducer ABT-737 (1 µM, 60 min) was used as a positive control. After
incubation, Annexin-V-PE (1:10) and Annexin-binding buffer (1:20) were added, then platelets were
incubated for 10 min and analyzed by flow cytometry. Data are presented as means ± SD. PS
externalization in probes with intact platelets was designated as 100%, n = 6, non-parametric Mann–
Whitney test. *—p < 0.05 compared to an ABT-737 sample. (b) The representative histogram (from six
independent experiments) demonstrates the change in PS exposure when kaempferol, the flavonoid
aglycone with the least anti-apoptotic effect among the tested compounds, was added.

2.5. Flavonoid Aglycones Do Not Affect Platelet Viability

The inhibition of platelet activation can be associated with a reduction in platelet
viability. It has been shown that plant extracts rich in flavonoids exhibit significant anti-
platelet properties without inducing cytotoxicity [67]. Still, the cytotoxic properties of
isolated flavonoid aglycones have not been investigated. Therefore, we evaluated the
effect of the flavonoids on platelet viability using a well-established test based on the dye
calcein-AM, a fluorogenic substrate of intracellular esterases [68]. For positive control,
platelets were incubated with gossypol (40 µM, 10 min), which can affect cell viability via
inhibition of B-cell lymphoma II (Bcl-2) proteins. Even at a high concentration of 100 µM,
flavonoid aglycones did not affect intracellular esterase activity after 30 min of incubation
(Figure 5). These results indicate that the inhibition of platelet activation by the studied
phytochemicals is not related to changes in platelet viability.
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Figure 5. Flavonoid aglycones did not affect platelet viability. Washed platelets (1 × 108 cells/mL)
were incubated with the tested flavonoid aglycones (100 µM, 30 min): luteolin (Lut), myricetin (Myr),
quercetin (Qrc), eriodictyol (Erd), kaempferol (Kmp), and apigenin (Api). (a) Gossypol (Gos; 40 µM,
10 min), which can affect cell viability via inhibition of B-cell lymphoma II (Bcl-2) proteins, was
used as a positive control, and the reaction was stopped by dilution with PBS buffer (1:40). Data are
presented as means ± SD. Calcein-AM fluorescence in probes with intact platelets was designated
as 100%, n = 6, non-parametric Mann–Whitney test. *—p < 0.05 compared to control. (b–d) The
representative dot plots with platelets pre-selected according to size and granularity marked in green
color and background debris in black color (from six independent experiments) demonstrate the
activity of intracellular esterases in control (C), gossypol, and luteolin, respectively.

2.6. Flavonoid Aglycones Activate Cyclic Nucleotide-Mediated Signaling Pathways in Platelets

Data concerning the effect of flavonoid aglycones on cyclic nucleotide-related path-
ways are variable in different cell types [69–72]. It has not been elucidated before whether
the antiplatelet effects of the flavonoid aglycones are mediated by the activation of cyclic nu-
cleotide signaling pathways. Therefore, we investigated the effect of the tested compounds
on cAMP/PKA and cGMP/PKG pathways.

The vasodilator-stimulated phosphoprotein (VASP) is the major substrate for cyclic
nucleotide-related PKA and PKG phosphorylation. PKA preferentially phosphorylates
VASP on Ser157, whereas PKG phosphorylates on Ser239; however, strong activation of
any kinase leads to the phosphorylation of VASP at both sites [73,74]. Analysis of VASP
phosphorylation demonstrated that the antiplatelet effects of the flavonoids are mediated
by activation of cyclic nucleotide-related pathways (Figures 6 and 7).
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Figure 6. Flavonoid aglycones stimulated VASP phosphorylation time-dependently. Washed human
platelets (3 × 108 cells/mL) were incubated with the tested flavonoid aglycones: luteolin (Lut),
myricetin (Myr), eriodictyol (Erd), quercetin (Qrc), kaempferol (Kmp), and apigenin (Api) during
the indicated time at a concentration of 100 µM (a–f). Subsequently, probes were lyzed for Western
blotting. Actin was used as a loading control. Blots were scanned and quantified by the Image J
program. The intensity of the p-VASP signal was normalized to the actin signal. For each sample,
this ratio is relatively expressed to the ratio for the control, which is presented as one. Data are
presented as means ± SD of three separate experiments from three different donors. One-way
ANOVA, Levene’s test p > 0.05 followed by Tukey’s HSD test were used for p-VASP. *—p < 0.05
compared to control. Representative blots from three independent experiments are shown. Full blots
are presented in the Supplementary Materials (Figures S4–S9).
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The observed inhibitory effect of these aglycones appeared as time- (1–30 min) and 
dose-dependent (5–100 µM). In addition, we established that VASP phosphorylation stim-
ulated by the tested aglycones may be significantly suppressed by H89, a specific PKA 

