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Abstract: Non-muscle-invasive papillary urothelial carcinoma (NMIPUC) of the urinary bladder is
the most common type of bladder cancer. Intravesical Bacille Calmette–Guerin (BCG) immunotherapy
is applied in patients with a high risk of recurrence and progression of NMIPUC to muscle-invasive
disease. However, the tumor relapses in about 30% of patients despite the treatment, raising the need
for better risk stratification. We explored the potential of spatial distributions of immune cell subtypes
(CD20, CD11c, CD163, ICOS, and CD8) within the tumor microenvironment to predict NMIPUC
recurrence following BCG immunotherapy. Based on analyses of digital whole-slide images, we
assessed the densities of the immune cells in the epithelial–stromal interface zone compartments and
their distribution, represented by an epithelial–stromal interface density ratio (IDR). While the densi-
ties of any cell type did not predict recurrence, a higher IDR of CD11c (HR: 0.0012, p-value = 0.0002),
CD8 (HR: 0.0379, p-value = 0.005), and ICOS (HR: 0.0768, p-value = 0.0388) was associated with
longer recurrence-free survival (RFS) based on the univariate Cox regression. The history of positive
repeated TUR (re-TUR) (HR: 4.93, p-value = 0.0001) and T1 tumor stage (HR: 2.04, p-value = 0.0159)
were associated with shorter RFS, while G3 tumor grade according to the 1973 WHO classification
showed borderline significance (HR: 1.83, p-value = 0.0522). In a multivariate analysis, the two
models with a concordance index exceeding 0.7 included the CD11c IDR in combination with either a
history of positive re-TUR or tumor stage. We conclude that the CD11c IDR is the most informative
predictor of NMIPUC recurrence after BCG immunotherapy. Our findings highlight the importance
of assessment of the spatial distribution of immune cells in the tumor microenvironment.

Keywords: tumor microenvironment; digital image analysis; tumor-associated macrophages; tumor-
infiltrating lymphocytes; non-muscle-invasive bladder cancer

1. Introduction

Bladder cancer (BC) is the 12th most prevalent cancer worldwide [1]. While total
cystectomy is the treatment of choice in muscle-invasive BC (MIBC), non-muscle-invasive
bladder cancer (NMIBC) is usually treated with transurethral resection (TUR) [2]. For
patients with intermediate and high-risk tumors, adjuvant intravesical Bacille Calmette–
Guérin (BCG) immunotherapy is administered to reduce the risk of relapse [2]. However,
despite treatment, over 30% of patients still experience a relapse, and a significant propor-
tion of them experience tumor progression to muscle-invasive disease [3]. Therefore, an
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early shift to other, more aggressive treatment strategies in selected patients with refractory
disease may improve patient outcomes [4].

The tumor microenvironment plays an important role in the tumor response to im-
munotherapy. In particular, the course of NMIBC in the context of BCG immunotherapy
can potentially be predicted by relevant biomarker modeling [5]. Several constituents of
the immune tumor microenvironment have been reported as being prognostic in NMIBC:
tumor-associated macrophages (TAMs) [6–13], tumor-infiltrating lymphocytes (TILs), NK
cells [7], dendritic cells [11,14], and eosinophils [15,16].

Hanada et al. first explored the importance of TAMs and microvasculature density in
BC and found the higher density of TAM to be associated with muscle-invasive disease,
vascular invasion, higher metastasis rate, and poor survival [6]. Further studies reported
higher densities of TAMs to be associated with stromal invasion [7], failure of BCG im-
munotherapy [8], a higher rate of recurrence [8,9,13], and progression to MIBC [10,11].
Interestingly, Ajili et al. found the higher ratio of CD68+ macrophage densities within
the epithelial versus stromal compartments to be associated with better recurrence-free
survival (RFS) [9]. Subsequent studies revealed the importance of macrophage polarization
toward M1 macrophages (pro-inflammatory) and M2 macrophages (anti-inflammatory):
higher M1-like macrophage densities were associated with better RFS [12], while high
M2-like macrophage densities were associated with worse RFS [8,12].

