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Abstract: Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and
have emerged as critical mediators in the response to infection, inflammation, and more recently,
in cancer. In this comprehensive review, we provide details on their structures, binding partners,
regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving
tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic,
and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic
target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies
for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual
inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-
canonical signaling pathways, warranting further investigations and clinical exploration.

Keywords: Macrophage Migratory Inhibition Factor; MIF; D-dopachrome tautomerase; DDT; cy-
tokines; cancer; oncology

1. Introduction

Macrophage Migration Inhibitory Factor (MIF) was first described in the 1960s as an
inflammatory cytokine produced by T cells [1,2]. Since its initial discovery, MIF is now
known to be almost ubiquitously expressed across cell types [3]. MIF has since been impli-
cated in a multitude of innate and adaptive physiologic processes, particularly in response
to infection and inflammation, and understanding of its role in tumorigenesis has expanded
in recent years [4–6]. D-dopachrome tautomerase (DDT), a close homolog of MIF, has also
been studied in a variety of inflammatory and neoplastic processes, albeit less than MIF.
With increasing studies demonstrating that MIF and DDT enhance immunosuppressive
and pro-tumorigenic phenotypes, these cytokines have emerged as promising antitumor
targets across a variety of tumor types [7].

2. MIF and DDT Structure and Regulation

MIF, a 12.5 kDa homotrimeric protein encoded by the MIF gene on chromosome
22q11.23, functions intracellularly or can be stored in cytoplasmic vesicles, where it is
secreted in response to signals such as LPS, TNFα, and hypoxia via upstream TLR and
HIF1α signaling [3,8]. Upon secretion, MIF has the ability to operate under autocrine
and paracrine signaling. Interaction with its canonical receptor CD74 and non-canonical
receptors CXCR2, CXCR4, and CXCR7 drives a wide range of inflammatory, autoimmune,
and neoplastic processes [3]. MIF/CD74 signaling requires co-activation with glycoprotein
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CD44, which plays a crucial role in the MIF/CD74 cognate receptor complex, though MIF
itself does not bind directly to CD44. The CD44 gene comprises 19 exons, with 10 participat-
ing in alternative splicing to generate variants featuring an extended ectodomain structure
(e.g., CD44v1–10) [9].

DDT, a homolog encoded approximately 76 kb away from MIF, shares 34% amino acid
homology and similarly interacts with CD74/CD44, CXCR4, and CXCR7 to drive down-
stream signaling [10,11]. Modeling of MIF and DDT structures is depicted in Figure 1a.
Unlike MIF, DDT lacks the pseudo-ELR domain required for CXCR2 binding and is there-
fore unable to signal through this receptor [12,13]. An overview of MIF and DDT chemokine
interactions with its cognate (CD74) and non-cognate (CXCR2, 4, 7) receptors is outlined in
Figure 1c.
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Figure 1. (a) Molecular models of MIF and DDT tertiary and homotrimeric structures and
(b) schematic diagrams of the human MIF and DDT genes. The MIF gene depicts two known
promotor polymorphisms: the -794 CATT5–8 short-tandem repeat and -173 G/C single-nucleotide
polymorphism. (c) MIF and DDT binding interactions, subsequent canonical (CD74/CD44) and
non-canonical (CXCR2, CXCR4, and CXCR7) pathways, and downstream activities implicated
in tumorigenesis. In vivo and therapeutic agents tested in preclinical and clinical cancer models
(Imalumab, Ibudilast, Milatuzumab, 4-IPP, ISO-1, CPSI-1306, SCD-19, and anti-MIF and anti-DDT
antibodies) are shown at their levels of inhibition in red.
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MIF and DDT are constitutively and ubiquitously expressed by a variety of immune
and non-immune cell types, including but not limited to the those of the brain, kidney,
liver, skin, and heart. MIF and DDT have been widely described as being secreted by
macrophages and monocytes, in addition to other immune cells such as neutrophils, B
and T lymphocytes, and eosinophils, particularly in response to hypoxia, LPS, ROS, IFN-γ,
TNF-α, and glucocorticoids [4,14,15]. They are also secreted by endothelial and epithelial
cells in response to LPS, TNF-α, and direct injury, playing a role in neutrophil recruitment
and extravasation for wound healing [16–18]. Additionally, they are secreted by a wide
range of central and peripheral neuronal cells such as astrocytes, microglia, and oligoden-
drocytes in response to LPS and direct injury [4]. In endocrine systems, MIF is co-localized
with insulin in intracellular vesicles of pancreatic beta cells and secreted in response to
elevated circulating glucose [19]. MIF secretion is also induced by glucocorticoids in pro-
inflammatory states such as infection or sepsis and follows a bell-shaped dose–response
curve, with secretion being inhibited at very high glucocorticoid levels to protect the host
from a potentially life-threatening inflammatory response [20]. A list of cell types and their
stimuli impacting MIF and DDT expression is outlined in Supplementary Table S1.

