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Abstract: Fruit shape is an important external feature when consumers choose their preferred
fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its
commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study,
the mechanism of fruit shape formation was studied by cytological observations, phytohormone
assays, and transcriptome analysis using the long fruit and flat fruit produced by ‘Yaoxianwuhua’
hermaphroditic flowers. The results showed that stage 2–3 (June 11–June 25) was the critical period
for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in
the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR
levels may promote long fruit formation by promoting cell elongation in the longitudinal direction,
and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the
cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction,
respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and
nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape
formation process. These results provide valuable information for regulatory mechanism research on
persimmon fruit formation.

Keywords: persimmon; fruit shape; phytohormone; transcriptome

1. Introduction

Persimmon (Diospyros kaki Thunb.) fruit is very popular in China [1]. There are many
sex types of persimmons, such as dioecious, monoecious, andromonoecious, and polygamo-
monoecious. Commonly cultivated persimmons are female plants. Horticulturally, fruit
shape is an important economic trait. During the sale process, fruit shape is an important
consideration for consumers. In production, non-uniformity in fruit shape is not conducive
to mechanical harvesting, processing, storage, and transportation. In addition, fruit shape
is an important trait selected during breeding [2,3]. The diversity of persimmon fruit shape
provides a basis for studying the mechanism of fruit shape regulation, thus facilitating
efficient manipulation of fruit shape in breeding.

Fruit shape formation is a complex process involving multiple biological processes,
such as cell division, cell expansion, hormone biosynthesis, signal transduction, and key
gene expression. In horticultural crops, the fruit shape formation of tomato, cucumber, and
peach fruit has been studied intensively [2,4,5]. In tomato, the application of exogenous
auxin and gibberellin can produce elongated fruit, whereas the application of gibberellin
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inhibitor paclobutrazol results in flatter fruits [6–8]. With the development of sequencing
technology, several genes thought to control the fruit shape of tomato were identified [9],
such as locule number (LC) and fascinated (FAS), which affect fruit shape by regulating
locule number, SUN, which encodes for a protein that positively regulates fruit elonga-
tion [10], and OVATE, which encodes a negative regulator of growth that reduces fruit
length [11]. In cucumber, ABA, mediated by CsTRM5, can change the fruit shape by regulat-
ing cell division and expansion [12]. In peach, auxin plays an important role in regulating
fruit shape [13].

Current research on persimmon fruit shape is mainly descriptive, and there are rela-
tively few in-depth studies [14]. Here, the flat and long fruit of ‘Yaoxianwuhua’, which were
in the critical morphological periods of fruit shape formation, were used for phytohormone
assays and transcriptome analysis to determine the regulatory roles of phytohormones and
candidate genes in fruit shape formation. This study provides valuable information for
further exploring the mechanism of persimmon fruit shape formation.

2. Results
2.1. Morphological Comparison of Fruit

The ‘Yaoxianwuhua’ persimmon is polygamo-monoecious with male flowers, female
flowers, and hermaphroditic flowers. It is interesting that the hermaphroditic flowers
can produce flat fruit and long fruit. In order to study the reasons for the different fruit
shape formation, we observed the phenotypes of fruit throughout the development pe-
riod. At stage 1–2 (May 29–June 11), only one relatively flat fruit type was produced by
hermaphroditic flowers. At stage 3 (June 25), the fruit diameter (FD), length (FL), and shape
index (FSI: length-by-diameter ratio) began to differentiate. Some fruit developed into long
fruit with larger FL and FSI, and some fruit developed into flat fruit with smaller FD and
smaller FSI. At stage 4–9 (July 8–September 15), the FD and FL increased steadily, but the
FSI fluctuated slightly and the fruit shape did not change (Figures 1 and 2). Therefore, stage
2–3 (June 11–June 25) was crucial to persimmon fruit shape formation.
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In order to observe the morphological differences of fruit cells, the fruit tissues were
sliced (Figure 3). In the transverse direction, there was no difference in cell diameter be-
tween flat fruit and long fruit (Figure 4a), while the cell number of flat fruit was significantly
more than that of long fruit (Figure 4c), indicating that cell number was responsible for the
difference in diameter between long fruit and flat fruit. In the longitudinal direction, there
was no difference in cell number between flat fruit and long fruit (Figure 4b), while the
cell length of long fruit was significantly larger than that of flat fruit (Figure 4c), indicating
that cell length was responsible for the difference in length between long fruit and flat
fruit. In summary, persimmon fruit shape was determined by cell number in the transverse
direction and cell length in the longitudinal direction.
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2.2. Phytohormone Content in Flat and Long Fruits