Figure 7. Flavonoid aglycones stimulated VASP phosphorylation dose dependently. Washed human
platelets (3 × 108 cells/mL) were incubated with the tested flavonoid aglycones: luteolin (Lut),
myricetin (Myr), eriodictyol (Erd), quercetin (Qrc), kaempferol (Kmp), and apigenin (Api) at the
indicated concentration for 30 min (a–f). Subsequently, probes were lyzed for Western blotting.
Actin was used as a loading control. Blots were scanned and quantified by the Image J program.
The intensity of the p-VASP signal was normalized to the actin signal. For each sample, this ratio
is relatively expressed to the ratio for control, which is presented as one. Data are presented as
means ± SD of three separate experiments from three different donors. One-way ANOVA, Levene’s
test p > 0.05 followed by Tukey’s HSD test were used for p-VASP. *—p < 0.05 compared to control.
Representative blots from three independent experiments are shown. Full blots are presented in the
Supplementary Materials (Figures S10–S15).

The observed inhibitory effect of these aglycones appeared as time- (1–30 min) and
dose-dependent (5–100 µM). In addition, we established that VASP phosphorylation stim-
ulated by the tested aglycones may be significantly suppressed by H89, a specific PKA
inhibitor that may also inhibit PKG [75,76] (Figure 8). We concluded that the flavonoid
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aglycones exhibit antiplatelet effects mediated by the activation of the adenylate cyclase
(AC)/cAMP/PKA and/or guanylate cyclase (GC)/cGMP/PKG signaling systems.
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PKA/PKG is mediated by the prevention of PDEs activity and the concomitant increase in 
cAMP/cGMP. The inhibition of different PDEs by several flavonoids used in this study, 
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of the investigated substances (apigenin, quercetin, myricetin) can inhibit PDEs, we used 
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Figure 8. H89 blocked VASP phosphorylation stimulated by the flavonoid aglycones. Washed human
platelets (3 × 108 cells/mL) were incubated with H89 (50 µM) for 10 min. Subsequently, some of the
tested flavonoid aglycones (100 µM, 30 min): luteolin (Lut) and quercetin (Qrc) were added (a,b).
Iloprost (Ilo; 2 nM, 2 min) was used as a positive control. Probes were lyzed for Western blotting.
Actin was used as a loading control. Blots were scanned and quantified by the Image J program.
The intensity of the p-VASP signal was normalized to the actin signal. For each sample, this ratio is
relatively expressed to the ratio for the control, which is presented as one. Data are presented as means
± SD of three separate experiments from three different donors. One-way ANOVA, Levene’s test p >
0.05 followed by Tukey’s HSD test were used for p-VASP. *—p < 0.05 compared to a corresponding
sample without H89. Representative blots from three independent experiments are shown. Full blots
are presented in the Supplementary Materials (Figure S16).

2.7. Aglycone-Induced Activation of PKA/PKG in Platelets Is Mediated by Inhibition of PDE2
and PDE5

The amplification of cyclic nucleotide-mediated signaling pathways may be due to
either activation of AC or GC, or direct activation of PKA or PKG, or inhibition of PDEs. To
determine whether the antiplatelet effects of these compounds are related to the activation
of AC/GC, we applied inhibitors of AC (SQ22563) and GC (ODQ) prior to incubation with
the flavonoid aglycones.