Intracellularly, MIF is regulated at genetic, epigenetic, and transcriptional levels. At
the genetic level, polymorphisms located in the MIF promoter are known to drive MIF
expression. Polymorphism rs5844572 located at the -794 locus is comprised of five to
eight short-tandem repeats of the CATT sequence (CATT5–8), with higher repeat numbers
correlating with increased MIF expression [21,22] (Figure 1b). The DDT gene, in contrast,
lacks a similar promotor region structure (Figure 1b) [23]. In vitro and in vivo Acute
Lymphoblastic Leukemia (ALL) models reveal that MIF is positively regulated by UHRF1
(ICBP90) and negatively regulated by HBP1, both of which drive MIF overexpression in
disease progression by binding to the promotor region. UHRF1 binds specifically to the
CATT sequence, whereas HBP1 binds to promotor regions regardless of the presence of
CATT-containing sequences [24]. MIF is also regulated by single-nucleotide polymorphism
(SNP) rs755622 at the -173 gene locus. Particularly, C/C and G/C genotypes are associated
with the progression of a variety of neoplastic diseases such as cervical cancer, ALL, and
gastric carcinoma [25–30]. This binding site interacts with the transcription factor activator
protein 4 to promote MIF transcription and expression, but whether the -173 G/C has an
independent action on MIF transcription is unclear, as it is in strong linkage disequilibrium
with the -794 CATT microsatellite repeat [31]. MIF also operates under epigenetic regulation,
as the -173 G/C SNP is associated with CpG island hypermethylation and silencing of the
tumor suppressors p14ARF and p16INK; histone deacetylase inhibition results in further
MIF downregulation [32,33].

At the transcriptional level, various non-coding microRNAs (miRNAs) regulate MIF
expression by binding to its 3′-untranslated region. Negative regulators of MIF and down-
regulated miRNAs include miRNA-451 (prostate cancer, neuroblastoma, gastric carcinoma,
and hepatocellular carcinoma) [34–37], miRNA-144 and miRNA-1228 (hepatocellular carci-
noma and gastric carcinoma) [37,38], and miRNA-608 (lung adenocarcinoma and glioblas-
toma) [39,40]. In contrast, MIF is positively regulated by miRNA-451 (colorectal carcinoma)
and miRNA-301b (pancreatic carcinoma) [41–43]. No similar regulators of DDT are cur-
rently known.

3. MIF and DDT Functions in Cancer Progression

Macrophage dysregulation and suppression were first described in the 1970s and
have increasingly become targets of interest in oncology [44–46]. Though MIF and DDT
have been widely described in inflammation and autoimmunity, interest in these cytokines
within oncology has also been relatively recent given their roles in driving cancer hallmarks
and their overexpression across a variety of cancers (Figure 2) [47–54]. Here, we provide an
overview of tumorigenic phenotypes influenced by MIF and DDT (Figure 3).
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Figure 2. Evidence of MIF and DDT dysregulation has been described in a wide range of cancers,
including hematologic, musculoskeletal, skin, head and neck, lung, gastrointestinal, CNS, urogenital,
and gynecologic cancers.

MIF and DDT promote cell regeneration and proliferation in cancer by activating
the ERK1/2, PI3K-Akt, NFκB, and AMPK pathways, which subsequently activate down-
stream NF-κB/P-TEFb complexes and drive c-Myb transcription [3,55–64]. Additionally,
early studies identified MIF as a negative regulator of p53, and further evidence has since
emerged implicating MIF and DDT’s role in tumor suppressor inhibition [65–67]. MIF
physically interacts with p53 to inhibit transcription-dependent and independent effects
on cell cycle arrest and apoptosis, and they perturb Rb/E2F tumor suppressor activity
by disrupting the C-terminal binding region of E2F responsible for binding Rb [68–70].
MIF and DDT also suppress apoptotic pathways by downregulating pro-apoptotic Fas
receptors, Bax, and Caspase-3 and upregulating anti-apoptotic factors BDNF, MAP2, and
BCL2 [71–74]. This action may be a particularly important role for MIF and DDT in the
inflammatory pathogenesis of different cancers, where sustained MIF expression by inflam-
matory cells in a pre-malignant tumor environment would enhance proliferative signals
and cell lifespan, create a deficient response to genotoxic damage, and allow for the accumu-
lation of additional oncogenic mutations [75]. MIF drives tumor metabolic re-programming
to confer survival in hypoxic environments by inducing anaerobic metabolism via the
NF-κB and HIF-1α pathways [76–79]. De Azevedo et al. studied murine melanoma cell
lines subject to hypoxic conditions and observed the dual MIF and DDT antagonist 4-IPP
to downregulate lactate dehydrogenase A and generate less lactate [80]. Further studies
show HIF-1α stabilization in hypoxic conditions may concurrently activate MIF and up-
regulate PD-L1 expression, conferring tumor survival in oxygen-deficient intratumoral
environments [76,80–85].
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MIF and DDT are also linked to tumor vascularization. Inhibition of MIF and DDT
reduces tumor vascularization and angiogenic markers in various cell and animal mod-
els [86–92]. Studies propose MIF as an upstream regulator of VEGF, impacting JNFK and
AP-1 activity, with a similar role likely for DDT [92,93]. In the context of these findings, it
is noteworthy that the CD44 component plays a crucial role in promoting angiogenesis
and migration. Upon MIF/CD74 binding, CD44 is recruited to the receptor complex to
initiate Src-family kinase activation, CD44 alternative exon splicing, and expression of
tumor-associated isoforms such as CD44v3–v6, which are implicated in enhancing cellular
migration, adhesion, and invasion. Notably, the CD44v3–v6 isoforms drive these processes
by promoting increased matrix interaction and creating neodomains for growth factors
and matrix metalloproteinases [9]. Accordingly, MIF/CD74 signaling likely contributes to
the invasive and tissue-destructive characteristics observed in transformed cells. In vitro,
CXCR4 signaling mediates cellular adhesion to fibronectin, angiogenesis, and migration,
consistent with later reports of MIF and DDT enhancing metastatic potential via promot-
ing the mesenchymal-to-epithelial transition (EMT) [94–96]. Thus, MIF and DDT further
enhance morphologies associated with invasion.

