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Abstract: Myelodysplastic syndrome/neoplasm (MDS) comprises a group of heterogeneous hematopoi-
etic disorders that present with genetic mutations and/or cytogenetic changes and, in the advanced
stage, exhibit wide-ranging gene hypermethylation. Patients with higher-risk MDS are typically
treated with repeated cycles of hypomethylating agents, such as azacitidine. However, some patients
fail to respond to this therapy, and fewer than 50% show hematologic improvement. In this context,
we focused on the potential use of epigenetic data in clinical management to aid in diagnostic and
therapeutic decision-making. First, we used the F-36P MDS cell line to establish an azacitidine-
resistant F-36P cell line. We performed expression profiling of azacitidine-resistant and parental
F-36P cells and used biological and bioinformatics approaches to analyze candidate azacitidine-
resistance-related genes and pathways. Eighty candidate genes were identified and found to encode
proteins previously linked to cancer, chronic myeloid leukemia, and transcriptional misregulation in
cancer. Interestingly, 24 of the candidate genes had promoter methylation patterns that were inversely
correlated with azacitidine resistance, suggesting that DNA methylation status may contribute to
azacitidine resistance. In particular, the DNA methylation status and/or mRNA expression levels of
the four genes (AMER1, HSPA2, NCX1, and TNFRSF10C) may contribute to the clinical effects of
azacitidine in MDS. Our study provides information on azacitidine resistance diagnostic genes in
MDS patients, which can be of great help in monitoring the effectiveness of treatment in progressing
azacitidine treatment for newly diagnosed MDS patients.

Keywords: myelodysplastic syndrome; azacitidine; resistance; DNA methylation; biomarkers

1. Introduction

Myelodysplastic syndrome/neoplasm (MDS) is a clonal hematopoietic stem cell (HSC)
disease that mainly involves cytogenetic changes and/or genetic mutations and, in ad-
vanced stages, exhibits widespread gene hypermethylation [1]. The main features of MDS
are myeloid cell cytopenias, morphologic dysplasia, ineffective hematopoiesis, and a high
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risk of transformation into acute myeloid leukemia (AML) [2]. MDS mainly affects elderly
patients. Although the actual epidemiology of MDS is unknown, its incidence is on the rise
due to the growing population of aged individuals, the increasing use of cytotoxic agents in
treating diseases, and exposure to environmental carcinogens such as organic solvents [3].

Currently, only two treatment modalities can improve overall survival in high-risk
MDS: allogeneic stem cell transplantation and treatment with the hypomethylating agents
(HMAs) azacitidine (AZA) or decitabine. Allogeneic stem cell transplantation is the only
potentially curative therapy for high-risk MDS. However, due to advanced patient age,
medical comorbidities, and the limited availability of stem cell donors, relatively few
patients actually undergo stem cell transplants. For patients with higher-risk MDS who
are not fit for intensive approaches, HMA treatment has become the standard of care [4,5].
AZA was first approved by the Food and Drug Administration (FDA) for treating MDS in
2004. It received expanded approval in 2008 for patients with higher-risk MDS based on
the Phase III AZA-001 trial; this large, randomized trial showed a greater median overall
survival (OS) of 24.5 months for AZA-treated patients compared to that of 15.0 months for
patients receiving supportive care [6].

AZA has been shown to prolong patient survival, improve clinical outcomes and
quality of life, and delay progression to AML [7]. However, only 30% to 40% of patients
will respond to therapy; of them, most will achieve hematologic improvement (HI) in blood
counts, but only 10% to 15% will achieve a complete response (CR), which is the response
criterion most reliably associated with improvement in OS [8]. There are few alternative
treatment options for patients who fail to respond to AZA, and their prognosis is extremely
poor [9]. To date, the mechanisms underlying HMA resistance are poorly understood [10],
and we lack a reliable method for predicting the likelihood that a patient will benefit
from HMA treatment [11]. Possible predictive factors for HMA responsiveness have been
extensively investigated in recent studies, but the conclusions are controversial, and a
consensus has not been reached [12–14]. Clinical variables and patient characteristics have
not consistently predicted HMA responsiveness, and although recurrent somatic mutations
have been described for several genes in MDS and appear to have implications for disease
biology and OS, their impacts on HMA responsiveness remain debated [8]. Therefore,
there is an unmet need for biomarkers that can accurately predict HMA responsiveness or
resistance [15].