TILs and their distribution patterns within the tumor microenvironment have been
extensively studied as important predictors of patient outcomes in various tumors, along
with efforts to standardize their assessment [17–19]. In NMIBC studies focusing on TIL
subclasses, Th2 cell density was predictive of response to BCG immunotherapy [15,16],
while a high density of regulatory T cells was associated with shorter RFS [13]. CD8+
TILs were associated with tumor stage [20] and were co-localized with PD-L1-expressing
cells [21]; however, their density in the tissue of NMIBC did not correlate with survival
probability [8,21,22]. Bieri et al. [23] presented a modified immunoscore obtained by image
analysis of tissue microarray images of CD3, CD8, and CD45RO which were associated
with longer progression-free survival in the high-risk patient group. We have recently
reported [24] that a high ratio between CD8+ cell densities in the intraepithelial and stromal
compartments was an independent predictor of longer RFS in the cohort of NMIPUC
patients treated with BCG immunotherapy, thus supporting the importance of the spatial
distribution of CD8+ lymphocytes in the host response to antitumor immunity. The
prognostic significance of inducible co-stimulator (ICOS)-positive lymphocytes in the
context of immunotherapy has been demonstrated in several tumor types [25], including
BC [26]. However, this biomarker has not been investigated in NMIBC patients treated
with intravesical BCG so far.

Tertiary lymphoid structures (TLSs) are observed in various tumors and, as a con-
stituent of the antitumor milieu, are prognostic of patient outcomes [27]. Studies investigat-
ing TLSs in BC have found a more common incidence of TLSs (75%) in MIBC in comparison
to NMIBC (25%) [28] and different constitutions of TLSs in patients not responding to
checkpoint inhibitor therapy [29]. Data on the significance of TLSs in the context of BCG
immunotherapy are lacking.

Non-muscle-invasive papillary urothelial carcinoma (NMIPUC) is the most common
type of NMIBC, with a specific histologic architecture defined by the formation of papillary
structures. We have narrowed our patient selection to NMIPUC cases to assess spatial
distribution in the context of this specific tumor histologic architecture and to obtain a more
homogenous patient cohort. In this retrospective study, we explore the prognostic value of
CD20, CD11c, CD163, ICOS, and CD8-positive cells and their spatial distributions in the
NMIPUC microenvironment of 155 patients treated with BCG immunotherapy.
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2. Results
2.1. Exploring the Interface Zone Width Settings to Optimize Predictive Indicators

Immunohistochemical (IHC) assessment of tumor tissue by using digital image anal-
ysis revealed variable patterns of the immune cell distributions at the epithelial/stromal
interface. They ranged from cases with predominant infiltration in the stroma represented
by a low IDR (Figure 1: Patient A) to cases with a similar density in the epithelial and
stromal aspects of the interface, represented by a high IDR (Figure 1: Patient B).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 13 
 

 

value of CD20, CD11c, CD163, ICOS, and CD8-positive cells and their spatial distributions 
in the NMIPUC microenvironment of 155 patients treated with BCG immunotherapy. 

2. Results 
2.1. Exploring the Interface Zone Width Settings to Optimize Predictive Indicators 

Immunohistochemical (IHC) assessment of tumor tissue by using digital image anal-
ysis revealed variable patterns of the immune cell distributions at the epithelial/stromal 
interface. They ranged from cases with predominant infiltration in the stroma represented 
by a low IDR (Figure 1: Patient A) to cases with a similar density in the epithelial and 
stromal aspects of the interface, represented by a high IDR (Figure 1: Patient B). 