MIF and DDT also drive tumorigenesis by modulating immune populations within
the tumor microenvironment (TME) through cytokine-induced signaling. MIF expression is
induced by pro-inflammatory cytokines such as TNF-α, IL-5, IFN-γ, and TGF-β and stimu-
lates the secretion of TNF-α, IL-1, IL-6, CXCL8/IL-8, and IL-12 from macrophages [97–99].
MIF-dependent secretion of these cytokines promotes proliferation, angiogenesis, and
EMT [100–103]. IFN-γ signaling is particularly important in tumor infiltration and functions
by polarizing tumor-associated macrophages (TAMs) from an M2-immunosuppressive
type to an M1-pro-inflammatory type; however, it also reduces the presence of CD4 and
CD8 T cells in the TME via MIF/CD74 signaling [7,61,104–107]. Additionally, MIF in-
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duces differentiation of myeloid-derived suppressor cells (MDSCs) within the TME, further
enhancing tumor permissiveness and immune evasion [108].

Additionally, MIF drives a stem cell-like phenotype, resulting in tumor dedifferentia-
tion. This is supported by observations of MIF enrichment in human embryonic stem cells
(HESCs) [109]. HESCs mainly express CXCR2 and CXCR7; therefore, MIF is thought to
maintain “stemness” through non-canonical pathways. There is also evidence to suggest
MIF enhances myocardial repair through autophagy-induced survival of human mesenchy-
mal stem cells [110]. DDT has not yet been implicated in driving a stem cell-like phenotype.

4. Evidence of MIF and DDT in Cancer
4.1. Hematologic Cancers

MIF is elevated in multiple hematologic malignancies, including lymphoma, Chronic
Lymphocytic Leukemia (CLL), Acute Myelogenous Leukemia (AML), and ALL, where it is
correlated with adverse outcomes [74,86,111–115]. Increased circulating MIF levels have
been detected in CLL, ALL, and AML, with additional bone marrow enrichment in patients
with AML.

GC/CC phenotypes are associated with an increased risk of childhood ALL, particu-
larly among high-risk ALL and B-ALL groups [116]. In vivo, MIF-/- (MIF-KO) transgenic
Eµ-TCL1 mouse CLL models exhibit delayed disease onset and improved survival [117].
MIF suppresses PAX5 and DMTF1 tumor-suppressor activity and upregulates TAp63 and
VLA-4 integrin, collectively enhancing CLL survival and bone marrow tropism [118–120].
Though DDT’s role in hematologic malignancies is unexplored, studies are underway
(NCT03918655) to evaluate the prognostic value of MIF during the treatment of FMS-like
tyrosine kinase 3 mutated AML [121].

4.2. Osteosarcoma

Elevated levels of MIF are found in tissue and serum samples from patients with os-
teosarcoma and are correlated with increased tumor size, pulmonary metastases, and worse
survival [122]. In xenograft murine models, administration of the MIF/DDT antagonist
4-IPP led to reductions in tumor burden and metastases [55,122]. 4-IPP induces STUB1 E3
ligand-mediated proteasomal degradation of MIF and reduces subsequent osteolytic activ-
ity via suppressing osteoclast formation and promoting osteoblast differentiation [55,123].
Though DDT levels were not directly measured in these studies, its involvement can be
inferred, as 4-IPP targets both DDT and MIF [124].