To establish the effects of endogenous phytohormones on fruit shape, we measured
auxin (IAA), abscisic acid (ABA), gibberellin (GA1, GA3, GA4 and GA7), salicylic acid (SA),
jasmonic acid (JA), zeatin (ZT), and brassinosteroid (BR) levels in flat and long fruit at
stage 3. The IAA, GA4, SA, ZT, and BR levels in long fruit were markedly higher than those
in flat fruit, while the ABA, GA3, and JA levels in flat fruit were significantly higher than
those in long fruit (Figure 5). These results showed that phytohormones play an important
role in persimmon fruit shape formation.
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2.3. Transcriptome

To identify the mRNA expression profiles in long fruit and flat fruit, six cDNA libraries
at stage 3 (F1, F2, and F3 for flat fruit and L1, L2, and L3 for long fruit) were constructed
and sequenced on the NovaSeq 6000 platform. A total of 22.28, 21.44, 25.16, 22.34, 29.32,
and 22.62 Mb clean reads were obtained, respectively (Table S1). Above 85.50% of the reads
mapped to the reference D. kaki genome (Table S2).

The differentially expressed genes (DEGs) were compared using DESeq2 software
(v.1.20.0). A total of 380 DEGs were identified between flat and long fruits. Compared
with flat fruit, 311 genes were upregulated and 69 were downregulated in long fruit
(Figure 6a). The functional classification and statistics of the DEGs showed that the
most abundant COG categories were signal transduction mechanisms and carbohydrate
transport and metabolism (Figure 6b). The most abundant GO categories were binding
and cellular anatomical entity (Figure 6c). The most abundant KEGG pathways were
plant–pathogen interaction, MAPK signaling pathway-plant and plant hormone signal
transduction (Figure 6d).

2.4. DEGs Related to Phytohormones

The combined analysis of phytohormones and the transcriptome identified 32 DEGs
related to phytohormone biosynthesis and signal transduction pathways. Among them,
29 DEGs were upregulated in long fruit and three DEGs were upregulated in flat fruit
(Figure 7; Table S3).

In the abscisic acid signal transduction pathway, PP2C (evm.TU.contig23.27 and
evm.TU.contig9.50) and CYP707A1 (evm.TU.contig4456.66) were downregulated in long
fruit, while CYP707A4 (evm.TU.contig8954.31), CSBP (evm.TU.contig6534.78), FRAA2
(evm.TU.contig2064.305), and ACR8 (evm.TU.contig1406.2) were downregulated in long fruit.

In the gibberellin signal transduction pathway, CYP714C2 (evm.TU.contig22.238), LBD41
(evm.TU.contig2969.39), CIGR1 (evm.TU.contig4128.172), EFM (evm.TU.contig7272.635), and
SCL13 (evm.TU.contig7284.45) were upregulated in long fruit.

In the brassinosteroid signal transduction pathway, CYP90C1 (evm.TU.contig1073.223),
RKL1 (evm.TU.contig2987.18), PHI-1 (evm.TU.contig4394.172), At4g25390 (evm.TU.contig8036.80)
and XTH23 (NewGene_78 and NewGene_80) were upregulated in long fruit.



Int. J. Mol. Sci. 2024, 25, 4812 5 of 12
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 12 
 

 

 

 
Figure 6. Number and functional classification of DEGs. (a) The volcano plot shows the number of 
DEGs in F vs. L. (b) COG-annotated classification statistical map of DEGs. (c) GO-annotated classi-
fication statistical map of DEGs. (d) KEGG-annotated classification statistical map of DEGs. 

2.4. DEGs Related to Phytohormones 
The combined analysis of phytohormones and the transcriptome identified 32 DEGs 

related to phytohormone biosynthesis and signal transduction pathways. Among them, 
29 DEGs were upregulated in long fruit and three DEGs were upregulated in flat fruit 
(Figure 7; Table S3).  

