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Abstract: Prominent pathological features of Huntington’s disease (HD) are aggregations of mutated
Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor
(such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and
peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate
disease progression, including brain pathology. While whole-body metabolic abnormalities and
organ-specific pathologies in HD have been relatively well described, the potential mediators of
compromised inter-organ communication in HD have been insufficiently characterized. Therefore,
we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation
of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids,
RNAs) were found that suggest impaired inter-organ communication, including of the gut–brain and
muscle–brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle
interventions that are thought to improve communication across these axes: dietary strategies and
exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms
and potentially modify disease progression (possibly via improving inter-organ signaling) in HD.
However, impaired systemic metabolism and peripheral symptoms warrant particular care in the
design of dietary and exercise programs for people with HD.

Keywords: Huntington’s disease; neurodegeneration; gut–brain; muscle–brain; inter-organ signaling;
circulating messengers; exercise; diet

1. Introduction

The brain is in constant interaction with peripheral organs. Deficits in this communi-
cation are thought to be involved in a multitude of diseases, including neurodegenerative
diseases. This possibility currently is avidly explored for the gut–brain axis [1], but in-
creasingly also for the interaction of the brain with other organs and tissues, including
the heart [2] and skeletal muscle [3]. Here, we aim to explore the current knowledge
on mediators of deficits in brain–periphery interactions in Huntington’s disease (HD), a
neurodegenerative disease, in which brain pathology is paralleled by substantial peripheral
abnormalities [4,5].

The autosomal dominant disorder Huntington’s disease is caused by the multiplica-
tion of a CAG-repeat in exon 1 of the Huntingtin (Htt) gene [6], resulting in a prolonged
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poly-glutamine stretch in Huntingtin protein (Htt), a large protein, expressed in almost all
human and mouse tissues [7]. While repeats of 36–39 CAGs are associated with reduced
penetrance, more than 39 repeats are considered fully penetrant [8]. HD is characterized
by neurodegeneration, positive and negative motor symptoms, including chorea (involun-
tary jerky movements), dystonia (uncontrolled muscle contractions), impaired motor and
balance control, and hypokinetic motor symptoms, especially in later disease stages [9,10].
In addition, non-motor symptoms, such as cognitive impairment (especially of executive
functions and motor skill learning) and psychiatric symptoms are frequent [10]. Despite the
clear genetic cause of HD, disease-modifying treatments are lacking, due to an incomplete
understanding of the physiological functions of Htt and complex interactions between
pathological processes in different organs. Htt plays roles in the cellular regulation of
transcription, cellular morphology and cytoskeleton functions, metabolism, synapses, and
apoptosis [7,11]. Moreover, Htt is involved in systemic processes, such as immune system
function, for example, by the regulation of macrophage physiology [12].

In neurons, mutated Htt (mHtt, Htt with polyglutamine expansion) forms intracellular
nuclear inclusions and cytosolic aggregates [13,14], impairing different cellular functions,
such as transcription [15] and energy production, resulting in oxidative damage and ulti-
mately in the death of vulnerable cells, in particular of medium spiny GABAergic neurons
in the dorsal striatum (caudate nucleus and putamen), leading to atrophy in the affected
brain regions (primarily striatum, cortical regions, substantia nigra, and others) [10]. Other
neuropathological features of HD besides mHtt toxicity include reduced brain-derived
neurotrophic factor (BDNF) levels [16]; neuroinflammation, mitochondrial dysfunction,
and oxidative stress [17]; impaired cellular signaling [18]; cerebrovascular deficits [19,20],
as well as impaired cerebrospinal fluid flow and compromised clearance of toxic material
from the brain [21]. The different aspects of HD pathology also result in changes in re-
gional blood flow and the activity of numerous brain regions, including hypoperfusion and
hypometabolism of the basal ganglia and cortical regions, as well as the downregulated
activity of cortical components of the executive networks, demonstrated extensively in
mouse models of HD and people with HD [22–29].

Aside from brain deficits, HD is associated with various systemic deficits [4,5], com-
prising metabolic impairment in multiple organs, atrophy of skeletal muscle, cardiovascular
problems, increased inflammation [30], and generally disrupted organismal homeostasis,
reflected for example by disrupted circadian rhythms [31]. HD-related metabolic vul-
nerabilities outside the nervous system are likely important players in HD progression
and potentially are also involved in the generation of brain-related symptoms [4,7]. The
disruption of the physiological interactions between peripheral organs and the brain may
compromise organismal homeostasis and adequate systemic stress responses (to mHtt
toxicity or different stressors) in HD and drive disease progression.

Taken together, metabolic alterations in the brain and peripheral organs are determi-
nants of disease progression in Huntington’s disease (HD) and other neurodegenerative
diseases [32], and a detailed understanding of these deficits is potentially important for
prognosis and the development of novel strategies to slow down or modify disease pro-
gression. The progressing complex systemic deficits characterizing HD likely are also one
reason why targeted pharmacological treatment approaches until today are not efficient in
HD patients. Here, we aim to explore possible mediators of brain–periphery interactions
that have been reported in the literature and put them in the context of relevant periph-
eral deficits in HD. In addition, we evaluate the risks and benefits of different healthy
lifestyles that can modulate peripheral metabolic deficits, brain–periphery communication,
and/or brain functions, either directly or indirectly. We attempt to derive preliminary
conclusions for beneficial lifestyles in HD and suggest questions that should be explored in
future research.
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1.1. Systemic Metabolic Vulnerabilities in Huntington’s Disease

Different HD-related metabolic impairments in various organs likely inter-dependently
influence disease progression. In combination with metabolic alterations and impaired
inter-tissue crosstalk, structural deterioration in tissues such as skeletal muscle, heart,
adipose tissue, and bone leads to cachexia and impaired gut/gut-microbiome structure
and function may influence systemic metabolism, including of the brain [4].

It has been speculated that a brain energy deficit in HD is linked to alterations in
systemic metabolic processes [33]. People with HD indeed usually experience CAG-repeat-
dependent weight loss [34], a reduced body mass index (BMI), and lower lean mass [35],
despite increased appetite and calorie intake [36]. This has initially been linked to a
reported increased resting energy expenditure in HD [37], although the authors of this study
observed no differences in overall energy expenditure levels as compared to controls, at least
partly due to lower voluntary physical activity levels in HD patients. Paradoxically, higher
food intake and appetite are common already in early disease stages and later [36,38,39].
The confirmation of higher calculated energy uptake together with reduced BMI also in
presymptomatic HD mutation carriers as compared to non-carrier controls suggests that
these metabolic effects are not merely due to increased energy expenditure of patients due
to involuntary movements [38]. A subsequent study found a similar fat-free mass and
basic metabolic rates in people with HD as compared to healthy controls despite reduced
BMI [40]. Body weight has been identified as a predictor for the rate of HD progression, with
higher BMI being associated with slower functional decline in an observational study [41].
Moreover, the reported reduced bone mineral density for people with HD, even in the pre-
manifest stage [42,43], which is similar to observations in the R6/2 HD-mouse model [44],
suggests early changes in body composition that may contribute to disease progression.

The basis of the alterations in body composition in HD are likely impaired metabolic
pathways, which can be observed in HD brain and other organs. Dysregulated glucose
homeostasis and impaired insulin responses in HD patients, also if they were not dia-
betic [45], and decreased availabilities of the branched amino acids valine, leucine, and
isoleucine that are associated with weight loss in (human) HD [46], indicate deficits in
glucose metabolism and Krebs cycle activity. In addition, alterations in lipid metabolism
are characteristic of human and model HD and include, for example, cholesterol [47] and
sphingolipid metabolism [48].

HD-related abnormalities in organs like liver, pancreas, and adipose tissue (for a
review see [4]), as well as in the gut and skeletal muscle (discussed in more detail in the
next chapter) are likely all importantly involved in systemic metabolic deficits in HD and
consequences on brain, body composition and the brain–periphery communication.

1.2. Mouse Models of Huntington’s Disease to Study Brain–Periphery Interactions

Different animal models of HD have been used to study crosstalk between brain and
peripheral tissues. Among them are parabiosis models, in which the circulatory systems
of two mice (e.g., an HD mouse with a wild-type mouse) are surgically connected. If the
involved mice are of different ages, the model is called heterochronic parabiosis.

HD mouse models can be categorized as transgenic or knock-in models. In transgenic
models, a human Htt gene with a high CAG-repeat number has been inserted in the mouse
genome. The inserted Htt can thereby be full-length (e.g., in BACHD, YAC) or partial (e.g.,
R6/2, N171-82Q). Knock-in HD models are characterized by either simply expanded CAG
repeats in mouse Htt (e.g., hdh (CAG150)) or a chimeric murine/human expanded CAG
repeat sequence in the mouse endogenous Htt-homologous gene (e.g., CAG140, zQ175).

Transgenic R6/2 mice (expressing an expanded CAG repeat—about 150—stretch of
the human Htt exon 1) are models of an aggressive disease progression, with death of
the animals occurring at 12–15 weeks [49]. In other HD mouse models, like CAG140 or
zQ175 mice, the disease progresses less rapidly: CAG140 or zQ175 mice live about 1.5 to
2 years [50]. Similarly, mice expressing human full-length mHtt, like the yeast artificial
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chromosome 128 (YAC128) model or bacterial artificial chromosome-mediated transgenic
HD (BACHD) mice, develop HD-like pathology more gradually [51].

2. Potential Mediators of Brain–Periphery Communication

While many peripheral deficits in HD are relatively well characterized [4], their in-
teraction with the brain and brain pathology is only just beginning to be investigated.
Different organs interact among themselves via various means and these interactions are
likely of great relevance for the development of chronic diseases and for aging in gen-
eral [52]. However, the communications channels that are important or impaired in HD are
not well characterized [4]. Therefore, we performed a literature search aiming to identify
research investigating brain–periphery interaction in HD and to evaluate, which modes of
inter-organ communication may be the most relevant in HD and potentially have not been
sufficiently investigated.