MDS occurs in cases of abnormal gene expression due to genetic mutations or epige-
netic events. Given the role of DNA methylation in MDS pathogenesis, it is a potential
candidate [15,16]. It has been suggested that increased expression of maintenance DNA
methyltransferases (DNMTs) or de novo expression of specific DNMTs (e.g., DNMT3A
and DNMT3B) contribute to the development of leukemia by inducing aberrant hyper-
methylation of important genomic regions [17]. MDS is typically characterized by global
hypermethylation, potentially explaining why MDS patients respond well to HMAs. Over-
all, global DNA methylation levels and site-specific methylations have shown promise as
potential biomarkers for predicting HMA resistance in MDS [15].

The aim of this study was to identify genetic and/or epigenetic profiles that can be
successfully translated for use as biomarkers to predict the AZA resistance of MDS patients.
We focused on the association between differential gene promoter methylation and AZA
resistance. We hope that the identified four biomarker candidates (AMER1, HSPA2, NCX1,
and TNFRSF10C) will clinically facilitate the early identification of AZA resistance, thus
avoiding months of potentially futile therapy, and ultimately promote the development of
novel strategies for prognostic prediction and personalized therapy for MDS patients.

2. Results
2.1. Levels of DNMTs and Methyl-Binding Proteins Are Higher in F-36P/AZA Cells than in
F-36P Cells

To study the mechanisms underlying AZA resistance, we established an in vitro AZA-
resistant cell model from the parental cell line F-36P. The F-36P/AZA cell model generated
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for these studies was significantly resistant to AZA and has characteristics that differ from
those of F-36P cells (Figure S1). The IC50 values for AZA were 1 µmol/L in F-36P cells
and 125 µmol/L in F-36P/AZA cells (constituting a 125-fold increase compared to the
parental cell line) (Figure S1D). Previous mechanistic studies of AZA resistance in human
leukemia cell lines found that the mRNA levels of the genes encoding DNMT1, DNMT3a,
and DNMT3b were increased in HMA-resistant cells [18]. To confirm this and provide
further insight into the mechanism underlying AZA resistance, we compared DNMT levels
in F-36P and F-36P/AZA cells. PCR and qRT-PCR revealed that the mRNA expression
levels of DNMTs were higher in F-36P/AZA cells compared with those in F-36P cells
(Figure 1A,B). Among the DNMTs, the expression level of DNMT3B was higher than the
expression levels of DNMT1 and DNMT3A. Western blot analysis of DNMTs, MBD2, and
MeCP2 revealed that the tested proteins were expressed at higher levels in F-36P/AZA
cells than in F-36P cells (Figure 1C–H). These analyses showed that, as expected, the levels
of DNMTs were significantly upregulated in F-36P/AZA cells compared with F-36P cells.

2.2. Identification of Genes Exhibiting Differential Expression between F-36P/AZA and F-36P Cells

To identify candidate AZA resistance genes, we searched for candidate genes that
were differentially expressed in F-36P versus F-36P/AZA cells. NanoString analysis [19]
was used to identify differentially expressed genes (DEGs), which were visualized us-
ing nSolver as a heatmap, a volcano plot, and a scatter plot. To generate the cluster
heatmap [20], we used hierarchical clustering with average linkage and a Euclidean dis-
tance metric (Figure 2A). A gene ontology (GO) analysis [21] of upregulated DEGs was
used to conceptualize the possible involved functions of the encoded products (Figure 2B
and Table S3). To display the DEG distribution in F-36P/AZA cells versus F-36P cells, we
used a volcano plot (Figure 2C and Table S4) and a scatter plot (Figure 2D). Collectively,
the obtained data allowed us to focus our basic database investigations.

Protein–protein interaction (PPI) networks can be used to identify physical contact
between protein pairs and highlight small biological pathway subsets [22]. Here, we
used 80 DEGs to generate a PPI network containing 80 nodes and 948 edges (Figure S2A
and Table S5). From this PPI network, we screened the hub networks with MCODE [23]
and CytoHubba [24] (Figure S2B–G) and applied ClueGO to analyze and visualize the
interrelationships of the enriched pathways and DEGs [25]. This analysis suggested various
AZA resistance-linked processes, including pathways involved in cancer, chronic myeloid
leukemia, transcriptional misregulation in cancer, regulation of endothelial cell migration,
JAK-STAT signaling, and MAPK signaling (Figure 3).