In the abscisic acid signal transduction pathway, PP2C (evm.TU.contig23.27 and 
evm.TU.contig9.50) and CYP707A1 (evm.TU.contig4456.66) were downregulated in long 
fruit, while CYP707A4 (evm.TU.contig8954.31), CSBP (evm.TU.contig6534.78), FRAA2 
(evm.TU.contig2064.305), and ACR8 (evm.TU.contig1406.2) were downregulated in long 
fruit.  

In the gibberellin signal transduction pathway, CYP714C2 (evm.TU.contig22.238), 
LBD41 (evm.TU.contig2969.39), CIGR1 (evm.TU.contig4128.172), EFM (evm.TU.con-
tig7272.635), and SCL13 (evm.TU.contig7284.45) were upregulated in long fruit.  

In the brassinosteroid signal transduction pathway, CYP90C1 (evm.TU.con-
tig1073.223), RKL1 (evm.TU.contig2987.18), PHI-1 (evm.TU.contig4394.172), At4g25390 
(evm.TU.contig8036.80) and XTH23 (NewGene_78 and NewGene_80) were upregulated in 
long fruit.  

In the salicylic acid biosynthesis pathway, 2ODD19 (NewGene_7599) was upregulated 
in long fruit.  

Figure 6. Number and functional classification of DEGs. (a) The volcano plot shows the number
of DEGs in F vs. L. (b) COG-annotated classification statistical map of DEGs. (c) GO-annotated
classification statistical map of DEGs. (d) KEGG-annotated classification statistical map of DEGs.

In the salicylic acid biosynthesis pathway, 2ODD19 (NewGene_7599) was upregulated
in long fruit.

In the cytokinin biosynthesis pathway, CKX7 (evm.TU.contig5822.243) was upregulated
in long fruit.

In the auxin signal transduction pathway, SAUR36 (evm.TU.contig1399.312) was up-
regulated in long fruit.

Ethylene plays an important role in plant growth and development. In this study, the
DEGs associated with ethylene biosynthesis and signal transduction pathways were also iden-
tified. Eleven genes, including ETR2 (evm.TU.contig2063.104), MKK5 (evm.TU.contig7396.85),
EBF1 (evm.TU.contig7272.610), ERF5 (evm.TU.contig1399.252 and evm.TU.contig5.37), ERF012
(evm.TU.contig3113.4), ERF014 (evm.TU.contig4397.183), ERF017 (evm.TU.contig7276.57),
ERF106 (evm.TU.contig8036.38), ACO1 (NewGene_5158), and RAP2–3 (evm.TU.contig2064.298),
were upregulated in long fruit.
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2.5. DEGs Related to Cell Division and Cell Expansion

Plant growth and development are closely related to cell division and cell expan-
sion. Nine DEGs related to cell division, including JGB (evm.TU.contig18.88), AATP1
(evm.TU.contig2115.13, evm.TU.contig2115.15, evm.TU.contig2115.17 and evm.TU.contig2115.19),
UBP12 (evm.TU.contig22.22), KRP1 (evm.TU.contig4128.155 and evm.TU.contig4128.156), and
At2g46620 (evm.TU.contig8037.2), were identified in flat and long fruit. They were upregu-
lated in long fruit (Figure 8; Table S4).
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2.6. DEGs Validation by RT-qPCR

Eight DEGs were selected for RT-qPCR analysis to assess transcriptome data accuracy.
The expression patterns of DEGs were consistent with the RNA-seq results. Thus, our
sequencing data were reliable (Figure 9).
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3. Discussion

There is abundant variation in fruit shape among persimmon cultivars [14]. The most
common persimmon cultivar is hexaploid (2n = 6x = 90) with a complex genetic background,
which results in a rather complex regulatory mechanism for fruit shape formation [15]. The
‘Yaoxianwuhua’ persimmon is polygamo-monoecious with male flowers, female flowers,
and hermaphroditic flowers, and the hermaphroditic flowers can produce flat fruit and long
fruits. Using its hermaphroditic flower fruit as research materials to study the mechanism
of persimmon fruit shape formation can effectively eliminate the interference of inconsistent
genetic backgrounds of experimental materials and obtain more reliable results.