We applied an explorative search strategy on PubMed using the following keyword
search: “Huntington’s disease” AND (circulating OR brain - periphery OR mitokines OR
exerkines OR gut - brain OR liver-brain OR muscle - brain OR heart - brain). The search
yielded 177 results and relevant original research publications were extracted (publications
reporting peripheral deficits without investigating potential mechanisms for inter-organ
communication). The identified reviews were also screened for references to additional orig-
inal research publications on inter-organ communication and relevant hits were included
in our results. The results are summarized in the following Sections.

2.1. Circulating mHtt, Inflammatory, and Immune Factors

The applied search strategy yielded several related to mHtt, inflammatory factors, and
dysregulation of the immune system, which are summarized in Table 1.

Table 1. Factors related to mHtt, inflammation, and the immune system.

Species Subjects/Model Main Findings References

mHtt

Mouse Female zQ175 HD model mice in
parabiosis with wild-type mice

mHTT was found in the plasma and circulating blood cells of wild-type
mice and mHTT aggregates in organs like liver, kidney, muscle, and
brain (including vascular abnormalities), suggesting that mHTT is
transported in the blood and can induce pathology in remote organs.

[53]

Mouse Female zQ175 HD model mice in
parabiosis with wild-type mice

mHTT aggregation and a compromised BBB were observed in
wild-type mice sharing their circulating system with HD mice. Ablation
of the hematopoietic niche did not significantly affect these results.

[54]

Inflammatory factors, immune system

Human

Different cohorts of HD patients
and controls used for the
individual experiments (for
detailed information see
Supplementary Materials in [55])

HD myeloid cells produced increased inflammatory cytokines due to
mHtt and its effects on the NFκB pathway. Reducing Htt with small
interfering RNA particles in HD monocytes/macrophages, reversed the
excessive cytokine production and associated transcriptional changes.

[55]

Human

12 people with manifest HD
(42.4 ± 1.7 years, 4 female,
disease duration 2–13 years,
11 controls (47.0 ± 12.0, 4 female)

Immunoglobulin A, soluble tumor necrosis factor receptor,
interleukin-2-receptor, neopterin, and complement component C3
increased in HD serum and tryptophan decreased. These changes
were correlated to cognitive deficits.

[56]

Fly Drosophila expressing human
Htt-Q93 exon 1 in neurons

Neuronal mHtt-Q93 caused elevated ROS levels in circulating immune
cells, reduced immune cell numbers, and perturbed immune function. [57]
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Table 1. Cont.

Species Subjects/Model Main Findings References

Fly
Drosophila expressing human
Htt-Q93 in hemocytes (insect
immune cells)

mHtt expression in hemocytes did not impair motor function but
compromised the immune system, leading to greater infection
susceptibility.

[58]

Mouse Female YAC128 HD model mice Unlike in skeletal muscle and brain, transcriptional drifts in splenic
T-cells suggest accelerated aging in YAC128 mice. [59]

Mouse 3-nitropropionic acid model of
HD in 12-week-old C57BL/6 mice

Alkylated resveratrol prodrug improved inflammation (reduced serum
interleukin-6 levels) and delayed motor symptom onset and weight loss. [60]

Mouse R6/2, HdhQ150 knock-in and
YAC128 mouse models of HD

Myeloid cells from the spleen and blood cells from HD model mice
produced increased inflammatory cytokines but not bone marrow
CD11b(+) cells. Greater phagocytosis was observed in R6/2
macrophages, reflecting observations in HD patients [55].

[61]

Notes. See main text (Section 1.2) for a description of animal models. BBB, blood–brain barrier, CD11b, cluster
of differentiation molecule 11B; HD, Huntington’s disease; HdhQ150, knock-in mouse model of HD expressing
mutated Huntingtin with multiple glutamines (Q); Htt-Q93, drosophila model of HD with mutated Huntingtin
expressing multiple glutamines (Q); mHtt, mutated Huntingtin protein; NFκB, nuclear factor ‘kappa-light-chain-
enhancer’ of activated B-cells; ROS, reactive oxygen species; YAC128, yeast artificial chromosome 128 (mouse
model of HD expressing human full-length mutated Huntingtin); zQ175, murine knock-in HD model with a
chimeric murine/human expanded glutamine (Q) repeat sequence in the mouse endogenous Huntingtin protein.

2.1.1. mHtt

Htt—or mHtt—is expressed ubiquitously [62] and likely contributes to systemic dete-
rioration by being released into the circulation, probably facilitated by (cerebro-)vascular
deficits and a compromised blood–brain barrier [4]. Mounting evidence suggests that mHtt
can be transferred between neurons, as shown in the occurrence of mHtt aggregation in
fetal grafts that had been transplanted in HD brains [63], thereby possibly contributing to
pathology spreading. But mHtt may also be transferred between different cell types and
tissues, and even over long distances between organs. In rodent models, intra-ventricular
implantation of HD-patient derived mHtt-expressing fibroblasts or induced pluripotent
stem cells led to the—likely exosome-mediated—transmission of mHtt pathology to host
cells and resulted in neuroinflammation, gliosis, and striatal cell loss, as well as motor
and cognitive symptoms resembling HD symptomatology [64]. Intracerebral injection of
homogenates from HD brain aggravated HD-like symptoms in HD-model mice (BACHD)
and led to the occurrence of mHtt pathology in wild-type mice or non-human primates,
however, without inducing behavioral symptoms [65]. In contrast, the intraventricular
injection of exogenous, recombinant human fibrillar mHTT (Q48) Exon1 induced cognitive
and anxiety-like symptoms in wild-type mice and exacerbated those symptoms in HD-
model mice (R6/2), although the mHtt fibrils were not observed any more 14 months after
injection [66]. Importantly, in this study, peripheral application of mHtt fibrils triggered an
immune response but did not result in behavioral alterations [66]. Other studies suggest
that mHtt aggregates can induce the formation of mHtt pathology in nearby cells or even
distant tissues. Rieux and colleagues [53] used a mouse parabiosis approach, in which
the circulatory systems of zQ175 HD model mice were joined with those of wild-type
mice. This resulted in the deposition of mHtt in multiple organs and led to organ-specific
alterations of mitochondrial protein levels in the wild-type mice. A recent study found
that mHtt can be actively transported from motor neurons to muscle cells in iPSC models,
causing molecular and functional deficits in the receiving cells [67].

If and how mHtt-related pathology is propagated between cells and tissues in human
HD remains a topic of debate, as discussed in recent reviews [68,69].
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2.1.2. Immune System Dysregulation and Inflammation

Inflammation is strongly linked to neurodegenerative diseases in general and to HD
specifically [30,70]. In addition, the contribution of inflammation in peripheral tissues
to HD progression is increasingly considered and the related evidence has been recently
summarized [71].

Our search strategy led to the identification of only a few studies related to circulating
inflammatory markers and the references in Table 1 are a far from complete overview of
such factors in HD. A recent systematic review and meta-analysis summarized changes in
inflammatory markers in more detail [72].

Cellular injuries, e.g., of skeletal muscle, are tightly connected to inflammatory re-
sponses and are discussed in the next Section.

2.2. Circulating Metabolites, Muscle Injury Markers

Brain and systemic metabolic abnormalities are common in HD. It is thus not surpris-
ing that the levels of several metabolites are altered in the blood of people with HD or in
animal models of HD (Table 2).

Table 2. Circulating metabolites and muscle injury markers.

Species Subjects/Model Main Findings References

Muscle injury markers

Mouse R6/2 and Q175 HD model mice

Increased levels of muscle injury markers in HD
mouse serum: skeletal Troponin I (sTnI), fatty acid
binding protein 3 (FABP3), and Myosin light chain
3 (Myl3). In HD mice, genes related to muscle
contractility were downregulated and components
of the nuclear factor ‘kappa-light-chain-enhancer’
of activated B-cells (NfκB) were upregulated.

[73]

Circulating metabolites

Human

7 people with HD (3 female, range 40–66 CAG)
with fast progression, 13 (6 female, range
41–49 CAG) with absent progression (range
24 to 67 years for both groups)

Decreases in several plasma metabolites (related to
oxidative stress, inflammation, nitric
oxide/urea/glucose metabolism, polyamines,
AMPK signaling) were associated with
faster progression.

[74]

Human

15 people with symptomatic (6 female,
48.2 ± 10.2 years, 45.3 ± 3.2 CAG) and 10 with
presymptomatic (3 female, 37.6 ± 6.7 years,
43.8 ± 2.5 CAG) HD, 25 controls (9 female,
43.7 ± 10.6 years)

Higher plasma levels of lactate in people with HD
were correlated with a lower anaerobic threshold
than controls.

[75]

Mouse Male R6/1 mouse model of HD
(4 to 12 weeks old)

Early gut microbiome perturbance and gut
dysbiosis and elevated butanoate metabolism
pathway in 12-week-old R6/1 mice, modest
changes in plasma metabolome.

[76,77]

Notes. AMPK, adenosine monophosphate-activated protein kinase; CAG, Cytosine, Adenine, Guanine—here
abbreviated for CAG repeats; EV, extracellular vesicles; HD, Huntington’s disease.

2.2.1. The Muscle–Brain Axis

The results in Table 2 suggest alterations in circulating factors indicating abnormali-
ties in skeletal muscle or generally energy metabolism in HD [74,75] or mouse models of
HD [73]. Muscle metabolism is well known to be impaired in HD [4,30,78,79]. The deficits
include mitochondrial dysfunction and reduced ATP production (assessed from phospho-
creatine recovery), even in presymptomatic HD-mutation carriers [30,80]. Accordingly,
increased plasma levels of lactate in symptomatic HD patients and a reduced anaerobic
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threshold in both symptomatic and presymptomatic carriers of the HD mutation have
been reported during exercising [75]. In various rodent HD models, structural changes in
skeletal muscles have been characterized and include changes in myofiber atrophy, type
switching, and denervation (for reviews see [4]). In addition, mHtt aggregates have been
observed in muscle fibers in HD models and people with HD [30].