4.3. Skin Cancers

Early studies of benzo[α]pyrene-induced fibrosarcomas in MIF-KO mice exhibited
enhanced p53 activity in vitro and reduced tumor growth in vivo, suggesting MIF drives
development of cutaneous fibrosarcomas via p53 suppression [125]. MIF is also a known
driver of melanogenesis and functions by inducing keratinocyte secretion of stem cell
factors, a process further enhanced by UV-B [126]. MIF and DDT have been described in
UVB-induced (but not chemically induced) non-melanoma skin cancer progression, sug-
gesting that MIF and DDT may play less important roles in chemical carcinogenesis [127]. In
melanoma, MIF is present across UV- and non-UV-induced melanomas, where enrichment
in serum and tumor is correlated with advanced stages, poor survival, and resistance to im-
mune checkpoint inhibition (ICI) [73,80,128–132]. DDT, though less studied in melanoma,
is also enriched in melanoma models [133]. In uveal melanoma, MIF overexpression sup-
presses natural killer (NK) cell activity, thus establishing an immunosuppression [134].
Uveal melanomas trigger the release of MIF-containing exosomes from hepatocytes, which
subsequently enhance tumor viability. Given the high concentration of hepatic NK cells,
tumor survival is conferred by MIF-mediated evasion of NK-driven cell lysis [129,135,136].
Though little research has described the role of MIF in acral melanoma, it has similarly
been hypothesized to drive pathogenesis via the presence of M2-type macrophages in the
TME [137].
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4.4. Head and Neck Cancers

Elevated MIF expression has also been detected in head and neck squamous cell
cancers (HNSCC), particularly in the nasopharynx, hypopharynx, larynx, and oral cav-
ity [138–140]. ELISA and single-cell transcriptome analysis have revealed elevated MIF
levels in patients with HNSCC [141–143]. In patients with nasopharyngeal carcinoma,
increased MIF tumor expression is a strong prognostic factor for lymph node metastasis
and worse survival [144]. The role of MIF in human papillomavirus (HPV)+ and HPV−
cancers has been described, but mechanistically, it remains unclear. HPV suppresses p53
and Rb via the E6 and E7 glycoproteins, respectively, and is a known driver of HNSCC that
is associated with better prognosis and survival [145]. Kindt et al. observed by immunohis-
tochemical staining that HPV- tissue had higher total MIF levels compared to HPV+ tissue,
but HPV+ cells appear to secrete more MIF, as evidenced by E6- and E7-transfected HNSCC
lines producing higher levels of MIF. Kindt et al. also observed 4-IPP treatment of HNSCC
cell lines reduced proliferation regardless of HPV status, with HPV+ cells exhibiting a
higher IC50, suggesting more MIF requiring neutralization [146]. This group subsequently
hypothesized that E6 activation of mTOR drives HIF-1α accumulation and subsequent MIF
upregulation. The role of DDT, in contrast, has not yet been described in HNSCC.

4.5. Lung Cancers

MIF plays a significant role in non-small-cell lung carcinoma (NSCLC), with several
studies implicating similar functions of DDT. Elevated serum MIF levels in NSCLC pre-
dict worse overall and progression-free survival, and co-expression with CD74 correlates
strongly with enrichment of tumor-associated CXC chemokines and tumor vasculariza-
tion [147,148]. MIF or DDT knockdown led to reduced in vitro cellular migration and
vascular tube formation; combined knockdown had the greatest effect on dampening
CXCL8 and VEGF expression [149]. CXCR4 inhibition suppressed NSCLC migration
and invasion, suggesting non-canonical signaling drives metastasis [150]. Interestingly,
cisplatin-resistant NSCLC cell lines secrete MIF and enhance macrophage polarization [151];
and ionizing radiation frees MIF from complexing with ribosomal protein S3, enabling its
downstream pro-tumorigenic activity [152].

In lung squamous cell carcinoma, tumor MIF expression correlates with lymph node
metastasis and worse disease-free survival, and in mesothelioma, CD74 tumor enrichment
independently predicts improved survival [153,154]. MIF overexpression in lung adeno-
carcinoma is associated with increased proliferation and migration and the development
of multiple primary tumors [153,155,156]. MIF gene overexpression was also recently
identified as a component of a unique gene signature in lung adenocarcinoma, conferring
a 53% 5-year recurrence-free survival for patients exhibiting the signature [157]. These
studies have been confirmed by in vivo models, whereby decreased tumor growth was
observed in mutated MIF and MIF-KO mice, as well as with administration of MIF inhibitor
SCD-19 [156].

4.6. Gastrointestinal Cancers
4.6.1. Esophageal and Gastric Cancer

In esophageal squamous cell carcinoma (ESCC), MIF drives cancer progression via Akt
activation and GSK3β tumor suppressor inactivation [158,159]. MIF inhibition decreases
tumor growth in murine ESCC models, concordant with patient studies correlating MIF
serum and tumor enrichment with tumor dedifferentiation, vascular invasion, lymph node
metastases, and worse survival [87,160,161]. Patients with ESCC and poor prognosis also
exhibit CXCR4 enrichment, suggesting the importance of non-canonical signaling in tumor
progression [162]. Additionally, in patients treated with anti-PD-1 therapy, MIF levels are
negatively correlated with survival [163]. To date, DDT has not been described in ESCC.