Fruit shape formation is inseparable from cell division and cell expansion [16,17].
Corresponding to cell division and cell expansion, fruit cell number and size play crucial
roles in fruit shape formation. Some studies have provided evidence that differences in
shape are mainly determined by cell number and size, such as melon [18], sweet cherry [19],
peach [20], cucumber [21], and pear [22]. In this study, the cell length of long fruit was
larger than that of flat fruit in the longitudinal direction and the cell number of flat fruit was
more than that of long fruit in the transverse direction, which suggested that persimmon
fruit shape is determined by cell number in the transverse direction and cell length in
the longitudinal direction. The differences in cell number and length were caused by cell
division and cell expansion, respectively. The transverse division of fruit cells is conducive
to the increase in fruit diameter to promote flat fruit formation. The longitudinal elongation
of fruit cells is conducive to the increase in fruit length to promote long fruit formation.

Cell division and cell expansion are inseparable from gene expression. Several genes
involved in cell division related to fruit shape formation were found in some studies.
For example, the vertical development of apple fruit was affected by ANT1 and ANT2,
which are related to cell division [23]. In crops, WTG1 influences grain size and shape by
regulating cell expansion [24]. In this study, nine DEGs related to cell division and cell
expansion were identified between flat and long fruit, which may be involved in regulation
of the cell number and elongation during persimmon fruit shape formation.

Phytohormones usually directly or indirectly regulate fruit shape formation. Auxin,
cytokinin, gibberellin, and brassinosteroid have been shown to control fruit shape in
plants. Application of auxin can increase the number of cells at the proximal end along
the longitudinal axis to promote the elongation of tomato fruit [6]. Several members of
the Auxin Response Factor (ARF) family, including ARF2, ARF7, and ARF10, have been
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also shown to impact tomato fruit shape in distinct ways [25–27]. The content of IAA in
round peaches was significantly higher than that in flat peaches, and four genes related to
the auxin signaling pathway were identified to be involved in regulating flat fruit shape
formation [13]. Gibberellin is a hormone well correlated with cell division. A recent
study demonstrated that the SlymiR159-SlGAMYB2 pathway is involved in regulation
of fruit shape formation by modulating GA biosynthesis in tomato [7]. In pear, GAs are
involved in the regulation fruit shape [28]. BR regulates many processes, including fruit
development. The enhancement of BR signaling transduction can increase grain length and
decrease grain thickness and width by regulating cell division in rice [29,30]. Several studies
on Arabidopsis and rice also demonstrated that interaction of the BR and GA signaling
pathways can regulate cell elongation and plant development [31–35]. External application
of auxin, GA4, and BR can induce the transverse arrangement of microtubules in cells and
thereby promote cell elongation in Arabidopsis [36]. The above studies have proven that
IAA, GAs, and BR not only promote cell division, but also promote cell elongation, and
their functions may be different in different plants. In this study, the IAA, GA4, and BR
levels in long fruit were higher than those in flat fruit, indicating high IAA, GA4, and BR
levels may contribute to long persimmon fruit formation by promoting cell elongation
in the longitudinal direction. Cell elongation during this process may be related to the
transverse arrangement of microtubules in cell induced by IAA, GA4, and BR. Meanwhile,
the GA3 level in flat fruit was higher than that in long fruit, indicating that high GA3
levels may contribute to flat persimmon fruit formation by increasing cell number in the
transverse direction. The different regulatory patterns of GA3 and GA4 in persimmon fruit
shape formation are worthy of further study. In cucumber, application of the CKX inhibitor
thidiazuron partially complemented the short fruit phenotype and the treatment had a
stronger effect in sf2 mutant (its fruit length is reduced by 50% compared to wild-type)
than in wild-type. This was consistent with the effect of SF2 on promoting cell division by
regulating the cytokinin content [37]. In addition to regulating cell division, cytokinin also
regulates cell expansion during plant growth and development. In kiwifruit, cytokinin can
promote fruit cell expansion [38]. In rice, cytokinin stimulates lateral root elongation by
promoting cell elongation [39]. In this study, the ZT levels in long fruit were higher than
those in flat fruit, indicating that high ZT levels may contribute to long persimmon fruit
formation by promoting cell elongation in the longitudinal direction. In the transcriptome
data, 14 DEGs related to auxin, cytokinin, gibberellin, and brassinosteroid biosynthesis and
signaling transduction pathways were highly expressed in long fruit. This result indicated
that these genes play important roles in persimmon fruit shape formation.