2.3. Evaluation of Candidate Genes via qRT-PCR and Pyrosequencing

We next used quantitative RT-PCR analysis to verify the top 80 DEGs with the most
fold-changes (Figure S3). A subset of the selected DEGs encoded proteins involved in
pathways related to cancer (e.g., FAS and PIM1), chronic myeloid leukemia (e.g., AKT3
andMYC), transcriptional misregulation in cancer (e.g., RUNXT1 and BCL2A1), the reg-
ulation of endothelial cell migration (e.g., PDGFB and NOTCH1), JAK-STAT signaling
(e.g., MPL and JAK3), and MAPK signaling (e.g., HSPA2 and CACNB4). The molecular
properties of these gene products are summarized in the Supplementary Data (Table S6).
We examined the DNA methylation levels of 80 genes in F-36P and F-36P/AZA cells and
found that F-36P/AZA cells consistently exhibited lower methylation than F-36P cells in
24 genes (Figure 4). This may explain the enhanced expression of these 24 candidate genes
in F-36P/AZA cells and suggests that DNA methylation changes in these candidate genes
could be used to predict AZA responsiveness in MDS.
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Figure 1. Gene expression and protein levels of DNMTs in F-36P and F-36P/AZA cells. (A) The 
mRNA expression levels of DNMTs in F-36P and F-36P/AZA were detected via PCR. (B) RT-qPCR 
was applied to assess the mRNA expression levels of DNMTs in F-36P and F-36P/AZA cells, with 
GAPDH used as the loading or internal control. The data were analyzed using the 2−ΔΔCT method. 
(C) The protein levels of DNMTs, MBD2, and MeCP2 were determined via Western blotting, with 
α-actin used as the loading control. (D–H) The protein levels of DNMTs, MBD2, and MeCP2 in cell 
lysates were semi-quantified relative to the control group. Data are presented as mean ± SD (n = 3); 
* p < 0.05 and ** p < 0.01 vs. Control. 

Figure 1. Gene expression and protein levels of DNMTs in F-36P and F-36P/AZA cells. (A) The
mRNA expression levels of DNMTs in F-36P and F-36P/AZA were detected via PCR. (B) RT-qPCR
was applied to assess the mRNA expression levels of DNMTs in F-36P and F-36P/AZA cells, with
GAPDH used as the loading or internal control. The data were analyzed using the 2−∆∆CT method.
(C) The protein levels of DNMTs, MBD2, and MeCP2 were determined via Western blotting, with
α-actin used as the loading control. (D–H) The protein levels of DNMTs, MBD2, and MeCP2 in cell
lysates were semi-quantified relative to the control group. Data are presented as mean ± SD (n = 3);
* p < 0.05 and ** p < 0.01 vs. Control.
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Figure 2. Analysis of differentially expressed genes (DEGs) in F-36P/AZA cells compared to F-36P 
cells. (A) Heatmap illustrates 770 genes showing significantly different expression levels (in column) 
in a NanoString (RNA-seq) analysis of F-36P versus F-36P/AZA cells. The colors in the boxes indi-
cate the gene expression level. Representations of genes were processed using the general linear 
model likelihood ratio test (p < 0.05 and absolute log2 fold change > 1). (B) Top 10 Gene Ontology 
(GO) terms identified in the GO analysis. The vertical portion presents the GO terms, while the 
horizontal and the length of the graph represent the gene numbers. The colors in the graph denote 
the different GO categories. (C) DEGs between F-36P and F-36P/AZA cells are shown as log10 (p-
value) versus log2 (fold change) and presented graphically as volcano plots. DEGs are indicated in 
yellow circle, and Top DEGs are indicated in red circle. The horizontal lines indicate statistical sig-
nificance at p < 0.05. (D) Scatter plot of DEGs in F-36P/AZA versus F-36P cells. DEGs were selected 
according to the following criteria: (LogFC) ≥ 1.5 and p < 0.05. 

Figure 2. Analysis of differentially expressed genes (DEGs) in F-36P/AZA cells compared to F-36P
cells. (A) Heatmap illustrates 770 genes showing significantly different expression levels (in column)
in a NanoString (RNA-seq) analysis of F-36P versus F-36P/AZA cells. The colors in the boxes indicate
the gene expression level. Representations of genes were processed using the general linear model
likelihood ratio test (p < 0.05 and absolute log2 fold change > 1). (B) Top 10 Gene Ontology (GO)
terms identified in the GO analysis. The vertical portion presents the GO terms, while the horizontal
and the length of the graph represent the gene numbers. The colors in the graph denote the different
GO categories. (C) DEGs between F-36P and F-36P/AZA cells are shown as log10 (p-value) versus
log2 (fold change) and presented graphically as volcano plots. DEGs are indicated in yellow circle,
and Top DEGs are indicated in red circle. The horizontal lines indicate statistical significance at
p < 0.05. (D) Scatter plot of DEGs in F-36P/AZA versus F-36P cells. DEGs were selected according to
the following criteria: (LogFC) ≥ 1.5 and p < 0.05.
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Figure 3. ClueGO-analysis-based enrichment maps derived from GO terms associated with DEGs. 
(A–E) Highly interconnected GO terms are presented here. These images show the most significant 
functional categories identified by ClueGO Cytoscape plugin and illustrate how terms are grouped 
and interact with each other. Bold font indicates the top GO terms. Gene names within subgroups 
were generated using ClueGO default settings. The node size indicates the significance of enrich-
ment. The node colors correspond to degrees of similarity, with nodes of the same color belonging 
to the same cluster (pathway). All GO terms shown are statistically significant (p < 0.05 with Bonfer-
roni correction). 