Elevated MIF tumor detection in gastric cancer also correlate with angiogenesis,
lymph node metastasis, and advanced disease [164–166]. High-expression MIF CATT7
genotypes have been associated with gastritis and gastric cancer in younger patients,
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suggesting this MIF risk polymorphism may drive early stages of mucosal inflammation
and increase the subsequent risk for gastric cancer [167]. MIF is also released by monocytes
responding to Helicobacter pylori virulence factor CagA and enhances tumorigenesis [168].
Transcriptomic analysis of CagA+ gastric carcinomas revealed MIF secretion in the TME
induces TAM polarization, EMT, and suppression of MAPK4 pathways, all of which
are correlated with poor prognosis [169]. P53 suppression mediated by ZFPM2-AS1, an
antisense RNA strand that negatively regulates MIF, is also a driver of in vitro gastric
carcinogenesis [170]. The specific mechanisms by which DDT may drive gastric carcinoma,
however, are less understood.

4.6.2. Hepatocellular Carcinoma

MIF also contributes to hepatocellular carcinoma (HCC), as evidenced by the -173
GC/CC SNP correlating with elevated circulating MIF levels and worse prognosis [28].
In vitro, MIF promotes HCC cell survival and is abrogated by anti-CD74 treatment [171].
Hepatocyte-specific MIF-KO and global CD74 KO mice exhibited reduced tumor burden
compared to their WT counterparts. Single-cell transcriptome analysis revealed CD36+
HCC-associated fibroblasts secreted MIF through increased intratumor lipid oxidation;
the authors hypothesized that this induced a pro-tumor environment via lipid oxidation,
which subsequently activates p38 kinase and drives MIF overexpression [172]. In murine
models, combined CD36 and PD-L1 inhibition restored an antitumor immune signature in
the TME, further validating the role of MIF in cancer progression. DDT, in contrast, has not
been described in HCC.

4.6.3. Pancreatic Carcinoma

Elevated MIF levels in pancreatic carcinoma tissue are correlated with worse prognosis,
and studies have consistently demonstrated MIF and DDT’s role in disease progression
via driving proliferation, invasion, and anti-apoptotic processes [60,68,173,174]. DDT
and MIF knockdown in pancreatic cancer in vitro increased p53 expression and reduced
proliferation and invasion in vivo [60,68]. MIF was also found to negatively regulate tumor
suppressor NR3C2, an orphan nuclear receptor that inhibits EMT and correlates with
improved patient survival. MIF suppression of NR3C2 occurs via upregulation of miR-
301b, which binds the 3′ untranslated region of NR3C2 and inhibits its activity [44,175,176]
MIF is also present in pancreatic cancer-derived exosomes, which drive the expression,
recruitment, and differentiation of myeloid-derived suppressor cells in the TME [177–179].

4.6.4. Colorectal Carcinoma

MIF has been widely described in colorectal carcinoma (CRC), where elevated serum
MIF levels correlate with increased hepatic metastasis and intratumoral macrophage in-
filtration [89,180,181]. Additionally, the -173 GC/CC polymorphism is linked to tumor
de-differentiation and advanced disease, offering potential as a prognostic biomarker for
CRC [182]. In vivo models demonstrate reduced tumor burden and increased apoptosis
with MIF blockade [183]. MIF enrichment in KRAS-mutated CRC cell lines contributes to
aberrant proliferative signaling, highlighting its potential as a target in treatment-resistant
cancers [184,185]. DDT also plays a role in CRC progression via COX-2, a key regulator
of β-catenin stability and EMT. Li et al. observed that DDT increases JNK signaling via β-
catenin-dependent and -independent mechanisms, and its interaction with atractylenolide
I (AT1) leads to p53 deacetylation, both of which confer tumor survival and metasta-
sis [186,187]. Thus, DDT appears to play a role in promoting the adenoma–carcinoma
sequence, in part by regulating AT1.

4.7. Central Nervous System Cancers

Transcriptomic analyses have identified MIF and DDT as negative prognostic factors
in patients with neuroblastoma, regardless of MYCN amplification [188,189]. Mice treated
with 4-IPP exhibited reduced neuroblastoma growth and improved survival [190]. MSI1,
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a neural stem cell marker widely expressed in high-grade gliomas, is thought to be cor-
related with MIF and drives immunosuppression [106,188]. Furthermore, brain-derived
neurotrophic factor conferred neuronal protection in hypoxic and hypoglycemic environ-
ments via MIF-dependent apoptotic suppression, consistent with MIF’s known role in
enhancing hypoxic survival [71,191]. Of note, the MIF/CXCR4 signaling axis has been
implicated in the survival, invasion, and drug resistance of patient-derived neuroblastoma
cells in the bone marrow microenvironment and may provide an explanation for the high
propensity of bone metastasis in neuroblastoma [190].