 
Figure 1. CD11c-positive cell infiltration density profiles in the NMIPUC of two selected patients 
to illustrate different infiltration patterns. Upper panel, patient A with predominant infiltration in 
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senting the CD11c cell density distribution across the interface. Lower panel, patient B with rela-
tively higher CD11c cell density in the epithelium (IDR = 0.424). The red dotted line represents the 
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Figure 1. CD11c-positive cell infiltration density profiles in the NMIPUC of two selected patients
to illustrate different infiltration patterns. Upper panel, patient A with predominant infiltration
in the tumor stroma (IDR = 0.074): a representative IHC image area (left) and a bar plot (right)
representing the CD11c cell density distribution across the interface. Lower panel, patient B with
relatively higher CD11c cell density in the epithelium (IDR = 0.424). The red dotted line represents
the epithelial–stromal interface. A 100 µm measure is added for the reference. Negative distances in
the plot represent the stromal aspect of the interface zone. For CD163, CD20, ICOS, and CD8 IHC
images in patients A and B, see Supplementary Figures S1 and S2.

The results of the optimization experiments are presented in Table 1. The CD11c
epithelial–stromal interface density ratio (IDR) achieved the highest concordance index (CI)
on validation splits in the cross-validation. The CD8 IDR was the second-best feature; an
IZ of 50 µm in thickness was found to be optimal for both cell subtypes. In general, the
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IDR performed better than cell densities in the entire interface zone (IZ) or in any other
(epithelial or stromal) compartment of the tumor microenvironment.

Table 1. The optimal interface zone width for the cell distribution features according to the mean
concordance index (CI) in the cross-validation. Immune cell interface density ratio (IDR) across the
epithelial–stromal interface.

IHC Marker Feature Optimal IZ Width (µm) CI Mean (SD)

CD8

Total density 10 0.591 (0.157)
Stromal density 10 0.574 (0.156)
Epithelial density 130 0.62 (0.146)
IDR 50 0.637 (0.146)

CD20

Total density 150 0.488 (0.162)
Stromal density 150 0.503 (0.152)
Epithelial density 140 0.51 (0.149)
IDR 150 0.566 (0.151)

ICOS

Total density 10 0.503 (0.1417)
Stromal density 10 0.504 (0.141)
Epithelial density 30 0.513 (0.142)
IDR 40 0.583 (0.162)

CD11c

Total density 10 0.518 (0.148)
Stromal density 10 0.493 (0.147)
Epithelial density 140 0.572 (0.157)
IDR 50 0.64 (0.134)

CD163

Total density 40 0.51 (0.149)
Stromal density 10 0.427 (0.132)
Epithelial density 70 0.567 (0.142)
IDR 140 0.603 (0.149)

Of note, for CD8, ICOS, and CD11c, the optimal IZ was narrower (50 µm, 40 µm,
and 50 µm, respectively) than for CD20 and CD163 (150 µm and 140 µm, respectively).
However, the latter two features showed a lower mean CI overall.

2.2. Univariate Cox Regression for Prediction of RFS

The results of the univariate Cox regression of features predictive of RFS with a p-value
below 0.2, selected for the multiple Cox regression, are summarized in Table 2.

Table 2. The results of the univariate Cox regression with a p-value lower than 0.2. IDR—immune
cell interface density ratio across the epithelial–stromal interface. The stromal and epithelial density
corresponds to the specific compartment of the interface zone or total area of the interface zone.

Feature HR p-Value

Positive re-TUR 4.9321 0.0001
CD11c IDR 0.0012 0.0002
CD8 IDR 0.0379 0.005
pT1 2.0445 0.0159
ICOS IDR 0.0768 0.0388
G3 grade (WHO 1973) 1.8254 0.0522
CD163 IDR 0.0712 0.0549
CD8 density total 0.9984 0.0648
CD8 density epithelial 0.996 0.0857
CD8 density stroma 0.9988 0.0988
Tertiary lymphoid structures 1.6915 0.1033
ICOS density epithelial 0.9963 0.1375
High grade (WHO 2004) 2.5873 0.1899