During fruit development, the function of abscisic acid is often opposite to that of
auxin and gibberellin. For example, the ABA content in strawberry fruit was higher on
flower opening day. With the increase in GA and IAA contents, the ABA content begins
to decline [35]. In this study, the ABA level in flat fruit was higher than that in long fruit,
while the GA4 and IAA levels were lower than those in long fruit, indicating that high ABA
may be more conducive to flat persimmon fruit formation by inhibiting cell elongation on
longitudinal direction.

Evidence that ethylene plays an important role in controlling fruit shape is that high
expression of EIN3-binding F-box protein2-like (SlEBF2-like), a negative regulatory factor
of the ethylene signaling pathway, leads to elongated fruit with increased fruit length
and decreased fruit diameter in tomato [40,41]. In this study, the EBF1 gene was highly
expressed in long fruit. In addition, ten genes related to ethylene biosynthesis and signal
transduction, including ETR2, MKK5, ERF5, ERF012, ERF014, ERF017, ERF106, ACO1, and
RAP2–3, were identified to be highly expressed in long fruit. These results suggest that
ethylene may be involved in the regulation of persimmon fruit shape formation.

Salicylic acid and jasmonic acid are involved in many biological processes, such as
stress, disease defense, root growth, and development [42,43]. At present, there are no
reports on the regulation of SA and JA in fruit shape formation. In this study, the SA content
in long fruit was high than that in flat fruit, while the JA content in flat fruit was higher
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than that in long fruit. The roles of SA and JA in persimmon fruit shape formation deserve
further study.

4. Conclusions

In conclusion, cell number and length affect persimmon fruit shape by regulating the
diameter and length, respectively. The differences in cell number and length were caused
by cell division and cell expansion. The transverse division of fruit cells is conducive to the
increase in fruit diameter to promote flat fruit formation. The longitudinal elongation of
fruit cells is conducive to the increase in fruit length to promote long fruit formation. High
IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation
in the longitudinal direction, and high GA3 and ABA levels may be more conducive to
flat fruit formation by increasing the cell number in the transverse direction and inhibiting
cell elongation in the longitudinal direction, respectively. Ethylene may also be involved
in persimmon fruit shape formation. The roles of SA and JA in persimmon fruit shape
formation deserve further study. Thirty-two genes related to phytohormone biosynthesis
and signaling pathways and nine genes related to cell division and cell expansion may be
involved in the persimmon fruit shape formation process. This study lays an empirical
foundation for ongoing investigations of persimmon fruit shape formation.

5. Materials and Methods
5.1. Plant Material

The ‘Yaoxianwuhua’ persimmon (Diospyros kaki) were ten-year-old trees in Yuanyang
County, Henan Province, China (34◦55′182~34◦56′272 N, 113◦46′142~113◦47′352 E). After
8 years of field observation, all fruit development stages had stable horticultural charac-
teristics. Between 29 May 2022 and 15 September 2022, flat and long fruit were randomly
collected every 14 days. Some fruit samples were fixed in FAA. The volume ratio of
formalin, glacial acetic acid, and 50% alcohol in FAA was 8:58:7. Other fruit samples
were immediately wrapped in tinfoil, frozen in liquid nitrogen, and stored at −80 ◦C for
subsequent phytohormone testing and RNA extraction.

5.2. Paraffin Section

The fruit samples taken out of the FAA were dehydrated by ethanol and then em-
bedded in paraffin. The samples were sectioned using a Leica RM2265 microtome (Leica
Microsystems, Nussloch, Germany). The deparaffinized and rehydrated sections were
stained with toluidine blue for 30 min. Then, the section was dried on a microslide and
mounted with a cover slip. Finally, the sample was observed and pictures were taken using
a light microscope (Olympus, Tokyo, Japan).

