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Abstract: This study investigated the association between apolipoprotein E (APOE) gene polymor-
phisms (rs429358 and rs7412) and primary angle-closure glaucoma (PACG) and pseudoexfoliation
glaucoma (PXG) in a Saudi cohort. Genotyping of 437 DNA samples (251 controls, 92 PACG, 94 PXG)
was conducted using PCR-based Sanger sequencing. The results showed no significant differences
in the allele and genotype frequencies of rs429358 and rs7412 between the PACG/PXG cases and
controls. Haplotype analysis revealed ε3 as predominant, followed by ε4 and ε2 alleles, with no
significant variance in PACG/PXG. However, APOE genotype analysis indicated a significant associ-
ation between ε2-carriers and PACG (odds ratio = 4.82, 95% CI 1.52–15.26, p = 0.007), whereas no
notable association was observed with PXG. Logistic regression confirmed ε2-carriers as a significant
predictor for PACG (p = 0.008), while age emerged as significant for PXG (p < 0.001). These findings
suggest a potential role of ε2-carriers in PACG risk within the Saudi cohort. Further validation and
larger-scale investigations are essential to elucidate the precise role of APOE in PACG pathogenesis
and progression.

Keywords: apolipoprotein E; angle-closure; genetics; glaucoma; polymorphisms; pseudoexfoliation;
rs429358; rs7412; Saudi

1. Introduction

Glaucoma encompasses a spectrum of multifactorial ocular disorders marked by grad-
ual deterioration of retinal ganglion cells (RGCs), optic nerve damage, and visual field
impairment, often culminating in irreversible blindness if left untreated [1]. Among the
subtypes of glaucoma, primary angle-closure glaucoma (PACG) and pseudoexfoliation
glaucoma (PXG) exhibit distinct etiologies and clinical presentations [2,3]. PACG is char-
acterized by the narrowing or closure of the drainage angle in the eye, often due to a
shallow anterior chamber or a forward-positioned lens. This closure leads to increased
intraocular pressure (IOP) and consequent optic nerve impairment [2]. On the other hand,
PXG represents a form of secondary open-angle glaucoma, marked by the deposition of
pseudoexfoliation material within various ocular tissues, such as the lens capsule, trabecu-
lar meshwork, and iris. This material obstructs aqueous drainage from the eye, resulting
in increased IOP and optic nerve damage [3]. PACG and PXG significantly contribute to
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visual impairment and blindness globally, highlighting the importance of early detection
and timely intervention to preserve vision and enhance patients’ quality of life [4].

Substantial evidence indicates a genetic predisposition to glaucoma, including PACG
and PXG [5,6]. Given glaucoma’s complex and heterogeneous nature, elucidating the
genetic factors contributing to PACG and PXG holds significant promise for advancing our
understanding of their pathogenesis. This understanding is crucial not only for unraveling
the pathogenesis but also for identifying early diagnostic markers, therapeutic interventions,
and personalized management strategies [5–7].

Apolipoprotein E (APOE), a polymorphic gene located on chromosome 19q13.2, en-
codes a protein crucial for lipid metabolism and transport within the central nervous system
and various ocular tissues [8,9]. APOE has also been detected in the pseudoexfoliative
material [10]. Two common polymorphisms, rs429358 (T>C) at codon 112 and rs7412 (C>T)
at codon 158, in the APOE gene give rise to three predominant APOE alleles in humans:
ε2, ε3, and ε4. Each isoform differs subtly in amino acid composition at positions 112
and 158, resulting in distinct functional properties and disease-risk profiles [11]. APOE ε3,
the most prevalent isoform in approximately 77% of the population, features a cysteine
at position 112 and an arginine at position 158, and is considered neutral. In contrast,
APOE ε4, characterized by arginine at both positions, is reported to increase the risk of
atherosclerosis [12], Alzheimer’s disease, and other neurodegenerative conditions [13,14].
On the other hand, APOE ε2, with cysteine residues at both critical positions, is linked to a
lower risk of Alzheimer’s but a heightened risk of type III hyperlipoproteinemia [15] and
age-related macular degeneration [16,17].

Additionally, rare variants like APOE3-R136S (APOE3-Christchurch), APOE3-V236E
(APOE3-Jacksonville), and APOE4-R251G [18–20] are thought to protect against Alzheimer’s
disease. Beyond this, the APOE gene has garnered considerable attention in the field of
neurodegenerative diseases, including those implicated in glaucomatous optic neuropa-
thy [16,21–23]. Investigations exploring the association between the two common APOE
polymorphisms and glaucoma susceptibility have yielded conflicting findings across dif-
ferent populations, including Saudi Arabia [24–28]. However, the precise role of APOE
variants in PACG and PXG pathogenesis still needs to be elucidated, particularly within
ethnically diverse populations such as those of the Saudi Arabian Peninsula.