Our data showed that aglycone-induced VASP phosphorylation is not prevented by
inhibition of AC/GC (Figure 9); however, it was slightly and insignificantly decreased by
ODQ in the sample containing apigenin. Therefore, we tested whether the activation of
PKA/PKG is mediated by the prevention of PDEs activity and the concomitant increase
in cAMP/cGMP. The inhibition of different PDEs by several flavonoids used in this study,
including some aglycones, was described by in vitro assays [77,78]. To test whether some
of the investigated substances (apigenin, quercetin, myricetin) can inhibit PDEs, we used
our established live-cell imaging assay for measurement of PDE activity based on Förster
resonance energy transfer (FRET) [79] using specific biosensors for PDE2A and PDE5A
expressed in HEK293 cells (Figure 10). All three tested aglycones strongly inhibited PDE2
activity, whereas PDE5 was inhibited only moderately. The strongest inhibition of PDE5
was detected by quercetin (Figure 10).
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Figure 9. AC and GC inhibitors did not block VASP phosphorylation stimulated by the flavonoid
aglycones. Washed human platelets (3 × 108 cells/mL) were incubated for 10 min with ODQ (20 µM)
or SQ22563 (100 µM), inhibitors of AC and GC, respectively. Subsequently, the tested flavonoid
aglycones (100 µM, 30 min): luteolin (Lut), myricetin (Myr), quercetin (Qrc), eriodictyol (Erd),
kaempferol (Kmp), and apigenin (Api) were added (a–l). Sodium nitroprusside (SNP, 1 µM) and
Forskolin (1 µM) were used as positive controls. For Western blotting analysis, probes were lyzed.
Actin was used as a loading control. The intensity of the p-VASP signal was normalized to the
actin signal. For each sample, this ratio is relatively expressed to the ratio for the control, which is
presented as one. Data are presented as means ± SD of three separate experiments from three different
donors. One-way ANOVA, Levene’s test p > 0.05 followed by Tukey’s HSD test were used for p-VASP.
*—p < 0.05 compared to a corresponding sample without ODQ or SQ22563. Representative blots from
three independent experiments are shown. Full blots are presented in the Supplementary Materials
(Figures S16–S22).
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tory response analysis (b,d) are shown for n = 10–20 cells for PDE2 and n = 5–10 cells for PDE5. 
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Figure 10. Real-time monitoring of PDE inhibitory activity of flavonoid aglycones in living HEK293
cells expressing Förster resonance energy transfer (FRET)-based biosensors for PDE2 (a,b) and PDE5
(c,d) inhibition. Cells pretreated with 50 µM SNP for 10 min were stimulated first with 10 µM of
flavonoid aglycones and subsequently with 100 nM BAY 60-7550 or 1 µM sildenafil (SIL) to achieve
full inhibition of PDE2 and PDE5, respectively. Representative FRET traces (a,c) and PDE5 inhibitory
response analysis (b,d) are shown for n = 10–20 cells for PDE2 and n = 5–10 cells for PDE5.

Next, we measured cAMP/cGMP concentrations in platelets incubated with aglycones
by the LC–MS/MS method. According to the literature [80,81] and our unpublished data,
cAMP and cGMP concentrations measured by ELISA or RIA assays are in the nM range
(0.2–1 for cGMP and 5–20 for cAMP in 108 platelets/mL). Our methods demonstrated
comparable results with ELISA and RIA methods (0.34 ± 0.15 for cGMP, and 11.6 ± 4.7 for
cAMP, means ± SD for 108 platelets/mL). cAMP concentration was increased in the samples
incubated with luteolin, myricetin, quercetin, and apigenin; in addition to this, all tested
compounds increased cGMP concentration. Serving as positive controls for cAMP and
cGMP, respectively, iloprost and sildenafil increased the cyclic nucleotide concentrations
by more than 7-fold (Figure 11). The presented data indicate that aglycones induce VASP
phosphorylation, which is mediated by the increase in cyclic nucleotide concentrations
induced by PDE2 and PDE5 inhibition.

To confirm our observation about potential VASP stimulation by PDE2/PDE5 in-
hibitors, we incubated platelets with a PDE2 inhibitor BAY 60-7550, a PDE5 inhibitor
sildenafil, and a nonspecific PDE inhibitor IBMX. All three well-known inhibitors of PDEs
caused strong VASP phosphorylation (Figure 12) with IBMX showing the most potent effect.
These results align with our data concerning the molecular effect of the tested flavonoids.
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Figure 11. Aglycones increased cyclic nucleotides concentration in platelets. Washed human plate-
lets (3 × 108 cells/mL) were incubated with 100 µM of aglycones for 30 min: luteolin (Lut), myricetin 
Figure 11. Aglycones increased cyclic nucleotides concentration in platelets. Washed human platelets
(3 × 108 cells/mL) were incubated with 100 µM of aglycones for 30 min: luteolin (Lut), myricetin
(Myr), quercetin (Qrc), eriodictyol (Erd), kaempferol (Kmp), and apigenin (Api); then, the reaction
was stopped by addition of the same volume of 0.2 M HCl. Samples were dried under vacuum,
stored at −80 ◦C for measurement of cAMP/cGMP concentration by LC–MS/MS method. Samples
stimulated by sildenafil (Sild; 50 µM, 10 min) and iloprost (Ilo; 2 nM, 2 min) were used as positive
controls for cGMP and cAMP, respectively. All tested aglycones significantly increased platelet cGMP
concentration (a), cAMP was significantly increased only by Lut, Myr, Qrc, and Api (b). Data are
presented as means ± SD, fold increase compared to control taken as n = 5, * significant differences
from the control, p < 0.05. One-way ANOVA, Levene’s test p > 0.05 followed by Tukey’s HSD test
were used for p-VASP.
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3. Discussion 
Flavonoid aglycones exhibit antiplatelet effects, which are partly mediated by the in-
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Figure 12. PDE inhibitors stimulated VASP phosphorylation. Washed human platelets
(3 × 108 cells/mL) were incubated with PDE inhibitors: BAY 60-7550 (BAY; 5 µM), sildenafil (Sild;
50 µM), IBMX (50 µM) for 10 min (a). Subsequently, probes were lyzed for Western blotting. Actin
was used as a loading control. Blots were scanned and quantified by the Image J program. The
intensity of the p-VASP signal was normalized to the actin signal. For each sample, this ratio is
relatively expressed to the ratio for the control, which is presented as one. Data are presented as
means ± SD of three separate experiments from three different donors. One-way ANOVA, Levene’s
test p > 0.05 followed by Tukey’s HSD test were used for p-VASP. *—p < 0.05 compared to control.
(b). A representative blot from three independent experiments is shown. Full blots are presented in
the Supplementary Materials (Figure S23).
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3. Discussion