Impaired skeletal muscle metabolism in HD leads to muscle wasting, as recently
reviewed [81], and is probably the main factor in body weight loss in HD [4]. Cachexia and
muscle wasting are detrimental manifestations in many neurodegenerative diseases—for
example, predicting survival in Alzheimer’s disease patients [82]—but they are especially
major components of HD [79]. Muscle wasting also characterizes major HD mouse models,
such as R6/2 and HdhQ150, where measurable loss of muscle mass was found in all
major skeletal muscle types [83]. Muscles of R6/2 mice further have been shown to be
more vulnerable to calcium-induced stress [84], indicating impaired stress responses in
HD muscles. Interestingly, the expression of mHtt (Q72) in neurons of flies (Drosophila
melanogaster) also affected muscle performance in climbing and flying, suggesting negative
consequences of brain pathology on skeletal muscle [85].

Based on the possibility of impaired brain–muscle crosstalk in HD, van Diemen and
colleagues [86] hypothesized that brain (visual cortex) mitochondrial function was corre-
lated with peripheral mitochondrial functions (calf muscle in vivo, circulating peripheral
blood mononuclear cells ex vivo) in people with manifest HD (39–60 CAG repeats, no
healthy controls). Such a correlation could suggest inter-organ mitochondrial crosstalk in-
volved in signaling between the brain and muscles [87] and could be an important aspect of
impaired brain–periphery communication in HD. However, when assessing mitochondrial
function in vivo by phosphorous magnetic resonance spectroscopy, they did not find such
a correlation, and only brain mitochondrial function was correlated with the Unified Hunt-
ington disease rating score (UHDRS) total motor score [86]. Importantly, this study did not
include a control group. It thus remains to be determined if the correlations of central and
peripheral mitochondria are different in people with HD and if mitochondrial inter-organ
signaling may be specifically impaired in HD, although another study also reports a lack of
correlation between platelet mitochondrial complex I and I + III activities and the cerebral
metabolic rate of oxygen in people with HD, Parkinson’s disease, or without neurological
diseases [88]. Van Diemen et al. provided a mitochondrial function booster (three doses of
SBT-020) in a randomized, double-blinded, placebo-controlled trial to people with manifest
HD but did not observe significant improvements in mitochondrial functions in calf muscle,
peripheral blood mononuclear cells, or visual cortex [89]. They suggested that SBT-020 may
be more efficient in people with more pronounced mitochondrial dysfunction because they
observed better effects when mitochondrial impairment was greater.

Overall, metabolic alterations in HD muscles lead to reduced muscle function and
exercise capacity. This results in a situation in which exercise limitations and disease-related
metabolic deficits reciprocally lead to a worsening of muscle metabolism efficiency. Since
active muscles communicate with the brain via various mechanisms, including myokine-
signaling (molecules released from muscle and exerting effects on cells/tissues), direct
adverse effects on the brain are to be expected [90]. A few studies indirectly investigated
the potential benefits of the exogenous administration of myokines in cell and animal
models of HD. Mimicking brain-derived neurotrophic factor (BDNF) action using small
molecules (7,8-dihydroxyflavone and 4′-dimethylamino-7,8-dihydroxyflavone) in N171-
82Q for example reduced motor deficits and brain atrophy, at least partially by mitigating
impaired neurogenesis [91]. BDNF is increased in the brain after exercise and it has been
shown to be expressed and released from skeletal muscle, thus potentially directly acting
on the brain, since it can penetrate the blood–brain barrier [92]. However, specific studies
on muscle–brain communication in HD and the role of myokines and exerkines in HD
disease progression are lacking.
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2.2.2. The Gut–Brain Axis

The results in Table 2 also indicate alterations in gut–brain communication in an
HD mouse model [76,77]. Kong and colleagues performed shot-gun sequencing and
blood metabolomics in the R6/1 HD mouse model to characterize their gut microbiome
composition longitudinally throughout disease progression [76]. These authors report early
signs of a potentially compromised gut microbiome in the pre-motor symptomatic stage
and dysbiosis and compromised gut microbiome function during the late symptomatic
stage. They suspect that impaired microbiome function in HD model mice resulted in
compromised gut–brain interaction via changes in the circulating metabolome, specifically
related to butanoate metabolism [76], in which short-chain fatty acids and short-chain
alcohols primarily generated by fermentation in the gut are processed.

Increasing evidence indicates a disrupted gut–brain axis in models of, and people
with, neurodegenerative diseases, including HD [93–97].

Using fecal samples from human HD gene carriers, a different gut microbiome compo-
sition than in healthy controls has been shown and this was correlated with cognitive and
clinical assessments [98]. This finding confirmed previous results from mouse models and
demonstrated some degree of translational validity. In the R6/2 model, elevated intestinal
permeability and a shifted proportion of the dominant gut-resident phyla (with the compo-
sition changing towards reduced relative Firmicutes and higher Bacteroidetes abundance)
have been found and linked to reductions both in body length and colon length [99]. Fecal
microbiota transplants from wild-type into R6/1 mice improved cognition, especially in
females [94].

Enteric cells in the gut have also been found to contain mHtt aggregates in mouse
models of HD and people with HD [100]. In addition, impaired nutrient absorption in the
gastrointestinal tract has been reported and is potentially linked to unintentional weight
loss in HD [5].

The alteration of the gut microbiome may also affect mHtt pathology. In flies (Drosophila
melanogaster), targeting gut bacteria by antibiotics reduced mHtt aggregation and motor
defects [101]. Similarly, artificial colonization of HD flies with E. coli aggravated mHtt
aggregation and motor defects and reduced lifespan [101].

2.3. Circulating Lipid and Peptide Messengers, Hormones

The levels of various lipid and peptide messengers and of several hormones regulating,
for example, appetite, systemic metabolism, or psychological stress, are known to be
changed in HD, and related publications are summarized in Table 3. The different clusters
of results are discussed in the following Sections.

Table 3. Circulating lipid and peptide messengers, hormones.

Species Subjects/Model Main Findings References

Human
42 manifest HD gene expansion carriers
(60% females, UHDRS motor score
37.5 (30.5–71), and 30 healthy controls

Plasma levels of anandamide and
2-arachidonoylglycerol did not differ between
groups and were not correlated to UHDRS or
other clinical scores.

[102]

Human

15 people with pre-manifest
(46.8 ± 2.1 years, 42.3 ± 0.1 CAG repeats),
8 with manifest HD (57.6 ± 4.1 years,
42.5 ± 0.1 CAG repeats), 16 familial,
10 pre-manifest, and 5 manifest age- and
sex-matched controls.

Decreased levels of circulating growth factors
(growth hormone, prolactin), total cholesterol,
HDL-C, and LDL-C and perturbed levels of ghrelin,
glucagon, and amylin in pre-manifest and manifest
HD. Increased C-reactive protein in pre-manifest
HD subjects.

[103]
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Table 3. Cont.

Species Subjects/Model Main Findings References

Human

Progression groups (manifest HD): 21 low
(35.6 ± 7.2 years, 41.4 ± 1.5 CAG),
47 medium (44.9 ± 10.1 years,
41.8 ± 2.2 CAG) and 52 high
(49.2 ± 10.9 years, 42.8 ± 2.3 CAG),
30 controls (45.8 ± 11.4 years), men
and women

Plasma 24S-hydroxycholesterol levels progressively
decreased with an increasing disease progression
score and correlated with several clinical markers,
including striatal volume and UHDRS total
motor score.

[104]

Human

96 people with manifest HD (stage 1–3),
33 HD gene-positive pre-manifest subjects
(38–55 CAG repeats), 62 controls, men
and women

Levels of the brain-generated cholesterol metabolite
24S-hydroxycholesterol, but not cholesterol itself,
were reduced in people with symptomatic HD as
compared to presymptomatic and control groups.
Circulating 24S-hydroxycholesterol levels correlated
with striatal volume decrease.

[105]

Human

Presymptomatic: 10 women (37 ± 2 years),
7 men (38 ± 4 years), Clinical stage I/II:
16 women (46 ± 3 years),12 men
(43 ± 2 years), Clinical stage III: 19 women
(47 ± 3 years) and 10 men (51 ± 3 years),
Clinical stage IV: 3 women (53 ± 6 years),
5 men (50 ± 5 years), Controls 40 women
(46 ± 3 years), 28 men (43 ± 3 years)

Increasing urinary cortisol with disease progression. [44]

Human

15 HD mutation carriers (48.9 ± 3.2 years,
9 female, UHDRS 43.8 ± 5.5),
20 healthy controls
undergoing orthopedic surgery
(46.2 ± 4.1 years, 9 female)

Higher ghrelin and lower leptin levels in plasma of
people with HD. No differences to controls in
cerebrospinal fluid samples. No significant
differences for insulin, glucose, insulin-like growth
factor 1, or growth hormone. No correlations with
disease duration were found.

[106]

Mouse Female R6/2 HD model mice

During the symptomatic stage (12 weeks old),
plasma ghrelin levels were reduced in R6/2 mice,
and expression of several components of the ghrelin
axis and circadian rhythms were perturbed. Chronic
ghrelin treatment attenuated metabolic and
drinking/resting behavior impairments.

[107]

Mouse Heterozygous Q175 HD model mice
Reduced 24-hydroxy-cholesterol levels in plasma of
Q175 mice reflect changes in cholesterol metabolism
in the brain.

[108]

Mouse Male and female R6/2 HD model mice

Increased circulating corticosterone levels in R6/2
mice (similar to increased cortisol levels in HD
patients. Adrenalectomy and normalization of
corticosterone levels improved metabolism (indirect
calorimetry) and skeletal muscle wasting. In female
R6/2 mice, it also attenuated brain atrophy and
mHtt pathology.

[109,110]

Mouse Male and female BACHD model mice

BACHD mice have increased serum leptin, insulin, and
insulin-like growth factor 1, and developed impaired
glucose metabolism and pronounced insulin and leptin
resistance (these effects could be reproduced by
targeted overexpression of mHtt in the hypothalamus
but could not be abolished by inactivation of mHTT in
leptin receptor-expressing neurons).