MIF and DDT play a pivotal role in aggressive glioblastoma multiforme (GBM) [83,192,193].
GBM cell lines and patient tissue show overexpression of MIF and DDT; levels are corre-
lated with tumor recurrence and poor prognosis [94,194]. Overexpression of CD74/CD44,
CXCR2, and CXCR4 in malignant GBM is associated with poor patient prognosis, sug-
gesting that both canonical and non-canonical MIF-dependent pathways contribute to
GBM progression [195]. Targeting MIF/DDT pathways offers a therapeutic approach
in treatment-resistant GBM, but results are conflicting. 4-IPP combined with radiation
therapy reduces in vitro proliferation substantially more than 4-IPP monotherapy, and
MIF enrichment is correlated with improved survival in patients treated with neoadjuvant
therapy [58,193]. Additionally, MIF in GBM induces immune evasion through MDSCs and
modulation of CD8 T cell activity within the TME [108,196].

Thus, MIF targeting has a potential role as an adjunctive therapy with standard
treatments. Conversely, bevacizumab resistance appears to be associated with reduced
MIF and increased M2-type macrophages, presumably through MIF’s role as an upstream
regulator of VEGF production [93,197]. Further research is needed to evaluate these
disparate MIF functions and highlight the optimal approach to leveraging MIF-based
therapies in treatment-resistant GBM.

4.8. Urogenital Cancers
4.8.1. Bladder Cancer

MIF and DDT overexpression has been observed in TCGA analysis of bladder can-
cers [198,199]. Similarly, CD74 overexpression is detected in high-grade invasive bladder
cancer and is associated with proliferation, invasion, and angiogenesis of HT-1376 bladder
cancer cells [200–202]. MIF-KO murine bladder cancer models demonstrated decreased
vascularization and tumor stage [91]. 4-IPP treatment in murine bladder cancer models
resulted in decreased tumor weights in MIF-KO versus WT mice, suggesting an additive
contribution of DDT inhibition [198]. In bladder cancer cells, MIF knockdown produced a
dose-dependent reduction in growth [203]. CPSI-1306, which inhibits the enzymatic region
of MIF, reduced cellular proliferation and VEGF expression in vitro and reduced tumor
growth and neovascularization in vivo [88].

4.8.2. Prostate Cancer

MIF promotor polymorphisms are associated with worse survival in prostate cancer,
with the -173 G/C SNP correlating with increased disease incidence and -794 CATT7
correlating with an increased 5-year recurrence risk [204]. This coincides with observations
of MIF and CXCR7 overexpression in prostate cancer tissues and in vitro models, including
castration-resistant prostate cancers (CRPC) [57,205–207]. CXCR7 is vital for the growth
and migration of CRPC cell lines, promoting enhanced growth and metastasis in mice.
Low miR-451 expression independently predicts worse disease-free and overall survival
in CRPC; conversely, enhanced expression in prostate cancer cell lines reduces growth,
migration, and invasiveness, negatively correlating with MIF [34]. These findings highlight
MIF as a potential target for treating CRPCs. DDT has not been evaluated in prostate cancer.

4.8.3. Renal Cell Carcinoma

High MIF and DDT expression in the kidney impacts renal cell carcinoma (RCC)
progression through interactions with HIF1α and HIF2α [90,202]. Hypoxia is a well-known
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inducer of MIF expression. Similarly, VHL knockout in vitro also decreased DDT levels un-
der hypoxic conditions. DDT and MIF knockdown reduced murine RCC growth, with DDT
knockdown producing the most dramatic reduction [90]. This finding suggests a greater
contribution of DDT to tumorigenesis in this model. Combined DDT and MIF knockdown
exhibited the largest reduction in tumor growth and angiogenesis, further highlighting
their synergistic roles and the potential for dual blockade in antitumor treatment [90].

4.9. Breast Cancer

Elevated sera and tumor MIF and DDT levels have been observed in breast cancer,
validated by cell lines, patient samples and murine models, and are correlated with worse
survival [133,208,209]. MIF induces HMGB1 secretion from tumor cells, which subsequently
binds TLR4 and activates NF-κB-mediated cell migration [210]. Interestingly, cytosolic MIF
correlates with improved survival, suggesting a potential protective role when localized
intracellularly [211]. Elevated MIF also has been found in triple-negative breast cancer
(TNBC), a highly aggressive breast cancer subtype [212]. In vivo models treated with the
small molecule antagonist CPSI-1306 exhibited reduced tumor apoptosis, tumor growth,
and metastasis, suggesting MIF to be a potential treatment target in TNBC [211,212].
Likewise, TNBC cells implanted into MIF-KO mice had reduced tumor growth [212].
These findings highlight the role of MIF and DDT in breast cancers.

4.10. Gynecologic Cancers
4.10.1. Endometrial Carcinoma

The role of MIF in endometrial carcinoma is less clear. Unlike other cancers, MIF
tumor enrichment in endometrial carcinomas is correlated with lower metastatic poten-
tial given lower histological grade and lympho-vascular invasion compared to healthy
tissue [213,214]. Conflicting studies also suggest MIF tissue overexpression drives carci-
noma progression [215]. This is evidenced by MIF upregulation of αv and β3 integrin
and VEGF expression in vitro, findings later confirmed in patient-derived endometrial
adenocarcinoma tissues [214,216]. Further studies reported MIF secreted by endometrial
cancer-associated fibroblasts contributes to immunosuppression [217]. Further research is
needed to clarify the role of MIF in endometrial carcinoma progression. To date, there is no
research on the role of DDT on endometrial carcinoma.