Patients with a history of positive re-TUR (repeated transurethral resection) had a sig-
nificantly higher hazard ratio (HR) of 4.93 (p-value = 0.0001). Also, stage and grade emerged
as potential prognostic factors. Patients with pT1 stage tumors (HR: 2.04, p-value = 0.0159)
and high-grade tumors, according to the 1973 WHO classification (HR: 1.83, p-value = 0.0522),
had a higher risk of recurrence, although the latter association was of borderline significance.
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Several immune cell indicators revealed potential prognostic value. A low CD11c
IDR (HR: 0.0012, p-value = 0.0002) and a low CD8 IDR (HR: 0.0379, p-value = 0.005) were
associated with an increased risk of recurrence. Conversely, no significant association
was observed for the density of these cells in neither epithelial nor stromal compartments.
Stage and grade emerged as potential prognostic factors. Patients with pT1 stage tumors
(HR: 2.04, p-value = 0.0159) and G3 grade tumors according to the 1973 WHO classification
(HR: 1.83, p-value = 0.0522) had a higher risk of recurrence, although the latter association
was of borderline significance.

We have identified TLSs in the TUR specimens of 100 patients (65.5%). The presence
of TLSs did not show a statistically significant association with recurrence (HR: 1.69,
p-value = 0.1033). Similarly, high-grade tumors, according to the 2004 WHO classification,
and ICOS density in the epithelium, did not reach statistical significance (p-values > 0.1);
nevertheless, we tested them in the multivariate analysis (see below).

2.3. Multiple Cox Regression

Multiple Cox regression analyses generated several models with moderate to good
discriminative ability, with a mean CI ranging between 0.59 and 0.74. The best-performing
model (see Table 3) consisted of two factors that were also the best-performing in the
univariate Cox regression analysis, namely, a history of positive re-TUR and CD11c IDR,
with a mean CI of 0.7427. Another strong model (CI > 0.7) included CD11c IDR and pT1
tumor stage. Interestingly, CD11c was included only in these two models, while re-TUR
status was included only in the best-performing model.

Table 3. Two Cox regression models with a concordance index > 0.7. IDR—interface density ratio
across the epithelial–stromal interface.

Features Hazard Ratio 95% CI p-Value

Model: positive re-TUR + CD11c IDR
Positive re-TUR 4.3411 1.9616–9.6072 <0.001
CD11c IDR 0.0282 0.00097–0.824 0.038
Model: pT1 stage + CD11c IDR
pT1 stage 2.2524 1.2449–4.075 0.007
CD11c IDR 0.00067 0.000017–0.268 <0.001

The weaker models included all features with p-values < 0.05 from the univariate
analysis, as well as the presence of TLSs, G3 tumor grade, CD163 IDR, and CD8 cell density
in the epithelial compartment (the data are summarized in Table 4).

Table 4. The results of the multivariate Cox regression with a p-value of individual features lower
than 0.05. IDR—immune cell interface density ratio across the epithelial–stromal interface. TLS—the
presence of tertiary lymphoid structures.

Model AIC Mean CI

CD11c IDR + positive re-TUR 257.8785 0.7427
CD11c IDR + pT1 338.225 0.703
CD8 IDR + TLS 352.2153 0.6449
ICOS IDR + G3 361.1213 0.6364
CD8 IDR + pT1 354.4931 0.6308
CD163 IDR + TLS 358.9342 0.6204
ICOS IDR + TLS + G3 356.6093 0.6143
CD163 IDR + G3 359.7073 0.6102
CD8 total density + TLS 360.0685 0.6084
ICOS IDR + pT1 + TLS 357.7706 0.6078
ICOS IDR + pT1 359.8559 0.6019
ICOS epithelial density + G3 360.1979 0.5974
CD163 IDR + pT1 358.9573 0.5972
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2.4. Kaplan–Meier RFS Analysis of the Selected Features