Figure 3. ClueGO-analysis-based enrichment maps derived from GO terms associated with DEGs.
(A–E) Highly interconnected GO terms are presented here. These images show the most signif-
icant functional categories identified by ClueGO Cytoscape plugin and illustrate how terms are
grouped and interact with each other. Bold font indicates the top GO terms. Gene names within
subgroups were generated using ClueGO default settings. The node size indicates the significance
of enrichment. The node colors correspond to degrees of similarity, with nodes of the same color
belonging to the same cluster (pathway). All GO terms shown are statistically significant (p < 0.05
with Bonferroni correction).
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didate genes in F-36P and F-36P/AZA cells were detected using bisulfite sequencing. The DNA 
methylation status is expressed as a percentage of CpG methylation. F-36P-expressed genes are 
marked in gray, and F-36P/AZA-expressed genes are given in white. Differential expression was 
considered significant at p < 0.05. Error bars indicate standard deviations (n = 3). 
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Figure 4. DNA methylation status of candidate genes. (A–X) Methylation levels of the selected
candidate genes in F-36P and F-36P/AZA cells were detected using bisulfite sequencing. The DNA
methylation status is expressed as a percentage of CpG methylation. F-36P-expressed genes are
marked in gray, and F-36P/AZA-expressed genes are given in white. Differential expression was
considered significant at p < 0.05. Error bars indicate standard deviations (n = 3).

2.4. Comparison of Gene Expression in Bone Marrow from Patients with MDS

Bone marrow-derived blood samples from four patients with MDS at the time of the
first response evaluation after four cycles of azacitidine treatment were included in this
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study. The median age of patients at the time of MDS diagnosis was 61 years (range, 47–78).
The MDS subtypes and corresponding affected patient numbers were as follows: two
patients with MDS-SLD and one each with MDS-EB1 and MDS-EB2. The risk categories
at baseline were low/intermediate-1 according to IPSS and low/high according to IPSS-R
(Table 1). The patients were treated with a median of 37.5 cycles of AZA (range, 4–46). Three
patients (patients 2–4) achieved objective responses (complete remission), while one patient
(patient 1) did not show any objective response after four cycles of AZA treatment (stable
disease). Patient 1 expired due to anemia despite undergoing allogeneic hematopoietic
stem cell transplantation. The duration of response was 6 months for patient 2, 46 months
for patient 3, and 74 months for patient 4. The survival periods were 84 months for patient
1, 12 months for patient 2, and 45 months for patient 3. Patient 4 has continued to respond
to AZA for more than 6 years and is alive at this time. The IPSS-R was correlated with time
to (leukemia) progression and overall survival, as previously reported [26].

Table 1. Clinical characteristics of the MDS patients treated with AZA.

Sample No. 1 2 3 4

Sex Female Male Female Female
Age (years) 54 78 65 47
Weight (kg) 53.2 67 66 64.5
Height (m) 1.54 1.75 1.57 1.62

BMI (Kg/m2) 22.4 21.9 26.8 24.6
Underlying disease Atrial septal defect HTN HTN/depression ADPKD, CKD

Baseline clinical characteristics
WBC (×106/L) 4500 3730 940 3470
ANC (×106/L) 1260 1828 190 2110

Hb (g/dL) 9.5 8 9.5 7.4
Platelets (×109/L) 249 178 31 104

BM blasts (%) 0.5 13.9 6.5 0.6
Cytogenetic abnormalities none none none none

IPSS 0 1.5 1 0
IPSS risk category Low Int-1 Int-1 Low

IPSS-R 2 5 5.5 2.5
IPSS-R risk category Low High High Low

MDS subtypes (WHO) MDS-SLD MDS-EB2 MDS-EB1 MDS-SLD
Treatment cycle of AZA 4 7 18 46