4.10.2. Cervical Cancer

Increased levels of tumor-expressing and circulating MIF, DDT, and CD74 have been
detected in early- and late-stage cervical cancer and have been linked to lymphatic metas-
tasis and up-regulation of E-cadherin and vimentin [60,218–220]. Reduced proliferation,
vascularization, and migration occurred with MIF and DDT knockdown, as well as with
administration of MIF and DDT small-molecule inhibitor ISO-1 [60,218]. Dual blockade of
MIF and DDT demonstrated the most profound effect. Murine studies corroborated these
results, with dual MIF and DDT inhibition exhibiting the most substantial reduction in tu-
mor size, likely due to greater suppression of involved signaling pathways (Figure 1c) [60].

5. Current Therapeutic Applications and Clinical Trials

Despite strong evidence regarding MIF and DDT in tumorigenesis, only a handful of
clinical trials have been conducted targeting MIF in oncology, with none targeting DDT. A
summary of agents targeting the MIF/DDT/CD74 axis evaluated in vivo and in clinical
trials is outlined in Supplementary Tables S2 and S3. Imalumab is a human recombinant
antibody targeted against a MIF epitope associated with its oxidation (oxMIF), which may
arise in oxidative inflammatory environments, offering a more selective target that spares
MIF functions in normal physiology [221,222]. Of note, DDT lacks the CXXC motif crucial
for MIF’s redox sensing and may not be targeted by Imalumab [12,13]. In the Phase I trial
NCT01765790, the safety of Imalumab was tested in patients with advanced solid tumors
and exhibited successful tumor penetration and activation of apoptotic pathways. Encour-
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agingly, the administered regimens did not reach a maximally tolerated dose, indicating a
favorable safety profile for patients. This study was halted early due to poor efficacy data
and limited enrollment, as 50 of the 69 patients enrolled discontinued treatment due to
disease progression or consent withdrawal. Although this study did not extend beyond
Phase I, preliminary data suggest a treatment benefit in some patients, with responses
primarily manifesting as stable disease for at least 4 months [44,222,223]. A Phase I/IIa
trial of Imalumab was conducted in patients with malignant ascites of ovarian cancer;
however, it was terminated due to poor study design and limited patient recruitment [223].
A phase IIa study investigating Imalumab in conjunction with fluorouracil/leucovorin or
pantimumab versus standard of care in patients with metastatic colorectal carcinoma was
also initiated in 2015 but was terminated soon after an early review of safety and efficacy
data (NCT01765790) [223].

There are two plausible hypotheses for the limited clinical efficacy to date for Imalumab.
First is the uncertainty regarding the relative pro-tumorigenic activities of MIF and oxMIF,
as oxidative protein modifications generally reduce productive receptor signal transduc-
tion. Second is the likely coordinate expression of DDT in cancers, which is not targeted
by Imalumab.

Ibudilast is both an inhibitor of PDE2 and allosteric MIF antagonist that has shown
efficacy in inducing cell cycle arrest and apoptosis in patient-derived glioblastoma cell
lines, with clinical evidence for good CNS penetration [224]. Ibudlilast is already approved
in Japan for treating asthma and cerebrovascular disease, with past studies demonstrating
the oral form is well tolerated in healthy adults [224]. In a recent Phase II Trial of Ibudi-
last in Multiple Sclerosis patients, Ibudliast administration slowed whole-brain atrophy,
suggesting robust localization and targeting of oligodendrocytes (NCT01982842) [225].
As these cells are also sources of MIF and DDT expression, Ibudliast offers promise as a
pharmacologic intervention to CNS cancers such as glioblastoma and brain metastases. It
should be noted that the study observed high rates of gastrointestinal side effects associated
with the treatment (vomiting, diarrhea, nausea). Additionally, CNS penetration poses
a risk for CNS-related toxicities, though it is promising that these side effects were not
observed in the trial. Further clinical evidence is needed to confirm the efficacy and toxicity
profile associated with the optimal therapeutic window. Indeed, Ibudilast is currently
under investigation in combination with temozolomide for newly diagnosed and recurrent
glioblastoma patients (NCT03782415) [44,226].

Milatuzumab, an anti-CD74 antibody, was evaluated in a Phase I study for relapsed
or refractory Multiple Myeloma (NCT00421525), where it showed disease stability in 26%
of patients, along with improved B cell concentration in the serum, without dose-limiting
toxicity or rapid drug clearance [227]. In a Phase I/II trial for relapsed or refractory CLL
(NCT00868478), Milatuzumab demonstrated a modest overall response, reducing spleen
size, enhancing malignant apoptosis, and improving WBC counts, leading to stable disease.
Another Phase I–II clinical trial assessed Milatuzumab in frail patients with refractory CLL
and detected an improvement in patient quality of life and performance or functional status
among patients treated with Milatuzumab [228]. Limitations to this study include the small
sample size (n = 8) as well as overrepresentation of pre-treated patients, both of which
make it difficult to evaluate the generalizability of these results. Though Milatuzumab does
not directly neutralize MIF or DDT, these clinical data further support the hypothesis that
CD74/MIF/DDT blockade is a promising therapeutic.