Flavonoid aglycones exhibit antiplatelet effects, which are partly mediated by the
inhibition of platelet activation induced by different agonists [41,78,82]. Consistent with
previous studies [42,83], we confirmed that six flavonoid aglycones, including luteolin,
myricetin, quercetin, eriodictyol, kaempferol, and apigenin significantly suppress thrombin-
induced platelet activation at a concentration of 100 µM. The observed inhibitory effects
were comparable to the potent antiplatelet agent SNP, an NO donor, demonstrating the
robust inhibitory potential of the tested substances. Prior studies underscored the piv-
otal role of ROS in platelet αIIbβ3 activation and granule secretion and showed that
inhibitors of ROS formation may reduce platelet aggregation [54]. We revealed that the
flavonoid aglycones reduce thrombin-induced ROS formation in platelets. This finding
aligns with previous studies highlighting the potency of flavonoid aglycones as ROS
scavengers [84–86].

The TxA2 pathway significantly contributes to the amplification of platelet activation.
Flavonoids may antagonize TxA2 receptors (TP) and inhibit COX-1 activity [53,87,88];
however, the impact of flavonoid aglycones on TxS remains to be addressed. Therefore,
we tested whether the antiplatelet effects of the investigated flavonoids are associated
with the reduction in thrombin-induced TxS activity in human platelets. Surprisingly, our
experiments revealed that eriodictyol and kaempferol do not inhibit thrombin-induced TxS
activity, whereas luteolin, myricetin, quercetin, and apigenin contrariwise potentiate TxS
activity. This observation underscores the complexity of signaling networks, suggesting the
presence of an additional activatory effect of these substances on platelets. However, these
results contrast with reports on the antiplatelet effect of onion peel extract and green tea
catechins, both containing quercetin and other isolated flavonoid aglycones, showing the
inhibitory effect or the absence of an effect on TxS [41,58,59,89]. The discrepancies observed
in the results may be attributed to divergent experimental settings and underscore the need
for further research.

Several studies have shown that flavonoid aglycones affect platelet activation via
inhibition of ITAM, PKB, and PLC activity [43,45], which may be suppressed by activation
of cyclic nucleotide-related signaling pathways [90]. However, the link between antiplatelet
effects caused by aglycones and activation of these pathways has not been established
before. In this study, we examined whether the effects of the flavonoid aglycones are
connected to the activation of cyclic nucleotide signaling [91]. We clearly showed that the
phytochemicals time- (1–30 min) and dose-dependently (5–100 µM) stimulate VASP phos-
phorylation, which can be blocked by H89, a specific PKA and, partly, a PKG inhibitor [75].
Hence, the flavonoid aglycones demonstrate antiplatelet effects mediated by activation of
cAMP- and/or cGMP-dependent signaling pathways.