Best response NR CR CR HI
Progression

(Leukemic transformation) No Yes Yes No

PFS (month) 7Y 6M 3Y10M 6Y2M
Allogeneic HSCT Yes No No No

Time to HSCT 6Y4M
F/U period (month) 7Y 1Y 3Y9M 6Y2M

F/U result Dead Dead Dead continued response to AZA
Cause of death Pneumonia AML AML Alive

Abbreviation: BMI, Body Mass Index; HTN, hypertension; ADPKD, autosomal dominant polycystic kidney
disease; CKD, chronic kidney disease; WBC, white blood cell count; ANC, absolute neutrophil count; Hb,
hemoglobin; BM, bone marrow, IPSS, International Prognostic Scoring System; IPSS-R, Revised International
Prognostic Scoring System; Int, intermediate; MDS-SLD, MDS with single lineage dysplasia; MDS-EB, MDS with
excess blasts; NR, no response; CR, complete remission; HI, hematologic improvement; PFS, progression-free
survival; HSCT, hematopoietic stem cell transplantation; F/U, follow-up.

We next reviewed the cBioPortal [27] and UALCAN databases for relevant information
on the identified candidate genes. Our cBioPortal review revealed that the genes were asso-
ciated with different types of alterations (mutation, amplification, and deletion) (Figure S4),
while our UALCAN results showed that their higher-level expression was associated with
poor prognosis in AML (Figure S5). qRT-PCR analysis of candidate gene expression levels
in bone-marrow-derived samples obtained from patients 1–4 after four cycles of AZA treat-
ment revealed significant expression differences for four of the twenty-four genes: as shown
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in Figure 5A–D, the levels of mRNAs encoding AMER1, HSPA2, NCX1, and TNFRSF10C
were higher in patients 1 (with no response to AZA) and 2 (with a 6-month short-duration
response to AZA) compared to those in patients 3 (with a prolonged objective response of
more than 3 years) and 4 (with a response of more than 6 years). These results suggest that
the expression levels of these four candidate genes may differ significantly between patients
with short- and long-duration responses to AZA. Bone-marrow-derived blood samples be-
fore the azacitidine treatment were available for two of the four patients (patients 3 and 4).
So, we also performed qRT-PCR on pre-AZA-treatment samples from patients 3 and 4
(Figure 5E–H) and found that, interestingly, there was no difference in the expression levels
of the four abovementioned genes in the samples obtained from patients 3 and 4 before
and after AZA treatment.
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2.5. DNA Methylation Status in Bone Marrow from Patients with MDS

We next performed pyrosequencing to assess the DNA methylation statuses in samples
obtained from patients 3 and 4 before and after AZA treatment. We did not observe any
significant change in the DNA methylation of these four genes following AZA treatment
in these patients (Figure 6). This may explain why there was no difference in the mRNA
expression of these genes in the same samples.
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Figure 6. DNA methylation status of MDS patients before and after AZA treatment. (A–H) Methyla-
tion levels of four selected candidate genes in patients 3 and 4 before (white) and after (black) AZA
treatment were detected via bisulfite sequencing and expressed as a percentage of CpG methylation.
Differential expression was considered significant at p < 0.05. Error bars indicate standard deviations
(n = 3).

3. Discussion

Epigenetic disorders are an important factor in the pathophysiology of MDS, and abnor-
mal DNA methylation has been repeatedly identified as a key event in this disease [28,29].
Promoter hypermethylation of tumor suppressor genes is involved in promoting the sur-
vival, growth, and metastasis of cancer, while abnormal hypomethylation can lead to the



Int. J. Mol. Sci. 2024, 25, 4723 11 of 17

transcriptional activation of tumor genes in various cancers, including MDS [29,30]. Based
on the hypothesis that hypermethylation might favor leukemogenesis by silencing tumor
suppressor genes, demethylating agents, including AZA, have been studied for their ability
to antagonize this process and thereby treat MDS [31]. AZA has been used effectively
to treat MDS and AML for more than a decade [32], but the AZA response rate is about
50%, and the median response period is less than 18 months [33]. Because the underlying
resistance mechanisms are not well understood, it is difficult to accurately predict which
patients will respond [34]. Thus, it is important to improve our understanding of the
mechanisms leading to AZA failure and identify and validate biomarkers that can predict
treatment responses.