Indeed, clinical evidence evaluating direct MIF blockade remains scant, and it has
never been tested for DDT antagonism, either alone or in combination with MIF. Moreover,
as MIF and DDT exert functions both intra- and extracellularly, the optimal method for
MIF and DDT blockade remains unclear. Still, the existing clinical and preclinical data
published make a strong case for development of an antitumor therapeutic targeting the
MIF and DDT pathway. Overall, targeting this pathway requires a nuanced approach
in targeting inflammatory pathways enabling tumor permissiveness without disrupting
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antitumor inflammatory processes to strike the most therapeutic balance of maximizing
clinical outcomes and minimizing immune-related toxic events.

6. Future Directions

MIF/DDT/CD74 are potential biomarkers and therapeutic targets across a variety
of cancers. Determining which targets within this pathway to neutralize requires further
research, especially with respect to determining the distinct versus overlapping functions
of MIF and DDT with their canonical versus non-canonical receptors. Given the substantial
evidence for MIF and DDT in the progression of a variety of tumors, these are highly
tractable targets in oncology with potentially tumor-agnostic applications. Furthermore,
MIF and DDT may contribute to ICI resistance in melanoma and pancreatic cancer through
T cell suppression and exhaustion, emphasizing the need to target these cytokines and
restore antitumor immunity in the TME [229]. Thus, targeting MIF and DDT holds promise
for improving ICI response in these highly lethal cancers [230]. A dearth of clinical trial
evidence remains a significant limitation to understanding how these agents may work in
patients. Given substantial data for roles for MIF and DDT in preclinical cancer models, we
encourage continued exploration of clinical and patient-derived models to further evaluate
MIF and DDT as effective antitumor targets. Additionally, a human-compatible DDT
inhibitor as well as a dual MIF and DDT inhibitor have yet to be developed and studied in
preclinical models to validate the hypothesis of targeting MIF and DDT as a synergistic
therapeutic approach to cancer in patients.

Targeting MIF and DDT as an antitumor intervention may continue to pose challenges
in specificity, as they are ubiquitously and constitutively expressed. Therefore, continued
research needs to be performed to optimize pharmacokinetic parameters such as drug
stability, delivery to the tumor site, pharmacokinetic development, and binding interactions
within the target site. We recommend proceeding with clinical trials of anti-MIF and -DDT
agents, with an emphasis on cancer types supported by strong preclinical and clinical
evidence for MIF and DDT involvement, such as melanoma. As clinical trials to date have
demonstrated overall favorable safety profiles for MIF pathway-targeting agents, we are
hopeful that expanding clinical research in MIF and DDT will aid further understanding of
these molecules as antitumor targets.

7. Discussion

MIF and DDT play pivotal roles in multiple facets of cancer progression and possibly
initiation [75,125]. Initially recognized as proinflammatory cytokines, their implication
in driving numerous cancer hallmarks has positioned them as potential biomarkers for
prognosis, surveillance, and treatment. Extensive experimental and computational research
has unveiled intricate signaling mechanisms in MIF/DDT/CD74 pathways across diverse
cancer types, shedding light on the complexity of canonical and non-canonical signaling
processes within the TME. Moreover, various experimental approaches have assessed a
multitude of strategies for MIF and DDT inhibition in both in vitro and in vivo models.

Clinical trials exploring MIF targeting in cancer are limited but show promise. Demon-
strated efficacy is possibly limited by unopposed DDT signaling, which is also increased in
expression in many cancers (Figure 4). Imalumab showed a modest effect with minimal
toxicity in early trials with solid cancers and demonstrated potential in GBM. Milatuzumab
has demonstrated efficacy and has been approved for the treatment of patients with multi-
ple myeloma and CLL. Despite progress, therapeutic development for MIF remains in its
early stages and requires ongoing evaluation in clinical models. Notably, DDT has not yet
been evaluated in clinical trials as an antitumor target, though substantial preclinical data
suggest that its potential alone or in combination with MIF should be explored.
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8. Conclusions

Despite the wealth of evidence implicating MIF and DDT in tumorigenesis, further
research is necessary to elucidate the disparate and overlapping mechanisms regulating
their function in tumorigenesis. Though clinical exploration of these targets in cancer
therapy remains limited, further research is needed to identify optimal blocking methods
for these pathways. There is substantial evidence to support the pivotal roles of MIF
and DDT in cancer progression and highlight their potential as promising and broadly
applicable targets in oncology, arguing for the need for expanded research and clinical
trials to establish their efficacy in cancer therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25094849/s1.
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