Saudi Arabia, characterized by a high prevalence of consanguineous marriages and
a distinctive genetic profile, offers a valuable setting for genetic studies on complex dis-
eases such as glaucoma [29]. Investigating the APOE genotype distribution and its cor-
relation with PACG and PXG in this population could provide crucial insights into the
genetic determinants of these conditions, potentially uncovering novel biomarkers and
therapeutic targets.

Based on this background, the present study aims to explore the genetic association of
APOE polymorphisms (rs429358 and rs7412) in a PACG and PXG cohort of Saudi origin.
Through genotyping analysis of these polymorphisms in PACG and PXG patients and
ethnically matched controls, we seek to unravel potential associations between APOE
genetic variants and glaucoma subtypes within this population.

2. Results
2.1. Demographic Characteristics of Study Cohort

The demographic characteristics of the patient and control groups are illustrated
in Figure 1. The mean ages of the study cohort were 59.7 (±7.0) years for the controls,
60.8 (±8.7) years for the PACG patients, and 68.8 (±7.7) years for the PXG patients. In the
control group, there were 136 (54%) males and 115 (46%) females, while in the PACG group,
there were 44 (48%) males and 48 (52%) females. Among the PXG patients, 60 (64%) were
males and 34 (36%) were females. Age and gender distributions did not significantly differ
between the PACG patients and controls. However, the PXG patients were significantly
older than the controls (p < 0.001), with no significant difference in gender distribution.
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Figure 1. Demographic data of study cohort.

2.2. Association Analysis of rs429358 and rs7412 in the APOE Gene

We analyzed individual polymorphisms rs429358 and rs7412 in the APOE gene to
determine their association with PACG and PXG. The polymorphisms showed no signif-
icant deviation from the Hardy–Weinberg equilibrium [30] (Table 1). The minor allele
frequencies (MAF) of rs429358 and rs7412 were 0.10 and 0.03 in the controls, 0.11 and 0.05
in PACG, and 0.06 and 0.04 in PXG, respectively. There was no significant difference in
MAF distribution between PACG and PXG compared to the controls (Table 1).

Table 1. Minor allele frequency distribution of APOE polymorphisms.

SNP ID rs429358 rs7412

Type Minor
Allele MAF OR (95% CI) p HWE p Minor

Allele MAF OR (95% CI) p HWE p

Controls C 0.10 Reference - 0.710 T 0.03 Reference - 0.170
PACG C 0.11 1.21 (0.70–2.1) 0.475 0.086 T 0.05 1.79 (0.76–4.21) 0.175 0.190
PXG C 0.06 0.65 (0.33–1.24) 0.187 1.000 T 0.04 1.34 (0.53–3.40) 0.527 0.110

MAF—minor allele frequency, OR—odds ratio, 95% CI—95% confidence interval, HWE—Hardy–Weinberg
Equilibrium, C—cytosine, T—thymine.

Genotype associations of APOE polymorphisms with PACG and PXG were examined
using different genetic models. However, none of the polymorphisms showed significant
associations (Tables S1 and S2). While rs429358 exhibited a moderately significant asso-
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ciation with PACG in the recessive model (p = 0.044), this significance did not survive
Bonferroni’s correction for multiple testing (0.05/2 = 0.025). Furthermore, this association
lost significance after adjusting for age and gender (p = 0.063) (Table S1).

2.3. APOE Haplotype Association with PACG and PXG

The haplotypes of the investigated polymorphisms in the APOE gene correspond to
different APOE alleles (ε3, ε2, ε4) and genotypes (ε3/ε3, ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε4, ε4/ε4).
These genotypes were identified depending on the presence of T>C and C>T nucleotides at
rs429358 and rs7412, respectively. The representative sequencing results of the identified
APOE genotypes are presented in Figure 2.
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Figure 2. Representative sequencing results of APOE genotypes. The genotype calling was based on
rs429358 (T>C) and rs7412 (C>T) polymorphisms. The circled nucleotide indicates the position of the
nucleotide change compared to the reference sequence. Homozygous ε3/ε3 shows T/T and C/C,
ε2/ε2 has T/T and T/T, ε4/ε4 has C/C and C/C, at the circled positions for rs429358 and rs7412,
respectively. Likewise, heterozygous ε2/ε3 shows T/T and C/T, ε3/ε4 has T/C and C/C, ε2/ε4 has
T/C and C/T, at the circled positions for rs429358 and rs7412, respectively.