[111,112]
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Table 3. Cont.

Species Subjects/Model Main Findings References

Mouse Male and female R6/2 and CAG140 mice Leptin and adiponectin levels were reduced in HD
mouse plasma. [113]

Mouse R6/2 HD model mice

Levels of circulating glucose, insulin, ACTH, and
corticosterone were higher and of
corticotrophin-releasing hormone lower in HD mice;
the adrenal cortex was enlarged. These events may
explain muscular atrophy, reduced bone mineral
density, abdominal fat accumulation, and insulin
resistance in R6/2 mice. Increased cortisol levels
were confirmed in HD patients in the same study
(see above).

[44]

Notes. ACTH, adreno-corticotrophic hormone; BACHD, bacterial artificial chromosome-mediated transgenic
HD, CAG, Cytosine, Adenine, Guanine—here abbreviated for CAG repeats; Corticosterone, rodent homolog of
human cortisol; HD, Huntington’s disease; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density
lipoprotein-cholesterol; UHDRS, Unified Huntington Disease Rating Scale (from 0 to 124, higher scores indicate a
higher level of motor function impairment. Early stage: <25, middle stage: 25–50, late stage: >50) [114], Q175,
mouse HD model containing human mutated huntingtin with an expanded glutamine (Q) repeat within the
native mouse huntingtin gene.

2.3.1. Lipids

As a major membrane and myelin sheath component, cholesterol is essential for
brain homeostasis. Cholesterol itself does not cross the blood–brain barrier and has to be
synthesized in the brain (in the adult brain mainly by astrocytes) in an energy and oxygen-
dependent manner [47]. Cholesterol metabolism is compromised in HD brain, and Kacher
and colleagues HD [115] demonstrated in zQ175 HD mice that upregulating cholesterol
24-hydrolase (CYP46A1), the rate-limiting enzyme for cholesterol degradation in the brain,
via gene therapy, could restore cholesterol homeostasis, providing neuroprotection.

While deregulated total cholesterol levels have been reported in people with pre-manifest
and manifest HD in blood [103], other studies did not observe significant changes in circulating
cholesterol but rather in its catabolites. Reduced levels of the cholesterol catabolite 24S-
hydroxycholesterol (24S-OHC) have been observed in Q175 mouse blood [108] and in the
plasma of HD patients [104,105]. These findings are thought to reflect changes in cholesterol
metabolism in the brain [108] and since they correlate with clinical scores [104,105], they may
be informative biomarkers (see Table 3). How changes in brain cholesterol-related metabolites
might affect peripheral organs remains to be investigated.

In humans, the use of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors
(statins), a widely prescribed class of cholesterol-reducing drugs, has been shown to be as-
sociated with a delayed onset of HD [116]. However, these beneficial effects may primarily
be due to the anti-oxidative effects of statins. It has been pointed out in response to the
publication that BMI may be a confounding factor in this study [117]. In addition, statins
exert anti-inflammatory effects and promote autophagy [118], which could all be benefi-
cial in HD. Therefore, it is currently unclear whether the direct modulation of circulating
cholesterol or its metabolites is beneficial in HD.

The plasma levels of other lipid messengers that have been suggested to play a role in
HD, such as the cannabinoids anandamide and 2-arachidonoylglycerol, were not changed
in presymptomatic and symptomatic HD in a recent study, and their levels were also not
correlated with clinical scores [102].

2.3.2. Hypothalamic Hormones Regulating Systemic Metabolism

The hypothalamus is a key coordinator of behavioral responses based on metabolic
status, which the hypothalamus senses via numerous peripheral cues, including insulin,
ghrelin, and leptin, as reviewed elsewhere [32]. While the release of the pancreatic hormone
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insulin depends on blood glucose levels, the elevated release of leptin by adipocytes
induces satiety and the gastrointestinal-tract-derived ghrelin stimulates feeding. Ghrelin
and leptin are key neuropeptide hormones regulating the crosstalk between systemic
metabolism and damage in the brain [119]. Several preclinical studies in HD mouse
models confirm dysregulated systemic metabolism and associated changes in glucose and
insulin homeostasis, which were described in people with HD (Lalić et al., 2008 [45]), by
demonstrating increased circulating levels of these molecules [44,111,112], as summarized
in Table 3. Another study in people with HD, however, did not find changes in circulating
glucose or insulin levels in either plasma or cerebrospinal fluid [106]. However, this study
found higher ghrelin and lower leptin levels in the plasma of individuals with HD (but not
in cerebrospinal fluid), indicating a negative energy balance.

In addition, low plasma leptin levels indicate reduced adipose tissue mass [120], and,
accordingly, HD patients (especially male patients) have reduced body fat [43]. In mouse
HD models (R6/2 and CAG 140 knock-in) reduced circulating leptin levels have also been
found and in combination with alterations in adipose tissue indicate HD-related deficits in
lipid accumulation in adipocytes and adipocyte signaling [113].

2.3.3. Stress Hormones

The hypothalamus is also a key element in the systemic stress response and via
the hypothalamic–pituitary–adrenal axis regulates glucocorticoid release and thereby the
human stress hormone cortisol or its rodent homolog corticosterone. High circulating
cortisol/corticosterone has been found both in human HD [44] and in mouse models
thereof [44,109,110]. Besides their role in the regulation of (psychological) stress responses,
glucocorticoids are also known regulators of muscle mass [121] and, thus, the hypothala-
mus is also involved in muscle phenotypes in HD [4,44], thereby potentially playing a role
in the regulation of the muscle–brain axis. Although the role of the hypothalamus in HD
progression and especially in HD-associated peripheral symptoms requires more investiga-
tion, an important involvement of hypothalamic deficits in the metabolic impairments of
HD patients is likely [32].

Besides the messenger molecules discussed in this Section, different types of RNAs
are recognized as communication mediators between tissues.

2.4. RNAs and Extracellular Vesicles

There is substantial and growing interest in the involvement of different types of RNAs,
e.g., long non-coding RNAs or microRNAs, in the pathogenesis of neurodegenerative
diseases and their potential as biomarkers [122–125]. Unsurprisingly, also in HD, the levels
of circulating RNAs have been reported to be significantly dysregulated [126]. Circulating
RNAs, like many other molecules, can be transported in extracellular vesicles, or exosomes
(a type of extracellular vesicles secreted from cells and originating from intracellular
multivesicular bodies that fuse with the plasma membrane). The role of extracellular
vesicles in neurodegenerative diseases is not fully elucidated but likely is importantly
involved in inter-organ communication and the interdependence of deficits/pathology in
the brain and the periphery [127].

Table 4 summarizes the results related to RNAs and extracellular vesicles identified by
our literature search on potential mediators of brain–periphery interactions.



Int. J. Mol. Sci. 2024, 25, 4696 12 of 34

Table 4. Circulating RNAs and extracellular vesicles.

Methods Subjects/Model Main Findings References

Studies in humans

Proteomics and RNAseq
on EVs isolated from
human plasma

22 people with presymptomatic HD;
20 with early-manifest HD,
24 controls (more details in [128])

Although major EV characteristics (size,
concentration) were similar between groups,
differences in RNA content yielded good
sensitivity to distinguish the groups. More EVs
of small size were detected in the HD groups.
The patterns of dysregulated RNAs suggest the
liver to be the main organ releasing
HD-specific EVs.

[129]

Transcriptomics and
proteomics on skeletal
muscle, skin (fibroblasts)
and adipose tissue

21 people with presymptomatic HD
(31.2–56.5 years, 10 females,
40–48 CAG repeats); 20 with
early-manifest HD (35.4–58.9 years,
41–50 CAG repeats, 10 females),
20 controls (31.6–55.9 years,
10 females)

Robust transcriptomic and proteomic
dysregulation depending on disease stage,
with inflammation, energy metabolism, and
EVs being confirmed as crucial factors in
peripheral HD pathologies; e.g., peroxisome
proliferator-activated receptor alpha
dysregulated in presymptomatic HD muscle
and early HD adipose tissue. TBC1D3D gene
expression (involved in EV regulation) was
downregulated in all analyzed tissues in
presymptomatic HD and restored in early HD.

[128]

Exploratory microarray
study of whole
noncoding RNA
expression profiles
in plasma

9 people with HD
(48.25 ± 10.47 years; 5 female),
8 healthy controls (49.17 ± 11.79;
6 females) 5 psychiatric patients
(50.25 ± 11.47; 3 female),
confirmation in 23 symptomatic
HD, 15 patients with pre-manifest
HD, and controls

Higher levels of SNORD13 in HD patients were
correlated to disease duration and symptoms
and affected factors relevant to HD
pathogenesis. The authors suggest SNORD13 as
a peripheral marker for cerebral HD pathology.

[130]

Exploratory microarray
study of whole
noncoding RNA
expression profiles
in plasma

9 people with HD (48 ± 10 years
old; 5 female), 8 healthy controls
(49 ± 12; 6 female) 5 psychiatric
patients (50 ± 11; 2 female),
confirmation in 33 HD gene carriers,
and controls (healthy and
psychiatric patients)

Downregulation of hsa-miR-98 (−1.5-fold) and
upregulation of hsa-miR-323b-3p (+1.5-fold)
in HD.

[131]

Human: 12 months of a
customized HD diet,
biochemical analysis of
blood samples, cognitive
and clinical testing

11 people with manifest HD
(5 female, 49,0 ± 10,1 years old) and
BMI ≤ 18 kg m−2 or unintentional
weight loss

Unintentional weight loss was prevented by a
customized diet in all participants: fat mass and
blood leptin increased. Cognition (6/11) and
motor function (3/11) improved in some
participants only. Several circulating miRNAs
(that were previously reported to be increased
in HD) were downregulated due to the
customized diet.

[132]

Mouse study

Immunohisto-/
cytochemistry, western
blots, flow cytometry

R6/2 and zQ175 HD model mice in
heterochronic parabiosis with
wild-type HD mice (combinations
of ages from 6 to 30 weeks)

Heterochronic parabiosis improved markers of
mitochondrial biogenesis and cell death,
reduced weight loss, and increased cognitive
function and survival in HD.