The greatest difference between the risk groups of patients, similar to the results of
the univariate Cox regression (Figure 2), was observed in cases with positive restaging
transurethral resection (re-TUR) and CD11c IDR (p < 0.001). CD8 IDR, ICOS IDR, and tumor
stage also showed statistically significant stratification of patient relapse risk (p < 0.05),
which was also significantly associated with patients’ RFS in the univariate Cox regression.
Additionally, G3 tumor grade, stratified CD163 IDR, and absolute CD8 cell density reached
statistically significant (p < 0.05) stratification in the Kaplan–Meier analysis of RFS. This can
be attributed to their non-linear effect on the risk of NMIPUC relapse. The presence of TLSs
showed a tendency for prognostic stratification, but it did not reach statistical significance
(p = 0.0996). On the other hand, other features such as WHO 2004 grade, ICOS density in
the epithelial compartment, and CD8 density in the stromal compartment showed worse
performance, paralleling the findings of the multivariate Cox regression analysis.
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Figure 2. Kaplan–Maier RFS plots stratified on (A) CD11c interface density ratio (IDR) across
epithelial–stromal interface, (B) CD163 IDR, (C) ICOS IDR, (D) CD8 IDR, (E) density of CD8 cells
in epithelial compartment of interface zone, (F) presence of tertiary lymphoid structures (TLS),
(G) presence of tumor in repeated TUR (re-TUR), (H) tumor stage, and (I) tumor grade. Continuous
variables (A–E) are stratified according to median value of indicator.
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3. Discussion

In this study, we report computational models to predict NMIPUC relapse after BCG
immunotherapy based on standard clinicopathologic factors and tumor-infiltrating immune
cell densities and their density ratios across the epithelial–stromal interface. Remarkably, we
found that in general, immune cell density ratio was more predictive of disease recurrence
than absolute immune cell densities in any tumor tissue compartment or the entire interface
zone. This confirmed our previously established prognostic role of the CD8 IDR [24];
nevertheless, the extended investigation has shown that the CD11c IDR has the best
performance in the multivariate prognostic models, in combination with re-TUR and tumor
stage. Meanwhile, CD20 and CD163 cell densities, or their ratio, did not reveal significant
prognostic associations in our dataset.

The CD11c density ratio was the strongest prognostic feature from the immune tumor
microenvironment features, followed by the CD8 IDR. CD11c is expressed in M1 polarized
macrophages and was previously used in renal cell carcinoma [25], hepatocellular carci-
noma [26], and carcinoma of the breast [30] to assess M1 macrophage infiltration. These
studies revealed a higher CD11c-positive macrophage density associated with better patient
outcomes. Dendritic cells also share the expression of CD11c, and multiplex imunotyp-
ing of CD11c-positive cell populations could improve the specificity of TAM assessment.
However, according to the study by Ayari et al. [11], macrophages and dendritic cells have
different distributions in NMIBC, and the narrow (50 µm) interface zone used in our study
covers tissue area predominantly infiltrated by TAMs. Nevertheless, our findings might be
impacted by minor components of CD11c-positive dendritic cells, since these cells play im-
portant roles in orchestrating antitumor immunity. Both CD11c-positive M1 macrophages
and CD8-positive cytotoxic T lymphocytes are directly involved in antitumor immune
response. Thus, their higher relative densities at the epithelial aspect of the interface can
be interpreted as a representation of the higher intensity of immune response against the
tumor. Conversely, other cells (M2 macrophages and B cells in our study) did not provide
any prognostic value.

We found the density ratio of ICOS cells to be associated with RFS in the univariate
analyses; ICOS expression can be present in both CD4+ helper T cells and CD8+ cytotoxic
T cells. It is, therefore, difficult to interpret this finding; one could speculate that a higher
ICOS IDR (a relatively higher intraepithelial ICOS-positive cell density) might reflect the
increased proportion of ICOS+ cytotoxic T cells rather than helper T cells, taking into
account the distribution of CD8 cells in our investigation. Studies subtyping ICOS cell
populations preferably based on multiplex spatial immunoprofiling are needed to further
investigate the role of ICOS expression. Nevertheless, the prognostic significance of the
ICOS IDR in our study highlights the importance of these cells in the immune response
in the context of BCG immunotherapy outcomes. Also, this may reveal the predictive
potential of the ICOS IDR in the framework of upcoming ICOS/ICOSL immunotherapy
options (REF).

Our study confirms the independent prognostic value of well-established clinicopatho-
logic features—positive re-TUR, tumor stage, and tumor grade (according to the WHO
1978 classification)—to provide meaningful stratification of the recurrence risk [2].