The activation of cyclic nucleotide-mediated signaling may stem from various mecha-
nisms, including the stimulation of AC/GC, direct activation of PKA/PKG, or inhibition
of PDEs. AC and GC can be activated directly or indirectly via the binding to G-protein-
coupled receptors on the platelet surface or the generation of nitric oxide (NO), respec-
tively [3]. In previous studies, we have identified that the antiplatelet effects of such
phytochemicals as curcumin and nobiletin are mediated by activation of the adenosine
receptor A2A [92,93]. Flavonoid aglycones may also stimulate eNOS [94,95], which under-
pins NO production; however, there is not sufficient evidence regarding NOS expression
in platelets [91]. Therefore, we examined the presence of an activatory effect of the tested
compounds on AC/GC. We showed that VASP phosphorylation induced by the flavonoids
is not blocked by either the AC inhibitor or the GC inhibitor. Next, we tested whether
some of the investigated substances, among which were apigenin, quercetin, and myricetin,
inhibit PDEs in platelets. Our presented data indicated that the antiplatelet effects of these
aglycones are mediated by robust inhibition of PDE2 and moderate inhibition of PDE5. The
subsequent measurement of cAMP/cGMP concentrations in platelets incubated with all
tested aglycones provided evidence that the tested compounds elevate cGMP concentration,
whereas luteolin, myricetin, quercetin, and apigenin also increase cAMP concentration.
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Thus, it can be concluded that the tested flavonoids inhibit PDE2 or PDE5, as do apigenin,
quercetin, and myricetin, increasing the respective concentrations of cyclic nucleotides.
Importantly, a more functional FRET-based assay performed in cells expressing specific
PDE2A- and PDE5A-based biosensors confirmed that apigenin, quercetin, and myricetin all
strongly inhibit PDE2, and quercetin also strongly inhibits PDE5. In contrast, apigenin and
quercetin only slightly inhibited PDE5, at least at 10 µM concentration. The PDE-inhibitory
potential of flavonoids was described in a recent review [96], and we originally demon-
strated that the antiplatelet effects of flavonoid aglycones are mediated by this mechanism.
However, a moderate increase in cyclic nucleotide concentrations did not exclude the
direct effect on PKA/PKG and, thus, more research is needed. We also presume that the
antioxidant effect of the flavonoids is rather secondary, considering the initially potent
activation of PKA/PKG via the inhibition of PDEs [97]. In addition, PDEs are expressed by
a variety of cells [97]; therefore, these flavonoid aglycones may have other beneficial effects
mediated by PDE inhibition beyond their impact on platelets.

To date, the link between the antiplatelet effects of the isolated flavonoid aglycones and
the formation of apoptotic or necrotic platelet phenotypes has not been extensively studied.
Addressing concerns related to drug-induced cytotoxicity, we investigated the impact of
the tested flavonoid aglycones on platelet viability. In contrast to cancer cells [98–100],
the phytochemicals, even at a high concentration of 100 µM, did not induce changes
in intracellular esterase activity or PS exposure, indicating that their antiplatelet effects
are not associated with apoptosis induction, the formation of procoagulant platelets, or
cytotoxicity, thus demonstrating a safety profile. The antioxidant and antiplatelet effects
found in flavonoid aglycones make them a promising therapeutic option for subjects
at risk of thrombosis, especially for elderly individuals [101]. Due to the evidence of
antioxidant effects, several flavonoids have also been considered for the treatment of
thrombocytopenia [102]. However, here we showed that the tested flavonoid aglycones
possess strong antiplatelet effects; thus, elevated risks of bleeding should not be excluded
in these patients applying flavonoid aglycones as comedication. Flavonoids also appear as
strong anti-apoptotic agents in non-cancer cells [103,104]; consequently, it is essential to
investigate the anti-apoptotic effect of the tested compounds in platelets.

To consolidate and visualize the effects of the tested compounds established in the
present study, we employed a heatmap analysis (Figure 13). From the heatmap, we surpris-
ingly observed a correlation between the presence of cAMP elevation and the potentiation
of thrombin-induced TxS activity by myricetin, quercetin, luteolin, and apigenin. This
finding warrants consideration in future studies exploring changes in TxS activity me-
diated by these flavonoid aglycones. The arrangement of flavonoid aglycones based on
their subclassification (flavonols, flavones, and flavanones) did not reveal any structural
dependence of effects.

Taken together, our findings demonstrate that some flavonoid aglycones, such as
luteolin, myricetin, eriodictyol, quercetin, kaempferol, and apigenin, significantly inhibit
platelet activation by different underlying mechanisms. These compounds exhibited in-
hibitory effects on thrombin-induced platelet activation and ROS formation. We eluci-
dated in living cells that the molecular mechanisms of the antiplatelet effects are medi-
ated by activation of cyclic nucleotide-related pathways caused by inhibition of PDE2
and/or PDE5 activity. Given the safety profile, diverse health benefits, and strong an-
tiplatelet effects, these flavonoid aglycones may be considered an alternative to existing
antiplatelettherapies.
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Figure 13. Heatmap of the flavonoid properties identified in this study. Each column represents the
tested flavonoid aglycones (100 µM, 30 min): myricetin (Myr), quercetin (Qrc), kaempferol (Kmp),
luteolin (Lut), apigenin (Api), and eriodictyol (Erd), which were arranged based on the subclassi-
fication depending on their structures (flavonols, flavones, and a flavanone). The rows represent
the diverse effects tested within this study: inhibition of thrombin-induced platelet activation (I1),
inhibition of thrombin-induced ROS formation (I2), potentiation of thrombin-induced TxS activity
(P1), viability of platelets (V1), apoptotic or procoagulant platelet formation (A&P), activation of
cyclic nucleotide-related pathways (A1), inhibition of flavonoids’ effect on cyclic nucleotide-related
pathways by H89 (I3), inhibition of flavonoids’ effect on AC by SQ22563 (I4), inhibition of flavonoids’
effect on GC by ODQ (I5), elevation of cAMP levels (E1), elevation of cGMP levels (E2), inhibition of
PDE2 (I6), inhibition of PDE5 (I7). The intensity of these effects is quantified in relative percentage
terms, derived from the corresponding data outlined in the Section 2. The values were quantized
to integer numbers and clipped in the range of 0–100 to provide better representation. In case of
insignificant changes, the values were replaced with 0 or 100, where relevant. The shaded boxes
indicate the absence of experiments. Data are displayed as colors ranging as shown in the key.