[133]

Notes. BMI, body mass index, CAG, Cytosine, Adenine, Guanine—here abbreviated for CAG repeats; EV,
extracellular vesicles; HD, Huntington’s disease; TBC1D3D, TBC1 Domain Family Member 3D; SNORD13, U13
small nucleolar RNA.
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Various RNAs have been suggested as potential biomarkers of HD, based on altered
levels compared to healthy controls [130,131]. Interestingly, customized dietary interven-
tions improved microRNA dysregulations in people with HD, which was paralleled by
reduced unintentional weight loss and increased fat mass and circulating leptin levels [132].

In a model of heterochronic parabiosis, in which the circulatory systems of young
wild-type mice were connected with those of older HD mice, improved molecular mark-
ers (mitochondrial biogenesis, cell death), reduced weight loss, and increased cognitive
function and survival in the HD model mice [133]. The authors of that study demon-
strated in vitro (on cultures from R6/2 neural stem cells) that exosomes from young mouse
blood serum seem to partially mediate these effects. Recently, studies by Neueder and
colleagues [128,129] suggested that extracellular vesicles are also involved in human HD
pathology progression. While most general characteristics of the extracellular vesicles were
not changed in the blood of people with HD, increased populations of smaller extracellular
vesicles and differences in RNA content were observed [129] that point to the liver as the
main organ involved in releasing HD-specific extracellular vesicles.

2.5. Cardio- and Neurovascular Changes

HD patients commonly suffer from autonomic nervous system dysfunction (dysau-
tonomia) [134], associated other cardiovascular risk factors [135], and impaired heart muscle
function [136], symptoms that have also been reproduced in mouse models of HD [137–139].
Accordingly, cardiovascular events represent important risk factors for premature mortality
in HD [134]. The reasons for increased dysautonomia and cardiovascular abnormalities
are not fully understood but are likely due to an impaired interconnectivity between the
cardiovascular and nervous systems [2]. Impaired regulation of peripheral vasodilation by
nitric oxide has been shown in R6/2 mice [140] and dietary modulation of nitric oxide levels
has been demonstrated in R6/1 mice to influence disease progression and symptoms [141]
(see Table 5).

Table 5. Changes in cardiovascular and neurovascular parameters.

Species Subjects/Model Main Findings References

Brain blood flow and neurovasculature

Human

18 pre-manifest (44.3 ± 11.3 years,
41.9 ± 1.8 CAG repeats, 12 female)
and 21 manifest HD gene carriers
(49.9 ± 12.6 years, 44.6 ± 4.1 CAG
repeats, 14 female) and 16 controls
(48.12 ± 11.02 years, 10 female)

Bilaterally decreased cerebral blood flow in caudate and
putamen correlated with worse motor and cognitive
symptoms and with markers of neurodegeneration.

[28]

Human

15 pre-manifest and manifest HD patients
(3 females, 27–77 years old, 40–44 CAG
repeats) and 14 matched controls,
post-mortem tissues from 22 HD patients
(43–54 CAG repeats) and 9 controls

Despite relatively preserved larger cerebral blood vessel
morphologies, arterial cerebral blood volumes were
decreased in cortex in HD and blood vessel density
increased in HD putamen. Markers for blood–brain
barrier function indicate leakage in HD, which was
confirmed by increased extravascular fibrin deposition.
In vivo MRI data suggest blood–brain barrier deficits
increase with disease progression. Similar results were
obtained in R6/2 mice, published in the same paper.

[19]

Human
17 people with early-manifest HD
(50.3 ± 5.5 years, 43.8 ± 1.7 CAG
repeats), 41 controls

Cerebral blood flow strongly reduced in HD in specific
cortical and subcortical areas. Cerebral blood flow was
associated with cognitive performance (Stroop test).

[23]
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Table 5. Cont.

Species Subjects/Model Main Findings References

Human
18 pre-manifest HD mutation carriers
(36.3 ± 9 years, 42.1 ± 3.1 CAG repeats)
and 14 controls (37.2 ± 10.3 years)

Decreased cerebral blood flow in medial and lateral
prefrontal regions and increased in the precuneus
and—in people close to symptom onset—in the
putamen/increased in the hippocampus.

[142]

Human

11 people with manifest HD
(42.1 ± 3.0 years, based on HD mutation
and/or UHDRS); 9 controls
(35.4 ± 3.2 years)

Blood flow velocity in the anterior cerebral artery was
hyporeactive in people with HD during maze testing.
This was linked more to motor planning and execution
(maze tracing) than to problem thinking (maze solving).

[143]

Human

20 presymptomatic HD gene expansion
carriers, (37.4 ± 9.1 years, 43.8 ± 2.4 CAG
repeats), 24 controls (39.9 ± 8.7,
<31 CAG repeats)

Reduced putamen volumes in HD and impaired basal
ganglia perfusion. [24]

Mouse Male R6/2 HD model mice

Increasing impairments in NO-dependent vasodilation of
the femoral artery in 12–16-week-old R6/2 animals,
endothelial dysfunction due to impaired NO-dependent
vasodilation in 16-week-old R6/2

[140]

Mouse Male and female R6/1 HD model mice

NO levels were altered by dietary l-arginine (low: 0%,
normal: 1.2%, or high: 5%), the dietary precursor of NO.
High arginine increased cerebral blood flow and
accelerated body weight loss and motor symptom onset.
Low arginine reduced nitrotyrosine deposition and
weight loss but not motor symptoms.

[141]

Notes. CAG, Cytosine, Adenine, Guanine—here abbreviated for CAG repeats; HD, Huntington’s disease; NO,
nitric oxide.

In addition, the neurovascular system is frequently impaired in neurodegenerative
diseases, including HD [144]. The neurovascular system orchestrates cerebral blood flow
and the exchange of molecules between the brain and the circulation (blood–brain barrier).
Changes in blood flow and permeability influence brain–periphery communication and
dysfunction can lead to nutrient (including glucose) and oxygen (and thereby energy) deple-
tion, reduced regulation of influx of circulating substances (e.g., inflammatory molecules),
or impaired cerebral waste clearance, all central factors in neurodegenerative diseases.
The literature summarized in Table 5 demonstrates regional changes in cerebral blood
flow [23,24,28,142,143] and suggests impaired blood–brain barrier function [19] in people
with HD. The changes in cerebral blood flow particularly affect the striatum in HD, leading
to reduced perfusion in this vulnerable network.

Overall, impairments in the cardiovascular and neurovascular system can result in
regional hypometabolism and likely contribute to a dysregulation of brain–periphery
communication, both by enhancing the permeability of the brain to harmful circulating
substances and by reducing not only access of affected tissues to oxygen and glucose (and
other nutrients) but potentially also to important signaling molecules.

With a lot of identified alterations in potential mediators of inter-organ communication
in HD (summarized in Figure 1), the question arises, how those messengers can be targeted
to hopefully modify or slow down disease progression, or attenuate HD-related symptoms.
While many pharmacological and genetic strategies could be conceived for this purpose,
and several currently explored approaches already target circulating substances (in particu-
lar mHtt [11,145]), here, we will focus on the potential of healthy lifestyles, because of their
particular potential to improve inter-organ communication. Specifically, the opportunities
and risks of dietary and exercise interventions for this purpose will be discussed in the
next Section.
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Figure 1. Overview of abnormalities in Huntington’s disease (HD) that likely lead to impaired
inter-organ communication. A few peripheral abnormalities are indicated (in italics), for HD-related
peripheral deficits in other organs, see [4]. The muscle–brain axis and gut–brain axis are highlighted
because they are most relevant for the lifestyle interventions discussed below. mHtt, mutated
Huntingtin.

3. Healthy Lifestyles with Beneficial Metabolic Effects in HD

Although the number of CAG repeats is inversely correlated with the age of disease
onset [146] and positively correlated with motor and non-motor symptoms [147], there
is much individual variability in HD onset, severity of symptoms, and disease progres-
sion [148] and the duration of the manifest disease has been reported to be relatively
independent of the number of CAG repeats in the Htt gene [149]. Genome-wide association
studies have identified genes associated with DNA maintenance and repair, mitochondrial
functions, oxidative stress, and proteostasis as major determinants [8,150] of the variability,
which is further thought to be influenced by environmental and lifestyle factors, suggesting
that modulation of these parameters can be protective for people with HD [151]. Lifestyle
factors like exercise and a healthy diet may have overlapping or compensatory effects
on cellular processes related to the mentioned genetic polymorphisms, since they may
also affect DNA maintenance, mitochondria, oxidative stress, and proteostasis [152,153].
Specific metabolic vulnerabilities have to be considered for the application of lifestyle
interventions in people with HD.

3.1. Dietary Approaches

A higher BMI can be associated with a more favorable disease progression [154] and
smaller functional, motor, and cognitive impairments [36,41] in HD. Both symptomatic
and asymptomatic HD patients were found to have significantly higher energy intake
compared to controls (median: 5511 kcal/day and 3751 kcal/day vs. 2488 kcal/day,
respectively) [39]. This increased caloric intake in carriers of HD-related CAG-expansion
mutations already before symptom onset [38,39] in combination with the positive impact
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of higher BMI suggests that avoiding reductions in caloric intake is important. However,
dietary interventions to increase BMI still likely do not benefit underlying disease processes
that drive HD progression, since genetic markers of BMI do not determine disease onset:
other factors probably drive disease progression and weight loss in parallel [155]. Which
dietary interventions really are efficient in HD, is an open question. But several strategies
will be briefly described here and their potential role in improving or re-establishing
brain–periphery interactions will be discussed.