This study explored the haplotype association of APOE alleles and genotypes with
PACG and PXG, as summarized in Tables 2 and 3. In the controls, APOE ε3 was the most
common allele with a frequency of 87.6%, followed by ε4 (9.6%) and ε2 (2.8%). Similar
trends were observed in the PACG and PXG patients. None of the allele distributions were
significantly associated with PACG and PXG (Tables 2 and 3). However, the distribution
of the six different APOE genotypes was significant in PACG (Pearson chi-square = 16.36,
df = 5, p = 0.006). The ε2/ε3 heterozygotes were found to increase the risk of PACG by
over 5-fold, which was statistically significant (p = 0.009). Additionally, ε2-carriers had a
significant 4.8-fold increased risk of PACG (p = 0.007) (Table 2). No significant associations
were observed in the PXG patient group (Table 3).
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Table 2. Haplotype analysis of APOE polymorphisms according to APOE alleles and genotypes in
primary angle-closure glaucoma (PACG).

APOE Controls
n (%)

PACG
n (%) OR (95% CI) p

Alleles

ε3 440 (87.6) 154 (83.7) 1.00 -
ε2 14 (2.8) 9 (4.9) 1.83 (0.78–4.32) 0.225
ε4 48 (9.6) 21 (11.4) 1.25 (0.72–2.15) 0.470

Genotypes a

ε3/ε3 199 (79.3) 66 (71.7) 1.00 -
ε2/ε2 1 (0.4) 1 (1.1) 3.01 (0.18–48.89) 0.999
ε2/ε3 4 (1.6) 7 (7.6) 5.27 (1.49–18.60) 0.009
ε2/ε4 8 (3.2) 0 (0) - 0.205
ε3/ε4 38 (15.1) 15 (16.3) 1.19 (0.61–2.30) 0.730
ε4/ε4 1 (0.4) 3 (3.2) 9.04 (0.92–88.45) 0.053
ε3/ε3 vs. All 52 (20.7) 26 (28.2) 1.50 (0.87–2.60) 0.147

Carrier b

ε3/ε3 199 (81.9) 66 (71.7) 1.00 -
ε*2 c 5 (2.0) 8 (8.7) 4.82 (1.52–15.26) 0.007
ε*4 d 39 (16.0) 18 (19.5) 1.39 (0.74–2.60) 0.320

OR—odds ratio, 95% CI—95% confidence interval. a Overall Pearson chi-square = 16.36, df = 5, p = 0.006. b ε2/ε4
were excluded from either ε*2 or ε*4 group. c Includes ε2/ε2 and ε2/ε3. d Includes ε4/ε4 and ε3/ε4.

Table 3. Haplotype analysis of APOE polymorphisms according to APOE alleles and genotypes in
pseudoexfoliation glaucoma (PXG).

APOE Controls
n (%)

PXG
n (%) OR (95% CI) p

Alleles

ε3 440 (87.6) 169 (89.9) 1.00 -
ε2 14 (2.8) 7 (3.7) 1.30 (0.51–3.28) 0.557
ε4 48 (9.6) 12 (6.4) 0.65 (0.33–1.25) 0.197

Genotypes a

ε3/ε3 199 (79.3) 77 (81.9) 1.00 -
ε2/ε2 1 (0.4) 1 (1.1) 2.58 (0.16–41.8) 0.999
ε2/ε3 4 (1.6) 4 (4.2) 2.80 (0.63–10.60) 0.230
ε2/ε4 8 (3.2) 1 (1.1) 0.32 (0.04–2.62) 0.452
ε3/ε4 38 (15.1) 11 (11.7) 0.75 (0.36–1.53) 0.488
ε4/ε4 1 (0.4) 0 (0) - 0.999
ε3/ε3 vs. All 52 (20.7) 17 (18.0) 0.85 (0.46–1.55) 0.583

Carrier b

ε3/ε3 199 (81.9) 77 (82.8) 1.00 -
ε*2 c 5 (2.0) 5 (5.4) 2.58 (0.72–9.17) 0.156
ε*4 d 39 (16.0) 11 (11.8) 0.72 (0.35–1.49) 0.489

OR—odds ratio, 95% CI—95% confidence interval. a Overall Pearson chi-square = 4.80, df = 5, p = 0.441. b ε2/ε4
were excluded from either ε*2 or ε*4 carrier group. c Includes ε2/ε2 and ε2/ε3. d Includes ε4/ε4 and ε3/ε4.