4. Materials and Methods
4.1. Chemicals, Reagents, and Materials

Kaempferol, quercetin, and eriodictyol were isolated from the aerial part of Impatiens
grandulifera Royle as described before [105]; the purities were 97%, 95%, and 99%, respec-
tively (Figure S2). Luteolin (≥98%), myricetin (≥96.0%), apigenin (≥95.0%), ODQ, SQ22563,
gossypol, forskolin, sodium nitroprusside, 3-isobutyl-1-methylxanthine (IBMX), sildenafil,
indomethacin, formic acid, H89, iloprost (Sigma-Aldrich, St. Louis, MO, USA); throm-
bin (Roche, Mannheim, Germany); BAY 60-7550 (Santa Cruz Biotechnology, Heidelberg,
Germany); cAMP and cGMP (Merck, Rahway, NJ, USA); acetonitrile (HPLC grade) from
ITW Group (Glenview, IL, USA); isopropylic alcohol (Lenreactiv, St. Petersburg, Russia);
isotope-labeled cAMP (cAMP-13C5; TRC, North York, ON, Canada), anti-β-actin (# 4970)
antibodies (Cell Signaling, Frankfurt, Germany); phospho-VASPS239 (Clone 16c2) (Nano
Tools, Teningen, Germany); fibrinogen-Alexa-Fluor 647, calcein-AM (Molecular Probes,
Göttingen, Germany); PE-conjugated Annexin-V (BD Bioscience, Heidelberg, Germany);
2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) (Calbiochem, Schwalbach, Germany),
ABT-737 (Selleckchem, Munich, Germany); horseradish peroxidase-conjugated anti-rabbit
or anti-mouse IgG (Amersham, Freiburg, Germany), were all utilized in this experiment.

4.2. Human Platelet Preparation

The study was conducted in accordance with the Declaration of Helsinki, and all
experimental protocols were submitted and approved by the Ethical Committee of Sechenov
Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
(protocol no. 1–04 from 7 April 2022). Signed written consents were obtained prior to
venipuncture. Platelets from human eligible, voluntary donors were isolated following
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established procedures with minor modifications as previously described [106]. Briefly,
blood was collected into a citrate Monovette© with Acid Citrate Dextrose (ACD) solution
(12 mM citric acid, 15 mM sodium citrate, 25 mM D-glucose) with the addition of EGTA
0.5 M. The whole blood underwent centrifugation at a speed of 1300 RPM for 8 min at RT
to obtain platelet-rich plasma (PRP). Subsequently, PRP was centrifuged at 2400 RPM for
4 min, and platelet pellets were washed once with CGS buffer (120 mM sodium chloride,
12.9 mM trisodium citrate, 10 mM D-glucose, pH 6.5), then centrifuged under the same
conditions. Finally, washed platelets (WP) were resuspended in HEPES buffer (150 mM
sodium chloride, 3 mM potassium chloride, 1 mM magnesium chloride, 5 mM D-glucose,
10 mM HEPES, pH 7.4). Following a 10 min resting period for the platelets at 37 ◦C, 1 mM
CaCl2 was added.

4.3. Flow Cytometry Analysis

The CytoFLEX flow cytometer (Beckman Coulter, Inc., Brea, CA, USA; instrument at
the Center for Collective Use of the Institute of Evolutionary Physiology and Biochemistry
of the Russian Academy of Sciences) was used for the experimental analysis. WP concentra-
tion of 1 × 108/mL was used, and DMSO was added as a vehicle of the flavonoid aglycones
to control samples. A total of 15,000 events were recorded for each sample. Data analysis
was performed in CytExpert Acquisition and Analysis Software Version 2.4 (Beckman
Coulter, Inc., Brea, CA, USA).