The diameter and length of fruit cells in the given images were calculated using ImageJ
software (v.1.8.0). Cell diameter is the length in the transverse direction. Cell length is the
length in the longitudinal direction. The cell number in the transverse direction = fruit di-
ameter/fruit cell diameter. The cell number in the longitudinal direction = fruit length/fruit
cell length. Six samples were counted for each development stage.

5.3. Phytohormone Assay

Frozen fruit sample tissues were ground in a mortar with liquid nitrogen. About
50 mg FW of fruit samples were weighed and packed into 2 mL centrifuge tube.

The IAA, ABA, GA1, GA3, GA4, GA7, SA, JA, and ZT assays: add internal standards,
7.5 µL d5-IAA (2 ng/µL), 40 µL d6-ABA (0.25 ng/µL), 10 µL d2-GA1 (2 ng/µL), 10 µL d2-
GA3 (2 ng/µL), 10 µL d2-GA4 (2 ng/µL), 10 µL d2-GA7 (2 ng/µL), 10 µL d6-SA (2 ng/µL),
5 µL H2-JA (0.25 ng/µL), and 5 µL d5-ZT (0.25 ng/µL), into a centrifuge tube and shake
well. Then, add 0.5 mL of the extract (C3H8O:H2O:HCl = 2:1:0.002) into the centrifuge tube.
Shake well at 100 rpm for 30 min at 4 ◦C. Next, take out the centrifuge tube and add 1 mL
CH2Cl, and centrifuge at 12,000 rpm for 5 min at 4 ◦C. Draw the solvent from the lower
phase into a new centrifuge tube and dry it using a nitrogen evaporator with nitrogen flow.
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Then, add 0.2 mL CH3OH to the new centrifuge tube and centrifuge for 5 min. Absorb the
supernatant and put it into a small bottle for HPLC-MS/MS.

The BR contents assay: add internal standard, 5 µL [2H3]BL (0.25 ng/µL), into cen-
trifuge tube and shake well. Then, add 1 mL CH3OH of pre-cooled at 4 ◦C and extract
at 4 ◦C for 2 h. Extract the supernatant by centrifugation at 10,000 rpm for 5 min at 4 ◦C.
Then, add 0.5 mL CH3OH to wash the residue and centrifuge for 2 h. Combine the two
collected supernatants. After the supernatant is dried using a nitrogen evaporator, add
0.2 mL CH3OH to dissolve it. Finally, filter the solution with a 0.22 µm filter membrane
and put it into a small bottle for HPLC-MS/MS.

Samples were injected into an Agilent SB-C18 column and separated at a flow rate
of 0.8 mL/min with the following mobile phases. The injection volume was 5.0 µL. Data
collection and processing was carried out in AB SCIEX Analyst v.1.7

5.4. Transcriptome

Total RNA for the sequencing libraries was extracted using TRIzol Total RNA Isolation
Kit (Sangon, Shanghai, China). The RNA integrity was tested by the Bioanalyzer 2100.
The libraries were sequenced on the NovaSeq 6000 platform (Illumina, San Diego, CA,
USA), and 150 bp paired-end readings were generated. Using the persimmon genome as
a reference, HISAT2 software (v.2.2.1) was used to match the filtered reads [15,44]. The
new transcripts were predicted using StringTie software (v.2.1.1) [45]. The number of reads
mapped to each gene were calculated using FeatureCounts software (v.2.0.1) [46]. FPKM
was used to represent gene expression. The differential mRNA expression (DEGs) (fold
change ≥ 2; FDR < 0.01) was detected by DEseq2.

5.5. Quantitative RT-PCR

Total RNA was reverse-transcribed into cDNA using the TRUE-script 1st-Strand cDNA
Synthesis Kit (Kemix, Beijing, China). Quantification of DEG expression was detected with
TB Green™ Premix Ex Taq™ II (Tli RNaseH Plus) (Takara, Dalian, China). The reaction
conditions were: 30 s at 95 ◦C, 40 cycles of 3 s at 95 ◦C, and 30 s at 60 ◦C. Three technical
replicates were analyzed. The reference gene was GAPDH [47]. The relative expression
was calculated using the 2−∆∆Ct method. The DEG primers are listed in Table S5.
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