3.1.1. Time and Calorie-Restricted Eating

In contrast to calorie-restricted eating, time-restricted eating refers to strategies in
which food is taken up only during defined periods. Surprisingly, a dietary restriction
regime (alternative day fasting, a form of intermittent fasting) not only improved glucose
metabolism and delayed disease onset and death but also mitigated weight loss in the
N171-82Q mouse HD model [156]. While similar benefits of alternative day fasting were
shown in the YAC128 mouse HD model [157] and of food restriction (gradually decreasing
food provision over several months) in the BACHD mouse model (expressing exon 1 of
human mHtt with 97 mixed CAA-CAG repeats) [158], these mice exhibit higher body
weight as compared to non-transgenic controls (not reflecting well the human disease),
which was normalized by dietary restriction. R6/2 mice exhibit progressively decreasing
body weight—similar to many HD patients—but even in this mouse HD model, some
benefits of intermittent fasting have been described. Skillings and colleagues observed
better temperature regulation and possibly attenuated deterioration of normal behavior
at older age in R6/2 mice (mean CAG repeats of 250 ± 17 SEM) when food access was
restricted only to the dark periods [159]. However, these authors also report reduced
survival when this protocol was combined with environmental enrichment [159].

Intermittent fasting is thought to induce a coordinated cellular stress response, leading
to cellular adaptation that increases cellular antioxidant and anti-inflammatory capacities,
DNA repair mitochondrial functions, and mitochondrial and protein quality control [160].
Taken together, dietary restriction in mouse models of HD appears to mitigate some aspects
of the disease, possibly by acting as a mild metabolic stressor that has the potential to
enhance mitochondrial resilience and recalibrate metabolic homeostasis based on ben-
eficial metabolic adaptations [152]. Additional stressors or stimulants (e.g., caused by
environmental enrichment, or due to injury or severe metabolic stress in later stages of
the disease) may counteract these adaptive capacities. Due to the reduction in blood
glucose levels and compensatory upregulation of ketogenesis, prolonged fasting peri-
ods in time-restricted feeding contribute to a shift of metabolic fuels [161]. Beneficial
effects on glucose and insulin homeostasis, intestinal health, and (primarily liver-derived)
ketone-body signaling may contribute to better systemic metabolic health and an improved
brain–periphery interaction.

Aside from the regulation of BMI and caloric or temporal eating behaviors, changing
the diet composition has also been investigated as a strategy to improve metabolic health
in HD, possibly again resulting in improved brain–periphery signaling. Eating behaviors
are likely changed beyond the energy uptake in most HD patients. A recent study [39]
on Cypriot people with symptomatic or asymptomatic HD patients, for example, found
significantly reduced non-starch polysaccharide and fiber intake and various specific
differences in asymptomatic HD-mutation carriers (including increased polyunsaturated
fatty acid, cholesterol, and sodium intake) as compared to gender- and age-matched
controls of the dietary reference intake [162]—which, however, did not necessarily reflect
local and cultural dietary habits and therefore is difficult to interpret. Potentially changed
dietary habits in HD leading to risks of dysbalanced nutrient intake could be associated
with mediators of inter-organ communication. Several selected nutrients and metabolic
pathways that may be targeted to modulate such circulating factors as presented in the
previous chapter are discussed below.
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3.1.2. Kynurenine Pathway Metabolism and Inflammation

Our literature search identified inflammatory and immune parameters that may be
involved in perturbing brain–periphery communication. In a variety of chronic diseases and
conditions that are related to immune activation and inflammation, significant alterations
of the kynurenine pathway (KP) are apparent [163] and this may be the case also in
HD [164]. The activated immune system can be detected by increased kynurenine (KYN)
to tryptophan (TRP) concentrations. More than 95% of free TRP is degraded through
the KP, and KYN metabolites, such as kynurenic acid and quinolinic acid, generated by
this strategy, which can affect several body compartments, inducing local and systemic
adaptations [165] (see Figure 2). Increased TRP breakdown rates have been noticed in the
CSF of patients with neurodegenerative diseases, including HD [166], and a recent meta-
analysis found that blood levels of TRP and KYN were significantly lower in HD patients
compared to controls [164]. These potential changes in TRP and KYN pathways could be
targeted in HD, but several studies also found no differences in HD [164], including one
recent study comparing KYN metabolites in cerebrospinal fluid and plasma in people with
HD, Parkinson’s disease, and controls [167]. Still, the potential effects of TRP and KYN on
the regulation of the gut–brain axis and on inflammation deserve further consideration.
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Accumulating evidence suggests that gut microbiota regulate KP metabolism and inter-
ference with the microbiome, thus, likely influencing the gut–brain axis [168]. TRP availability
in KP metabolism can be modulated by changes in diet and lifestyle [169,170]. However,
a diet rich in TRP is unlikely to be related to greater TRP availability to the brain as most
individuals (even older individuals and patients) consume adequate amounts of this essential
amino acid [171,172]. Moreover, TRP competes with other large neutral amino acids (LNAA)
for transport across the blood–brain barrier, which limits TRP availability for the cerebral
KP [173]. Therefore, the effect of diet on the TRP level in the brain depends on the TRP/LNAA
ratio, which can be improved by a carbohydrate-rich diet by promoting insulin secretion
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and the absorption of LNAA by muscles. On the other hand, certain nutrients and bioac-
tive compounds (such as antioxidants, omega-3 fatty acids, and probiotics) may suppress
indoleamine-2,3-dioxygenase (IDO) activity, which degrades TRP into KYN, and slow down
Th1-type immune activation cascades [174].

Dietary fat has a different effect on related enzymes of TRP metabolism. While a
high-fat diet rich in saturated fatty acids was shown to increase IDO activity and impaired
serotonin function in mice [175], a diet rich in n-3 long-chain polyunsaturated fatty acids
(PUFAs) can increase TRP availability in the brain. A metabolomic analysis in 12 younger
and 12 older adults observed significant reductions in circulating KYN levels following
n-3 PUFA supplementation (3.9 g/day over four months) in older adults who exhibited
modest elevations in KYN compared to younger [176]. An in vitro study found that n-3
PUFAs may be involved in regulating IL-1β, a pro-inflammatory cytokine that decreased
neurogenesis in human hippocampal progenitor cells, by modulation of the KP, as n-3 fatty
acids eicosapentaenoic acid (EPA, 10 µM) or docosahexaenoic acid (DHA, 10 µM) reduced
levels of the neurotoxic quinolinic acid thereby prevented the IL-1β-induced reduction in
hippocampal neurogenesis [177]. Furthermore, sufficient levels of EPA (≥2 g/day) increase
the release of serotonin, and sufficient levels of DHA (1 g/day) influence serotonin receptor
action [178]. Thus, there could be a direct effect of n-3 PUFAs on the disease [179]. Although
the effects of n-3 PUFAs in HD are not yet well understood, omega-3 fatty acids exhibit
anti-inflammatory, antioxidant, and neuroprotective properties that make them suitable
candidates for the treatment of neurodegenerative disorders in general [180,181]. A clinical
study revealed that daily supplementation of n-3 PUFAs (810 mg EPA and 4140 mg DHA)
plus n-6 PUFAs (1800 mg gamma-linolenic acid and 3150 mg Linoleic acid) with antioxidant
vitamins (0.6 mg vitamin A and 22 mg vitamin E), including gamma-tocopherol (760 mg),
for 2.5 years significantly delayed disease progression in patients with early Parkinson’s
disease [182]. Recent findings in older adults support a biologically plausible rationale
whereby these nutrients work synergistically, and in a dose-dependent manner, to improve
working memory, thereby reducing cognitive decline and dementia risk in later life [183].

Taken together, while it remains unclear whether circulating KYN metabolites play
a crucial role in inter-organ communication in HD, targeting inflammatory parameters
by targeting KYN-metabolism or with other dietary approaches (e.g., n-3 PUFAs) are
interesting avenues to control dysregulated brain–periphery communication in HD.

3.1.3. Oxidative Stress and Antioxidants

Antioxidant properties of vitamins and polyphenols (flavonoids) may also contribute
by affecting the activities of enzymes involved in TRP metabolism. In vitro studies revealed
that several phytocompounds can interfere with inflammatory signaling cascades including
TRP breakdown [184]. Consequently, TRP availability in the brain rises. However, because
these results were solely based on in vitro experiments, the effects of antioxidants on
systemic TRP metabolism remain speculative. In addition, they most likely depend on the
individual’s immunological state.

Oxidative stress is a crucial factor in HD [185] and circulating messenger molecules,
such as exerkines, contribute to the regulation of oxidative stress [186]. Reactive oxygen
species (ROS) are regulators of immune responses and inflammation in the brain, which
together with imbalanced antioxidant defenses and overproduction of ROS (resulting in
oxidative stress) are involved in neurodegeneration. A diet rich in antioxidants (polyphe-
nolic compounds, carotenoids, vitamins E and C) can decrease cellular oxidative stress
and exert neuroprotection [187]. Accordingly, vitamin E supplementation significantly
improved memory, cognition, learning, motor function, and brain markers associated
with neuroregeneration and neuroprotection in experimental models of neurodegenerative
diseases [188]. Both vitamin C and vitamin D have been shown to ameliorate motor abnor-
malities models of HD in HD patients, as recently reviewed [189], and a high-dose vitamin
E treatment (3000 IU of d-α-tocopherol/day for 1 year) was moderately effective in slowing
down the progression of symptoms in early HD stages [190]. In addition, several flavonoids
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can protect striatal neurons, thereby ameliorating symptoms in HD models [191]. Moreover,
polyphenol-rich dietary patterns counteract gut microbiota dysbiosis [192] and intestinal
permeability [193], which is strictly associated with chronic activation of the immune sys-
tem. Polyphenol compounds may exert neuroprotective actions after biotransformation
by specific gut microbiome metabotypes and intestinal mucosa absorption [194], recently
reviewed by Ticinesi et al. [195].