4.3.1. Analysis of Platelet αIIbβ3 Integrin Activation

Platelet αIIbβ3 integrin activation was measured by fibrinogen-Alexa-Fluor 647 bind-
ing. Fibrinogen (final concentration 15 µg/mL) was added to WP, and platelets were
incubated with the flavonoid aglycones (100 µM) at 37 ◦C for 30 min. After the addition
of platelet agonist thrombin (50 mU/mL), the samples were incubated at 37 ◦C for 2 min.
Finally, the reaction was stopped by the addition of PBS (1:40).

4.3.2. Analysis of Phosphatidylserine Exposure

PS exposure was measured by annexin-V-PE binding. Platelets were incubated with
flavonoid aglycones (100 µM, 30 min) at 37 ◦C. Subsequently, annexin-V-PE (1:10) was
added to the samples, and the suspension was immediately diluted with Annexin-V binding
buffer (140 mM NaCl, 10 mM HEPES, 2.5 mM CaCl2). The samples were incubated for
10 min at room temperature (RT) in the dark. For positive control, platelets were incubated
with apoptosis inducer ABT-737 (1 µM, 60 min) [60].

4.3.3. Analysis of Platelet Viability

Cell-permeable calcein-AM was used as a marker of platelet viability. Calcein-AM
acquires a green fluorescent signal after the acetoxymethyl ester hydrolysis by intracellular
esterases [107]. WP were incubated with calcein-AM (0.2 µM) and flavonoid aglycones
(100 µM) at 37 ◦C for 30 min. Then, the reaction was stopped by the addition of PBS (1:40).
For positive control, platelets were incubated with gossypol (40 µM, 10 min), which can
affect cell viability via inhibition of B-cell lymphoma II (Bcl-2) proteins [108].

4.3.4. Analysis of Reactive Oxygen Species Formation

The analysis of reactive oxygen species (ROS) formation in activated platelets was
performed using fluorescent dye DCF-DA. WP were incubated with DCF-DA (10 µM) and
flavonoid aglycones (100 µM) at 37 ◦C for 30 min. Finally, after thrombin (50 mU/mL)
incubation at 37 ◦C for 2 min, the reaction was stopped by PBS (1:40).

4.4. Measurement of Thromboxane Synthase Activity

The thromboxane synthase (TxS) activity was evaluated as previously described [109,110].
Briefly, WP (6 × 108 cells/mL) were incubated with gossypol (40 µM; 10 min) or the
flavonoid aglycones (100 µM), in the presence or absence of nonselective cyclooxygenase
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(COX-1 and COX-2) inhibitor indomethacin (10 µM) at 37 ◦C for 30 min. DMSO was added
to control samples as a vehicle of the flavonoid aglycones. Platelets were stimulated with
thrombin (50 mU/mL), and the reaction was stopped by trichloroacetic acid (TCA; 20%
TCA in 0.6 M HCl). Then, samples were incubated on ice (10 min) and centrifuged (4 ◦C,
10 min, 4.400 g). The supernatant was mixed with thiobarbituric acid (TBA; 0.53% TBA in
0.01 M KH2PO4, 0.05 M Na2HPO4, pH 7.4), heated at 70 ◦C for 30 min, and cooled at RT.
Then, the fluorescence of the reaction product of malondialdehyde (MDA) and TBA was
measured (λex = 510 ± 15 nm, λem = 560 ± 20 nm, CLARIOstarPlus reader, BMG Labtech
Gmbh, Ortenberg, Germany). To evaluate the TxS activity, the exhibited fluorescence
of the samples in the presence of indomethacin was indicated with ethanol (the vehicle
for indomethacin).

4.5. Western Blot Analysis

WP (3 × 108 cells/mL) were incubated with the flavonoid aglycones at the indicated
concentration for the indicated time and lyzed with Laemmli sample buffer. DMSO was
added to control samples as a vehicle of flavonoid aglycones. Proteins were separated by
SDS polyacrylamide gel (SDS-PAGE) and transferred to nitrocellulose membranes, which
were incubated with appropriate primary antibodies overnight at 4 ◦C. To visualize the
signal, either goat anti-rabbit or anti-mouse IgG-conjugated antibodies with horseradish per-
oxidase were used. ImageJ software version 1.54g (National Institutes of Health, Bethesda,
MD, USA, and Laboratory for Optical and Computational Instrumentation, Madison, WI,
USA) was used for densitometric analysis.

4.6. cAMP and cGMP Measurement

WP (1 × 109 cells/mL) were incubated with the flavonoid aglycones (100 µM) at 37 ◦C
for 30 min. DMSO was added to control samples as a vehicle of flavonoid aglycones. The
reaction was stopped by the addition of 0.2 M HCl. Then, the samples were incubated on
ice (30 min) and centrifuged (4 ◦C, 10 min, 20,000× g). Samples were dried under vacuum
and stored at −80 ◦C for measurement of cAMP/cGMP concentration by LC–MS/MS
method. Samples stimulated by sildenafil (50 µM, 10 min) and iloprost (2 nM, 2 min) were
used as positive controls for cGMP and cAMP, respectively.