The detection of TLSs was not significantly associated with RFS in our univariate
analysis. Exploring the phenomenon of and variability in TLSs was not within the scope
of the present study, where it was represented as a binary feature and therefore lacked
prognostic value. The tissue sampling and intratumoral heterogeneity may also impact the
detection and quantification of TLSs. Nevertheless, in our multivariate analysis, the TLS
appeared in some weaker models, suggesting its relevance in the broader context of tumor
microenvironment assessment. Studies investigating the composition of TLSs, similar to
the study of Dijk et al. [29], might reveal more details on the importance of more specific
subsets of TLSs.

Our study is based on a rather limited retrospective cohort of 155 patients from a single
institution; thus, further prospective studies validating our findings in larger cohorts from
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multiple institutions are needed to support our findings. Additional studies, preferably
based on multiplex immunofluorescence and spatial analytics, could enable more precise
classification of tumor-infiltrating immune cell populations (T cell subclasses and dendritic
cells), improving definitions of the prognostic features and adding new insights into the
biological mechanisms behind them.

4. Materials and Methods
4.1. Patients

We collected clinical and pathological data of 230 BC patients who underwent adjuvant
BCG immunotherapy at VUH SK from 2009 to 2020. For the study, we selected 165 BCG-
treated (full 6-week induction course) NMIPUC patients, with available clinical, follow-up
data and tumor TUR samples collected within one year prior to BCG induction. We limited
the survival data to 5 years of follow-up to exclude cases that were more likely to be new
primary tumors rather than “true recurrence”. We also collected data on repeated TUR
performed in 121 patients. After preparing the IHC slides (see below), we excluded areas
with co-agulation artifacts, and 10 cases were excluded from further analysis, resulting in
the final set of 155 patients with sufficient tumor tissue quality. A summary of the patient
clinical and pathologic data is provided in Table 5.

Table 5. Summary of clinical and pathologic data.

Characteristic Value (%)

Patients 155 (100%)
Age, years

Median (range) 69.8 (33–89)
Gender

Male 127 (81.9%)
Female 28 (18.1%)

RFS time, months
Median (range) 16.3 (1.6–60)
Recurrences 46 (30%)

Tumor grade WHO 2004
Low 12 (7.7%)
High 143 (92.2%)

Tumor grade WHO 1973
G1 5 (3.2%)
G2 67 (43.2%)
G3 83 (53.6%)

pT stage
Ta 94 (60.6%)
T1 61 (39.4%)

Carcinoma in situ association 8 (52%)
Positive re-TUR 55 (45.5%)
Recurrent tumor 45 (29%)
Multiple tumors 76 (49%)
Tumor size > 30 mm 43 (31.9%)
EORTC risk group

Intermediate 71 (45.8%)
High 67 (43.2%)
Very high 5 (3.2%)

4.2. IHC Slide Preparation and Digitization

A pathologist (JD) reviewed all of the archival material that was collected within a year
prior to the initiation of BCG therapy. The pathologist then selected a single formalin-fixed
paraffin-embedded tumor tissue block with the highest tumor grade and stage for each
patient. Four-micrometer-thick tissue sections were used for IHC staining (Figure 3). We
used a CD8 cytotoxic T cell marker (clone C8/144B, Dako, Glostrup, Denmark; dilution
1:100), B cell marker CD20 (clone L26, Dako, Glostrup, Denmark; dilution 1:500), M1
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macrophage marker CD11c (clone 5D11, Leica biosystems, Deer Park, NY, USA; dilution
1:100), M2 macrophage marker CD163 (clone MRQ-26, Rocklin, CA, USA; dilution 1:50),
and ICOS marker (clone D1K2T, Cell Signaling Technology, Danvers, MA, USA; dilution
1:500) for the identification of specific subpopulations of T cells. CD8, CD11c, and CD163
IHC were performed using Ventana Benchmark Ultra autostainer (Roche Diagnostics,
Mannheim, Germany) and CD20 and ICOS using Dako Autostainer Link 48+ (Dako,
Glostrup, Denmark). All slides were digitized at 20× magnification (0.5 µm per pixel)
using an Aperio® AT2 DX scanner (Leica Aperio Technologies, Vista, CA, USA).
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Figure 3. Study design chart. Patient selection and tissue selection were followed by IHC analysis
and digitization. CD20 slides were then used for TLS identification, and images with excluded TLS
areas, together with CD8, ICOS, CD11c, and CD163 images, underwent tissue and cell classification
and infiltration analysis for assessment of cell infiltration profiles in epithelium–stroma interface.
From resulting cell infiltration profiles, interface zone settings were optimized for all immune cell
indicators, which were used for survival analysis to predict RFS.