Demethylation and upregulation of cancer genes after HMA treatment are associ-
ated with poor outcomes among high-risk MDS patients [29,35,36], and abnormal DNA
methylation is known to contribute to tumor progression, metastasis, and resistance to cur-
rently available tumor treatment [37,38]. These findings support the notion that epigenetic
changes are the driving force behind the acquisition of cancer drug resistance. Hyperme-
thylation and hypomethylation of tumor suppressor genes and tumor gene-regulatory
domains have been tested as possible biomarkers for cancer risk, diagnosis, and/or prog-
nosis. In addition, methylation status analysis of certain genes can be useful in guiding
the selection of cancer chemotherapy, immunotherapy, or targeted therapy [38]. Thus,
biomarkers targeting DNA hypomethylation may be useful for predicting resistance to
AZA in MDS patients [29]. However, the cancer gene upregulation and/or reactivation
typical of the acquisition of AZA resistance in MDS have not been well described.

In studies seeking to identify biomarkers that can predict HMA responsiveness in
hematological diseases, numerous researchers have explored somatic cell gene mutations
and acquired mutations [39]. The TET2, TP53, IDH1, IDH2, and DNMT3A genes are fre-
quently mutated in myeloid malignancies [40,41] and have been correlated with increased
or decreased responsiveness [34]. However, inconsistent results have been reported with
respect to the predicted and prognostic values of various mutations [39,42]. The Interna-
tional Prognostic Scoring System (IPSS) and the revised IPSS (IPSS-R), encompassing a
combination of cytogenetic and clinical data, and the recent IPSS-M incorporating molecu-
lar mutation data [43] are used to screen patients for treatment, but these approaches are
incomplete and do not predict who will respond to AZA or other treatment modalities in
MDS. Joint efforts to supplement the IPSS using gene expression profiles, DNA methylation
profiles, and/or high-resolution chromosome analysis should critically contribute to further
progress in understanding and treating this disease [44].

To test the hypothesis that AZA resistance can induce the demethylation (or upreg-
ulation) of tumor genes, we identified AZA-resistance-associated DEGs by comparing
770 tumor genes in F-36P versus F-36P/AZA cells. We then selected 80 candidate DEGs,
including those involved in pathways related to cancer, transcriptional misregulation
in cancer, PI3K-Akt signaling, JAK-STAT signaling, and MAPK signaling. Interestingly,
24 genes were shown to be associated with different types of changes, and 8 of these genes
(CFTR, TUB3, GFI1, CR1, CCNB3, BCL2A1, AMER1, and PITX2) were amplified in the
AZA-resistant cell line. We examined the prognostic significance of the mRNA expression
levels of the 24 genes using the UALCAN database and found that high-level expression of
10 of the genes (AMER1, BCL2A1, CCNB3, CR1, HSPA2, ITGA9, MLF1, NCX1, PDGFB,
and WNT3) was associated with lower overall survival in AML patients. These results
suggest that most of our candidate genes are clinically correlated.

Finally, we obtained bone marrow from MDS patients and tested to see if these
24 biomarker candidates could be used to predict their AZA resistance. The best response
of patient 1 was NR, while those of patients 2–4 had a CR; however, we observed candidate
gene expression differences even between patients exhibiting CR. In particular, patients
exhibiting an upregulation of the genes encoding APC membrane recruitment protein 1
(AMER1), heat-shock-related 70-kDa protein 2 (HSPA2), solute carrier family 8 member
A1 (SLC8A1), and TNF receptor superfamily member 10c (TNFRSF10C) had worse out-
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comes. Assessment of these four genes expression showed that, interestingly, there was
no significant difference in the samples obtained from patients 3 and 4 before and after
AZA treatment. There was also no difference in the DNA methylation statuses of these
four genes in patients 3 and 4. By combining expression data and prognostic information
from a survival curve, we observed negative correlations between the DNA methylation
and RNA expressions levels of the four key genes. Moreover, their RNA expression levels
among the responder and non-responder had corresponding prognoses.

This is the first study to comprehensively investigate the associations between epige-
netic modalities and gene expression in AZA-resistant MDS cells. We identified genetic
and epigenetic profiles that can be successfully translated into biomarkers capable of pre-
dicting the statuses of MDS patients with resistance to AZA. We conclude that the observed
gene upregulation could be explained by epigenetic changes and propose that AMER1,
HSPA2, NCX1, and TNFRSF10C may contribute to the clinical effects of AZA in MDS.
However, as we studied a relatively small group of MDS patients, further studies involving
larger numbers of patients should be performed to clarify whether the identified genes
can be assessed as a means of predicting AZA resistance. In addition, our patients can-
not accurately represent MDS as a whole since there were no patients with MDS-specific
cytogenetic abnormalities in our cohort. The role of next-generation sequencing in MDS
with a normal karyotype is already well known [45]. Unfortunately, we could not perform
NGS to detect recurrent mutations in MDS for our patient cohort. However, our patients
could be representative of MDS with a normal karyotype. We hope that the biomarker
candidates identified here will serve as a clinically useful tool for the early identification of
azacitidine resistance.