3.1.4. Probiotics and Other Modulators of the Gut–Brain Axis

The intestinal microbiome modulates the risk of many age-related chronic syndromes,
including neurodegenerative diseases [196]. Nutritional strategies to counteract metabolic
challenges are especially relevant for people with HD who suffer from gastrointestinal dys-
function [98]. Preclinical findings in mice (R6/1) suggest that a high fiber (10%) containing
diet reduces pro-inflammatory bacteria in gut microbiota and improves gastrointestinal
function in HD [197]. It also improved cognition and affective behaviors in HD model
mice [197], suggesting a diet high in fiber can correct impaired gut–brain crosstalk in HD.
In addition, probiotics can modify the population of gut microflora and have been shown to
increase some aspects of mucosal and systemic immunity in healthy humans [198]. Yet, in
a recent randomized clinical trial of a 6-week probiotic intervention in 41 patients with HD,
probiotics did not ameliorate gut dysbiosis or clinical features of HD [199]. Importantly,
the modulation of the gut microbiome is a complex process and depends on the resulting
microbial composition, which may have to be further optimized for HD to achieve promis-
ing results as reported for other neurodegenerative diseases [200]. The specific metabolic
abnormalities in HD may require a corresponding microbiome composition to re-establish
a functional gut–brain axis.

3.1.5. Mediterranean Diet

The Mediterranean Diet consists of a high consumption of plant-based foods, legumes,
nuts, whole grains, fish, and olive oil, which is one of the richest sources of monounsatu-
rated fatty acids (MUFAs), and provides nutrients, phenolic compounds, and antioxidants
that benefit brain health [201,202]. The NU-AGE study recently demonstrated that a 1-year
Mediterranean Diet intervention was able to modulate specific components of the gut
microbiota with an increase in short-chain fatty acid (SCFA) production that was associated
with a reduction in risk of frailty, improved cognitive function, and reduced inflammatory
status [203]. SCFAs, and particularly butyrate, are generated through the fermentation
of dietary fibers and other components (such as nitric oxide, ammonia, and ethanol) by
gut bacteria and exert a wide range of metabolic functions [204], but also influence neu-
ral activity and brain function [205,206]. Consuming a Mediterranean Diet rich in fibers,
MUFAs, and PUFAs with a high polyphenol content is associated with an increase in
beneficial microbial species, such as Lactobacillus, Bifidobacterium, F. prausnitzii, Lachnospira,
and Prevotella, while reducing levels of Firmicutes, Ruminococcus, and Escherichia coli [207].

Despite the wealth of evidence demonstrating a protective role of the Mediterranean
Diet in neurodegeneration, only a few studies have investigated the effect of the Mediter-
ranean Diet on HD. Overall, the evidence suggests an improvement in the cognitive and
motor scores and a better quality of life in people with HD who report high Mediterranean
Diet adherence [208]. Moreover, a higher consumption of milk and dairy products and
caffeine consumption greater than 190 mg/day seem to be associated with an earlier age
of onset. Regarding milk/dairy product consumption this association is based on self-
reported data from an early study, the authors of which doubt any biological relevance [209].
The European Huntington Disease Network (EHDN) Registry study demonstrated that
moderate-to-high Mediterranean Diet adherence, characterized by a higher intake of MU-
FAs/saturated fatty acids, was associated with improvements in total functional capacity
and cognitive scores compared to low Mediterranean Diet adherence [210]. Possible mecha-
nisms linking the Mediterranean Diet to gut microbiome and HD progression may involve
the capacity of the Mediterranean Diet to stimulate the synthesis of SCFAs and to reduce in-
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flammation and gut permeability, as well as the capacity to transform dietary (poly)phenols
into bioactive compounds, such as urolithin, genistein, or resveratrol, released after intesti-
nal biotransformation [211].

Overall, dietary strategies can improve inter-tissue communication in HD by regulat-
ing the gut–brain axis, redox-homeostasis, and inflammation. They can also be applied to
modulate glucose levels and reduce unintentional weight loss. Importantly, the causalities
between dietary choices, body composition, gut microbiome composition, BMI, appetite,
and HD-related motor and non-motor symptoms are poorly understood. Strict dietary
regimes can be risky for people with HD, and body weight changes and symptoms have to
be closely monitored. Thus, while generally promising, more research on the outcomes of
specific dietary interventions and/or strategies to modulate the gut–brain axis in HD, and
personalized, stringently monitored approaches are required. A better understanding of
particularly the dysregulation of insulin and glucose metabolism and of appetite-related
hormones (such as ghrelin and leptin)—as well as of the translational validity of these
factors from animal studies—in HD are crucial for the design of optimized diets for people
with HD.

3.2. Exercise

Exercise exerts well-established benefits on the brain [212] and the muscle–brain axis
and myokines appear to be strongly involved for example in the regulation of cognition,
as recently summarized for pre-clinical findings [3]. Accordingly, some studies also sug-
gest improvements in cognitive function in HD. A recent study found amelioration of
motor learning even after one aerobic exercise bout (20 min moderate intensity cycling)
in presymptomatic and early-manifest HD [213]. On the other hand, a recent systematic
review did not find pronounced effects of physical exercise on cognition in HD, while
cognitive exercise was more efficient [214].

The therapeutic value of exercise in HD has been investigated in both experimental
model systems and human subjects [215]. In the latter, exercise programs are often embed-
ded within multi-modal therapies that might include occupational therapy, speech therapy,
cognitive training, and respiratory exercises on-site under trained supervision, and/or
home-based exercise performed independently but with general guidance provided [215].
Systematic reviews and meta-analyses aiming to evaluate the efficacy of exercise in its differ-
ent forms and under these varied settings largely support benefits for HD but recommend
larger controlled trials to further establish efficacy [214,216–218]. Given the multi-modal
structures of therapy in many trials, it remains challenging to attribute any durable clin-
ical response to exercise itself as a stand-alone therapy, or to the other therapies being
performed concurrently. Therefore, in this chapter, we will summarize some published
exercise interventions with promising findings. However, before that, it is important to
discuss the caveats of exercise in HD, considering metabolic and peripheral aspects of
the disease.

3.2.1. Risks and Safety of Exercise Interventions for HD

While exercise, alone or as part of multi-modal therapy, has been reported to offer
some clinically meaningful benefits on motor functions as well as on the overall quality
of life in smaller cohorts of HD [214,216–218], exercise interventions in HD need to be
carefully designed, considering individual capacities and limitations [219,220].

In the N171-82Q mouse model of HD, voluntary wheel running was used to examine
whether aerobic exercise activity could mitigate HD features [221]. Wheel running began
before the appearance of overt HD symptoms, enabling the evaluation of whether aerobic
exercise could delay the onset of HD or reduce the disease burden [221]. Interestingly, aero-
bic exercise appeared to accelerate the onset of HD [221]. This was evidenced first by HD
symptoms appearing significantly earlier in runners compared to sedentary controls [221].
Runners also had the most pronounced locomotor deficits and, significantly, lower striatal
volume compared with sedentary HD mice, but this did not affect lifespan [221]. The
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authors suggested the observed HD deficits may relate to unknown factors released into
the circulation due to a metabolically compromised HD system unable to cope with the
energetic demands of exercise [221]. In practical terms, these observations imply the need
for appropriate management of exercise in HD, and to comprehend those conditions in HD
individuals where exercise is contraindicated.

Corrochano et al. similarly suggested that exercise may be contraindicated in HD un-
der some conditions [222]. Using different mouse models of HD and HD-related pathology,
they proposed that interventions such as aerobic exercise, which impose high energy de-
mands, may be detrimental in HD due to significant energetic stress already present in HD
skeletal muscle [222]. Imposing additional metabolic stress in already compromised mouse
muscle then contributes to systemic abnormalities that worsen HD disease burden [222].
This framework was based on two sets of experiments. In the first, an unbiased genetic
screen was performed in an HD mouse model (based on N171–82Q mice) to identify disease
modifiers of HD [222]. The screen identified a mutation in Scn4a, a voltage-gated sodium
channel enriched in skeletal muscle [222]. This mutation enhanced the HD phenotype
including earlier onset of tremors and reduced survival [222]. Intermittent paralysis was a
new trait attributed to the Scn4a mutation independently of the HD transgene [222]. Further,
these HD mice carrying the Scn4a mutation had lower body weight, increased whole-body
energy expenditure, and loss of lean and fat mass consistent with cachexia [222]. Phenotyp-
ing of skeletal muscles showed these mice had a metabolic profile similar to that induced by
aerobic exercise training, despite the worsening of the disease [222], suggesting a potential
link between exercise-induced energy stress in muscle and HD pathology. To examine this
further, when HD mice were subjected to forced training using the rotarod 30 min/day for
5 days/week plus voluntary running in the home cage, HD mice had greater lean mass loss
and shorter survival compared with sedentary HD counterparts [222]. Overall, the authors
concluded that energetically demanding physical activity could be detrimental in HD due
to metabolic deficits in peripheral tissues such as skeletal muscle [222]. More broadly, it
suggests that careful consideration may need to be given to the heterogeneous nature of HD
in relation to exercise, particularly the metabolic state of peripheral tissues such as skeletal
muscle before undertaking exercise. Regarding the modulation of inter-organ crosstalk,
these findings may indicate the continuous release of molecular messengers from HD
muscle, interfering with the signaling efficiency achieved by the regulated peaks of such a
release during exercise in healthy muscle. This would be consistent with increased circulat-
ing muscle injury markers in the blood of different HD mouse models (see Table 2, [73]).
Circulating markers for neuronal damage, such as neurofilament light protein, are also
higher in people with HD (for review see [11]) and interestingly, serum neurofilament light
protein could be reduced by exercise in other diseases, such as in multiple sclerosis of the
relapsing-remitting type [223]. This suggests that exercise can re-establish healthy levels of
circulating injury markers, from the brain and maybe from skeletal muscle.