4.6.1. Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS)

Sample extracts were analyzed by HPLC–MS/MS HR system consisting of a Dionex
UltiMate 3000 HPLC (Thermo Scientific, Waltham, MA, USA) with Q Exactive detec-
tor (Thermo Scientific) with electrospray ionization (ESI). The injection volume of pre-
pared samples and standards is 20 µL. For chromatographic separation, Zorbax SB-C8
150 mm × 4.6 mm × 1.8 µm column was used. The mobile phase was a gradient mix-
ture of two components: solvent A—0.1 M ammonium formiate in water, and solvent
B—acetonitrile. The flow rate of the mobile phase was 0.400 mL/min, with the following
gradient: 0.0–2.0 min 2% solvent B, then the B content increased to 30% at 8.0 min, and re-
mained so until 9 min, then decreased to 2% at 9.1 min and remained so until the end of the
program (11 min). Mass spectrometric detection was performed using negative electrospray
ESI (−). The analytes were identified by selecting characteristic target reactions (MRM
transitions) and the retention time of the analytes. An example of a chromatogram and
mass spectra of the analytes is given in Supplementary Materials (Figure S3). The following
MS parameters were kept constant during the analysis: nebulization voltage 4800 V for
positive ionization. The temperature of the cone was set at 300 ◦C, the temperature of the
heated probe at 400 ◦C, the gas flow through the nebulizer at 3 L/min, and the flow rate
of the drying gas 10 L/min. Product ions and precursor ions were selected for analyte
identification (Table S1).
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4.6.2. Preparation of Standard Solutions

To prepare the stock internal standard solution, 10 mg of cAMP-13C5 was accurately
weighed (±0.1 mg) using an AUW-220D analytic balance (Shimadzu, Kyoto, Japan), trans-
ferred to a 1000 mL volumetric flask and dissolved in 0.1 M HCl in water. Working internal
standard solutions (10 ng/mL) were prepared by diluting the stock solutions with 0.1 M
HCl in water. Stock solutions were stored at +4 ◦C for no longer than one week.

To prepare the standard solutions, 10 mg of each substance was accurately weighed
(±0.1 mg) using an AUW-220D analytic balance (Shimadzu, Japan), transferred to a 25 mL
volumetric flask, and dissolved in the working internal standard solution. Calibration
solutions were prepared from the stock solution by dilution with a working internal
standard solution. All stock solutions were stored at +4 ◦C for no longer than one week.

4.6.3. Sample Preparation

A total of 50 µL of the working internal standard solution was added to Eppendorf
tubes with samples and thoroughly mixed using a rotary shaker (15 min) and then an
ultrasonic unit (15 min). After ultrasonic stirring, the tubes were centrifuged at 14,000 rpm
for 5 min. Approximately 40 µL of the supernatant was decanted and transferred into glass
vials for HPLC analysis.

4.7. Measurements of Phosphodiesterase Inhibition in Living Cells

HEK293 cells were transfected for 24 h using Lipofectamine 2000 to express PDE2A-
and PDE5A-cGES-DE5 biosensors designed to measure cGMP hydrolytic activity of these
PDEs in intact cells based on FRET [79]. To do so, cells were first prestimulated for 10 min
with 50 µM SNP to induce cGMP production followed by 10 µM of flavonoid aglycones
(apigenin, myricetin or quercetin) and finally by positive controls—100 nM BAY 60-7550 for
PDE2 or 1 µM Sildenafil for PDE5. FRET was monitored using live-cell imaging system built
around Leica DMI3000B microscope, DV2 dual-view and optiMOS camera as previously
described [111]. Effects of aglycones were calculated as a % of maximal inhibition of the
respective PDEs.

4.8. Data Analysis

Each dataset represents no less than three different experiments. Data are presented
as means ± SD. For data analysis, GraphPad Prism 9 (GraphPad Software, San Diego,
CA, USA) was applied. The significance of differences in mean values was determined
by the Mann–Whitney U-test for unpaired groups (the data from flow cytometry analysis)
and the Wilcoxon signed–ranks test for matched pairs (the data from measurement of
thromboxane synthase activity). According to the Shapiro–Wilk test, the data from Western
blot analysis and cAMP and cGMP measurement were normally distributed, with Levene’s
test p > 0.05. Therefore, for group comparisons, one-way ANOVA, and Tukey HSD test
was used. Differences between groups were considered statistically significant at p < 0.05.
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