4. Materials and Methods
4.1. AZA-Resistant Cell Selection and Culture

The F-36P human leukemia (MDS) cell line [46] was obtained from European Collection
of Authenticated Cell Cultures (ECACC, Salisbury, UK). The AZA-resistant F-36P cell
line, F-36P/AZA, was generated by treating the parental F-36P cells with incrementally
increasing concentrations of AZA (Sigma-Aldrich, St. Louis, MO, USA) ranging from
1 µM to 125 µM. Selected cells were cultured in AZA-free medium for at least 2 weeks
before being used in experiments. F-36P and F-36P/AZA cells were cultured in RPMI-1640
medium (GenDEPOT, Katy, TX, USA) containing 5% fetal bovine serum (GenDEPOT),
1% penicillin (GenDEPOT), 5 ng/mL of interleukin (IL)-3 (Sigma-Aldrich), and 2 mM of
glutamine (Sigma-Aldrich). Cells were maintained at 37 ◦C in an atmosphere containing
5% CO2.

4.2. RNA Isolation

Total RNA was isolated with QIAzol reagent (Qiagen, Hilden, Germany), following
the manufacturer’s instructions. The quality of total RNA was checked via on-chip elec-
trophoresis using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA), and the RNA concentration was determined with a NanoDrop 2000 Spectropho-
tometer (ND-2000; Thermo Fisher Scientific Inc., Waltham, MA, USA).

4.3. Quantitative Reverse Transcription-PCR (qRT-PCR)

For mRNA detection, the extracted RNA was reverse-transcribed into cDNA using
amfiRivert reverse transcriptase (GenDEPOT) according to the manufacturer’s instructions.
qRT-PCR was performed via a Mic Real-Time PCR system (Bio Molecular Systems, Upper
Coomera, QLD, Australia) using Luna Universal qPCR master mix (New England Biolabs
Inc., Ipswich, MA, USA). GAPDH was used as the internal control for normalizing the
expression of target genes. The results were calculated using the 2−∆∆CT method. The
utilized primer sequences are listed in Table S1.
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4.4. Western Blotting

Cells were lysed with lysis buffer (GenDEPOT). Equal amounts of protein were re-
solved using 8% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
and the resolved proteins were transferred to nitrocellulose membranes. The membranes
were blocked via incubation with 5% non-fat dry milk in PBS containing 0.1% Tween-20
(PBST) for 1 h and then incubated with primary antibodies overnight at 4 ◦C. After three
washes with PBST, the blots were incubated with horseradish peroxidase (HRP)-conjugated
secondary antibodies (GenDEPOT) for 30 min at room temperature. Protein bands were de-
tected using Western Lightning Plus ECL (Perkin Elmer, Waltham, MA, USA) and imaged
with an Amersham Imager 600 (GE Healthcare, Piscataway, NJ, USA). Primary antibodies
against DNMT1 (ab13537), DNMT3a (ab13888), DNMT3b (ab13604), MBD2 (ab38646), and
MeCP2 (ab2828) were obtained from Abcam (Abcam, Cambridge, UK), while a primary
antibody against α-actinin (sc-17829) was purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA).

4.5. NanoString Gene Expression Analysis

Gene expression was measured using the nCounter PanCancer Pathways Panel via a
NanoString platform (NanoString Technologies, Seattle, WA, USA). The PanCancer Path-
ways Panel consists of 770 genes, including 20 housekeeping genes. For each hybridization
reaction, 100 ng of total RNA was used. After hybridization, the samples were loaded into
an nCounter Cartridge and processed via the nCounter Digital Analyzer for quantifica-
tion of the target mRNA in each sample. Quality control and normalization of raw gene
expression counts were performed with nSolver Analysis Software Version 4.0 (NanoString
Technologies). Data mining and graphic visualization were performed using nCounter
Advanced Analysis Software Version 2.0 (NanoString Technologies).

4.6. Gene Ontology (GO) and Pathway Enrichment Analyses of Differentially Expressed Genes (DEGs)

Genes exhibiting differential expression between F-36P and F-36P/AZA samples were
identified via NanoString analysis. p < 0.05 and Log2 (fold change) ≥ 1 were used as
the cut-off criteria for identifying significant DEGs. GO enrichment analysis of DEGs
was performed using DAVID (version 6.8; Database for Annotation, Visualization and
Integrated Discovery; https://david.ncifcrf.gov/ accessed on 19 December 2022). This
web-based platform for gene functional annotations and biological meaning elucidation
classifies DEGs by the attributes of molecular function (MF), biological process (BP), and
cellular components (CCs). Pathway enrichment analysis of DEGs was generated using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) component of the DAVID website,
with p < 0.05 utilized as the threshold value.