In humans with HD, the discussed findings of increased lactate levels during exercise
and reduced anaerobic threshold (see Table 2, [75]) also indicate reduced exercise toler-
ance in people with HD. In line with these findings, a case report documented evidence
of metabolic myopathy on muscle biopsy in a high-level marathon runner, who was a
presymptomatic HD mutation carrier [224]. With time, exercise intolerance developed and
elevated creatine kinase (consistent with muscle damage and myopathy) and mitochon-
drial abnormalities were detected; all preceding principal HD symptoms [224]. This case
study offered unique insight because it suggested associations between a candidate disease
modifier in habitual vigorous exercise, peripheral traits (skeletal muscle abnormalities), and
subsequent central alterations manifesting as chorea in at-risk HD gene carriers. One inter-
pretation might be that vigorous exercise is not favorable in HD, as suggested by some [225],
such that strenuous endurance exercise for an extended time led to HD-associated metabolic
myopathy in this at-risk individual. Another view is that muscle metabolic dysfunction
occurs early, during presymptomatic HD [224]. If muscle metabolic impairment occurs
before symptomatic HD and reflects exercise intolerance, screening for signs of muscle
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metabolic impairment may aid decision making in HD regarding risks versus benefits of
vigorous exercise. Lastly, the strenuous, high exercise volume performed by this at-risk
HD individual would probably not be used in a therapeutic exercise program. Exercise
programs that tailor volume and intensity to the individual, with regular surveillance and
management of workload, could provide an avenue by which to best maximize benefits
and manage risks of therapeutic exercise in heterogeneous HD.

One common aspect of possible significance in the above-mentioned mouse experi-
ments and the case study is biological sex. In the N171-82Q transgenic mouse model of
HD, adverse outcomes associated with wheel running were reported for males [221]. In
the study by Corrochano et al. [222], focus was placed on male mice in most experiments
because the disease phenotype was most prominent in males. The case report of exercise
intolerance, muscle pain, and metabolic myopathy before detection of chorea also occurred
in a high-risk male [224]. These findings in males suggest that sex may interact with a com-
promised neuromuscular system and other biological variables to influence responsiveness
to exercise in HD.

3.2.2. Standalone Exercise with Clinical Benefits

Discussed below are selected studies that investigated standalone exercise therapy in
HD and thus provide the most insight into the isolated impact of exercise. A pair of studies
by the same group examined the impact of 6 months of aerobic training in male people
with HD and healthy male controls [226,227], while another examined combined aerobic
and resistance exercise training [228]. Appropriate recovery periods were interspersed
between thoughtfully designed, progressive training programs, which were consistent with
recommended practices and principles of exercise adaptation [229,230].

In the first study of aerobic training, outcomes included cognitive and motor function
and cardiovascular performance [226]. The intervention was progressive with respect to
workload and consisted of the following design: 3 blocks that lasted 10, 8, and 6 weeks
each. In the first block, participants performed cycling exercise 3× per week at 65% of
VO2peak for 30 min. This block was designed for moderate-intensity exercise of extended
duration to build a strong aerobic base that could accommodate greater strain in later
blocks. In the second block, high-intensity interval training (HIIT) was performed 3×
per week; the HIIT comprised 4 × 4 min of cycling at a power output corresponding to
~95% maximum heart rate. This type of exercise elicits high cardiovascular and muscular
strain in a short period and can produce adaptations typically associated with longer-
term endurance training [231,232]. In the last block, 2 HIIT sessions and 1 fixed-intensity
cycling session were performed. Each block was separated by 1 week of recovery, where
the workload was reduced to permit restoration while also maintaining an elevated level
of activity (i.e., active recovery). Training stabilized motor function in HD patients, as
evidenced by deficits measured in the UHDRS at the start of training but did not improve
baseline values [226]. HD patients also increased their maximal aerobic capacity to a
similar degree as healthy controls, and no adverse events were reported [226]. Together
these findings suggest HD status is not a barrier to achieving positive adaptations with
appropriately designed endurance-type exercise. In addition, the training program might
have slowed down disease progression, although no clinical improvements compared to
baseline were achieved.

In the second study of aerobic training by this group, muscle biopsies were collected
and analyzed to evaluate mechanisms of skeletal muscle adaptation to aerobic training
in HD [227]. The same endurance training program as described above [226] was imple-
mented in male HD patients. Assessed were mitochondrial enzyme activity, and in situ
respiratory capacities and fiber capillarity. Endurance training significantly increased the
activities of citrate synthase, complex II, and complex III to a similar extent in both HD and
controls [227]. Of note, the activity of complex I, a principal site of electron input into the
respiratory chain, was decreased at the start of training versus 6 weeks prior [227], reflect-
ing an HD-associated impairment of muscle mitochondrial function. No further deficits
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occurred, however, as a result of the training [227], suggesting that aerobic training slows
progressive HD-related declines in oxidative metabolism. In agreement with improved
mitochondrial enzyme activity, training enhanced mass-specific oxidative phosphorylation
capacities in fiber bundles of HD patients [227]. Training also improved fiber capillarity
to a similar degree in HD and controls [227]. Collectively, these findings indicate that
mechanisms of muscle energy metabolism respond favorably to endurance training in
HD [227]. Similar degrees of improvement in HD and control muscle [227] might also
suggest no major intrinsic defects in HD muscle that would lead to exercise resistance in
HD. An important factor to weigh these findings against is the lower disease severity of the
cohort, with mean UHDRS motor scores of 18 and a mean total functional capacity score of
11 [227]. Disease severity at the onset of exercise training, therefore, may be an important
determinant of favorable response, with lower disease severity potentially more amenable
to training-induced benefits.

In contrast to aerobic exercise activities described above, the high mechanical overload
characteristic of resistance exercise is relatively less studied as stand-alone therapy [215].
Resistance exercises appear most often within multi-disciplinary programs that also include
aerobic exercise and non-exercise therapy [215,233–235]. In one randomized phase II trial
that excluded non-exercise therapy, 12 weeks of combined aerobic and resistance training
was examined [228]. Of the 31 participants (50.4 ± 11.4 years, 15 females), 16 (UHDRS total
motor score 32.4 ± 15.5) were randomly assigned to the exercise condition. One of the
3 weekly sessions took place under the supervision of an exercise physiologist or physical
therapist while the remaining were home-based and performed independently. In the
supervised session, aerobic exercise was performed first and consisted of cycling at 55–75%
of the age-predicted maximum heart rate, an intensity corresponding to moderate–high,
for a duration beginning with 20 min and progressing up to 30 min [228]. After cycling,
resistance exercises were performed in a circuit fashion that targeted knee extensors, knee
flexors, ankle extensors, and latissimus dorsi. Initial loads corresponded to 10 repetitions
maximum, with progression to 2 sets of 8–12 repetitions at 60–70% of the one-repetition
maximum (i.e., a moderate/moderate–high resistance load) [228]. Moderate effect sizes
for the intervention on cognitive function and walking performance were reported [228],
suggesting the benefits of combined aerobic and resistance exercise training in this cohort of
HD. Because the design included both types of exercise, it is difficult to attribute outcomes
to a specific training modality. How different combinations of exercise programming
variables affect clinical outcomes requires systematic, controlled trials to guide exercise
program design for HD groups.

In another report, the impact of a 6-month aerobic training intervention versus an
active stretching control on MRI-determined brain structure was studied in pre-manifest
HD [236]. Participants in the aerobic training group performed 3 sessions per week of
moderate–vigorous walking at 70% of maximum heart rate [236]. Progression was imple-
mented by gradually extending the length of sessions from 15 to 50 min per session during
weeks 1–6, reflecting a goal of 150 total minutes per week in accordance with American
College of Sports Medicine guidelines [236]. Improvement in aerobic capacity was more
pronounced in the aerobic training group compared with active control [236]. While no
clinical differences were found, greater increases in aerobic capacity were associated with
reduced atrophy of the hippocampus, thalamus, pallidum, and cerebellar cortex [236]. This
suggests that exercise programs that efficiently improve aerobic capacity are particularly
neuroprotective. Exercise programming strategies that safely assign workloads sufficient to
maximize aerobic capacity, therefore, might be most beneficial for maintaining the integrity
of brain regions involved in HD pathology.

Overall, complex relationships between metabolic impairments and therapeutic ex-
ercise impact safety and responsiveness to exercise in HD. Configuration of the exercise
stimulus such as type of exercise, intensity, and duration determines outcomes. These
nuances need careful consideration and additional research for the development of appro-
priate programmed exercises to provide durable clinical responses while managing risk.
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Still, the multifaceted benefits of regular exercise are huge (Figure 3), and the creation of
customized exercise interventions can produce immense general benefits [237,238] and
very relevant advantages in HD.
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4. Conclusions

It is likely that brain pathology and peripheral symptoms influence each other in HD
and modulate disease progression. Therefore, strategies that ameliorate either central or
peripheral deficits are thought to benefit HD [30]. In particular, the re-establishment of
healthy (metabolic) communication between the brain and other organs may be promising.
This is difficult to achieve by pharmacological interventions but both exercise and dietary
strategies can improve inter-tissue communication, as discussed in the present review.

However, specific abnormalities in people with HD demand caution in the prescription
of diet and exercise. The modulation of gut–brain interaction, e.g., by targeting the composi-
tion and function of the microbiome is a promising, emerging research field—however, the
low number of available longitudinal studies and limited knowledge on the translational
validity of animal studies presently are major barriers [93].

Exercise is a potent strategy to prevent many chronic diseases and to improve inter-
organ signaling, in particular of the muscle–brain axis [239]. Appropriate, personalized
programs likely are also highly beneficial in HD; however, disease-related limitations in
exercise tolerance and metabolic deficits need to be considered.

It will be an important future endeavor to investigate the translational validity of
animal experimentation for people with HD. Specifically, intermittent fasting approaches
that showed promise in murine HD models may not be appropriate in humans with HD,
especially if the HD models—unlike humans with HD—are associated with increased body
weight [156,157]. Also, the detrimental outcomes of exercise in HD mouse models do not
seem to correspond with the results of (customized) exercise programs in people with
HD [221,222].
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Taken together, dysregulated brain–periphery communication is likely a cause or con-
sequence of HD-related disease processes that lead to pathology, also outside of the central
nervous system. Re-establishment of efficient inter-organ communication therefore may
either modify disease progression or improve symptoms. The combinations of customized
dietary interventions and/or exercise programs appear to be capable of improving such
whole-organism communication in HD; however, such strategies require careful design
and monitoring.
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