4.3. Digital Image Analysis

We trained HALO® AI (Indica Labs, Albuquerque, NM, USA) Densenet v2 classifiers
for the identification of artifacts, mainly due to co-agulation resulting from the TUR proce-
dure, and to segment epithelium and stroma compartments. In CD20 WSI, we also trained
a classifier to segment TLSs and exclude them from further CD20 quantification in the
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remaining tissue. For the detection of CD8, CD20, and ICOS-positive lymphocytes, we used
the HALO® AI Multiplex IHC (Indica Labs, Albuquerque, NM, USA) module. Due to the
irregularity of the cytoplasm in macrophages, the CD11c and CD163 macrophages were seg-
mented by the HALO® Nuclei seg (Indica Labs, Albuquerque, NM, USA) classifier followed
by the HALO® Nuclei Phenotyper (Indica Labs, Albuquerque, NM, USA) classifier.

4.4. Assessment of the Spatial Distribution of the Immune Cells

Spatial analysis of the immune cell infiltrates was performed within a 150 µm width
epithelial–stromal interface zone extracted by the HALO® AI Spatial Analysis module.
Further, the width of the interface zone was decreased in 10 µm increments to search for
the most informative width for the predictive modeling. We generated a set of indicators
to characterize the cell infiltration (density in the entire interface zone and stromal and
epithelial compartments) as well as cell distribution across the epithelial–stromal interface.
The immune cell distributions were measured as the interface density ratio (IDR) across
the epithelial–stromal interface, computed as the ratio of the cell density in the epithelial
compartment and that in the stromal compartment of the interface zone. The presence of
TLSs was expressed as a binary feature.

4.5. Statistical Analysis

To assess the most informative width of the interface zone for every indicator, we
performed a univariate Cox regression with 50 iterations of 10-fold cross-validation to yield
stable results, and used the mean concordance index (CI) across the validation splits as a
performance metric.

The univariate Cox regression performed on the full dataset was used to select the
most relevant features for the multiple Cox regression. Along with the clinical and pathol-
ogy parameters, we tested tumor microenvironment aspects, including the presence of
TLSs. We selected the features with a p-value of less than 0.2 and employed them in
multiple Cox regression models. From all possible feature combinations, models with
independent prognostic significance of features (p < 0.05 of all features in the model) were
selected for further analysis. To assess the performance of these models, we used 10-fold
cross-validation.

We performed a Kaplan–Meier survival analysis with the features included in selected
multivariate models to assess their impact on patient risk stratification regarding NMIPUC
recurrence. The statistical significance of the results was assessed using the log-rank test,
with a p-value of 0.05 used as the threshold. For continuous variables, we used the median
value as a cut-off to stratify the data.

5. Conclusions

Our investigation of the immune tumor microenvironment reveals the independent
and superior prognostic value of pro-inflammatory CD11c macrophages with a relatively
dense infiltration in the epithelial aspect of the tumor. We have shown the high predictive
value of immune cell distribution in the tumor epithelium–stroma interface, assessed by
an IDR indicator, outweighing the simple measurement of cell densities in the tumor. The
strongest predictive value found in the cell populations directly involved in antitumor im-
munity (CD11c and CD8) highlights the IDR as a measure of immune system mobilization.
These findings further support the value of spatial analytics in the tumor microenviron-
ment while also providing useful means for NMIPUC patient risk stratification along with
conventional clinicopathologic features.
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