4.7. Protein–Protein Network and Module Analyses

To clarify the relationships among proteins encoded by selected genes, we established a
protein–protein interaction (PPI) network using Cytoscape (version 3.9.1; https://cytoscape.
org/ accessed on 10 January 2023). The PPI network was built based on the STRING database
of Cytoscape, and PPI pairs with minimum interaction scores > 0.4 were extracted. Hub
genes of the PPI network were identified according to the Maximal Clique Centrality (MCC)
methods, using the cytoHubba plugin of Cytoscape. GO and KEGG enrichment analyses
(functional analyses) of selected genes were performed using the ClueGO plugin of Cytoscape.
A p-value < 0.05 was considered to be indicative of a statistically significant difference.

4.8. DNA Extraction and Bisulfite Conversion

Genomic DNA (gDNA) was extracted using a QIAamp DNA Mini Kit (Qiagen) ac-
cording to the manufacturer’s protocol, and DNA quality was assessed using NanoDrop
2000 Spectrophotometer (ND-2000; Thermo Fisher Scientific Inc.). A total of 1 µg of DNA
was subjected to bisulfite conversion by using an EZ DNA Methylation kit (Zymo Research,

https://david.ncifcrf.gov/
https://cytoscape.org/
https://cytoscape.org/
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Orange, CA, USA) according to the manufacturer’s instructions. The converted DNA was
used as a template for methylation-specific PCR.

4.9. Quantitative Methylation Analysis via Pyrosequencing

The converted DNA was amplified by using a PyroMark PCR kit (Qiagen) according
to the manufacturer’s instructions. The utilized primers (Table S2) were designed using
the PyroMark Assay Design Software Version 2.0 (Qiagen). The PCR products were
resolved using 1% agarose gel electrophoresis and visualized via staining with TopRed
Nucleic Acid Gel Stain (BioPure, Horndean, UK). Pyrosequencing was performed on a
PyroMark Q48 Autoprep (Qiagen) using PyroMark Q48 magnetic beads (Qiagen) and
the PyroMark Q48 Advanced CpG Reagent (Qiagen), as described in the manufacturer’s
protocol. Methylation levels for each CpG within the targeted region were quantified using
PyroMark Q48 Software Version 2.4.2 (Qiagen). Relative peak height differences were used
to calculate the percentage of methylation at each site. All pyrosequencing experiments
were performed three times.

4.10. Validation of Genetic Alterations in Candidate Genes

Genetic alterations of hub genes were additionally investigated in an extensive myeloid
neoplasm dataset contained within cBioPortal (http://cbioportal.org/ accessed on 24
February 2023). This open-source platform provides visualization tools, analytic tools, and
downloadable large-scale cancer genomic datasets.

4.11. Patient Enrollment and Treatment

Bone-marrow-derived blood samples from four patients with MDS at the time of the
1st response evaluation after the 4 cycles of azacitidine treatment were used for this study.
Additionally, pre-treatment samples were also used for two of four MDS patients. The MDS
patients were subtyped according to the revised World Health Organization classification
of myeloid neoplasm [47]. They were treated with AZA (75 mg/m2/d for 7 days every
4 weeks), and response to treatment and clinical outcome were evaluated according to the
revised International Working Group (IWG) response criteria. The clinical characteristics of
the patients are summarized in Table 1. Bone marrow samples from nine donors with no
bone marrow involvement of hematological malignancy were used as controls. Written
informed consent was obtained from all tested subjects in accordance with the guidelines
of the Institutional Review Board of Seoul National University Hospital (SNUH).

4.12. Statistical Analysis

We performed all experiments in, at least, triplicate (n ≥ 3). The data are presented
as means ± standard deviation (SD). To analyze differences between the means of two
samples, we used the Student’s t-test for independent samples, as applied with SPSS
software version 26.0 (SPSS Inc., Chicago, IL, USA). A p-value < 0.05 was considered to
represent a statistically significant difference.

5. Conclusions

In summary, we identified genetic and/or epigenetic profiles that could be used as
biomarkers for predicting azacitidine resistance in MDS patients. As a result, four biomark-
ers (AMER1, HSPA2, NCX1, and TNFRSF10C) contributing to azacitidine resistance were
discovered. These findings have the potential to serve as a clinically relevant biomarker for
azacitidine resistance and a promising therapeutic target for new treatment strategies.
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