2.4. Logistic Regression Analysis of Risk Factors on Glaucoma Outcome

We further investigated the effects of risk factors such as age, gender, and APOE
genotypes (ε3/ε3, ε2-, ε4-carriers) on the outcome of glaucoma (PACG and PXG) using
logistic regression analysis. The analysis revealed statistically significant effects of APOE
genotypes (p = 0.024) and ε2-carriers (p = 0.008) in the PACG patients. In the PXG patients,
age emerged as a significant predictor (p < 0.001), with no significant effect observed
for APOE genotypes (Table 4). When examining individual APOE variants (rs429358
and rs7412), age, and gender in relation to the risk of developing PACG or PXG, none
of these variables showed a significant impact, except for age in the PXG patient group
(p < 0.001). The effects of polymorphism were assessed using both co-dominant and
dominant models (Table S3).
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Table 4. Binary logistic regression analysis of APOE genotypes effect in PACG and PXG.

Group
Variables B a SE Wald OR (95% CI) p

PACG

Age 0.023 0.017 1.812 1.02 (0.99–1.05) 0.178
Sex −0.285 0.250 1.292 0.75 (0.46–1.23) 0.256
APOE genotypes 7.487 0.024
ε2-carriers b 1.556 0.590 6.953 4.74 (1.49–15.06) 0.008
ε4-carriers c 0.324 0.320 1.023 1.38 (0.74–2.59) 0.312

PXG

Age 0.163 0.021 61.389 1.18 (1.130–1.22) 0.000
Sex 0.202 0.294 0.475 1.22 (0.69–2.17) 0.490
APOE genotypes 1.342 0.511
ε2-carriers b 0.388 0.778 0.249 1.47 (0.32–6.77) 0.618
ε4-carriers c −0.438 0.436 1.010 0.64 (0.27–1.51) 0.315

OR—odds ratio, 95% CI—95% confidence interval. a B is the estimated coefficient, with standard error, SE.
b Without ε4. c Without ε2.

2.5. Association between APOE Genotypes and Clinical Parameters of Glaucoma

This study examined whether APOE genotypes correlate with clinical parameters of
glaucoma, such as IOP and cup/disc ratio in both the PACG and PXG patients. However,
no significant effects of APOE genotypes (ε3/ε3, ε2-, ε4-carriers) on IOP or cup/disc
ratio were observed (Figure 3). Similarly, individual analysis of APOE polymorphisms
(rs429358 and rs7412) did not show any significant association with IOP or cup/disc ratio
(Figures S1 and S2).
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3. Discussion

The genetic variants of APOE (ε2, ε3, and ε4) are associated with the risk of developing
several human diseases [31]. Understanding the function and impact of APOE in human
health and disease remains a significant focus of research in neurology, cardiology, and
ophthalmology [31,32]. The precise influence of genetic factors and polymorphisms in the
complex polygenic nature of glaucoma among patients of Saudi Arabian descent remains
poorly understood. Herein, we present findings indicating a positive association between
the APOE ε2-carriers and PACG, but no association in PXG, in a Saudi cohort.

As illustrated in Table 5, the rs429358 and rs7412 polymorphisms in the APOE gene
responsible for a Cys/Arg interchange and their haplotypes give rise to three major allelic
APOE variants ε2, ε3, and ε4 [33]. The frequency distribution of these three major alleles
varies worldwide (Table 6) [34,35]. While studies on non-human primates suggest the
ε4 allele as the ancestral variant [36], modern human populations predominantly exhibit
the ε3 variant, with frequencies ranging from 0.968 in Indians to 0.486 in Papuans [34,35].
The ε4 allele ranks as the second most common, with notably high frequencies observed
among Pygmy populations in Central Africa (0.407), Khoisan populations in Southern
Africa (0.370), Oceanians (including Papuans at 0.368 and Australian Aborigines at 0.260),
and the European Saami people (0.310) [34]. In contrast, the ε2 allele is less common,
ranging from rare to absent in Native Americans, Siberians, and Mongolians, but relatively
more prevalent among Swedish (0.119), sub-Saharan African (0.116), Malay (0.140), and
Papuan (0.145) populations [34,35,37]. Our study similarly reflects this global pattern,
showing APOE ε3 as the most common allele (0.876), followed by ε4 (0.096) and ε2 (0.028).
Generally, allele frequencies can vary significantly across populations due to factors such as
genetic drift, migration, and natural selection [34,35,38]. Notably, our investigation found
no association between the allele frequencies of rs429358, rs7412, and APOE haplotype (ε2,
ε3, and ε4) and PACG/PXG compared to the controls.

Table 5. Haplotypes associated with APOE allele and their frequency distribution in
different populations.

APOE Alleles ε3 ε2 ε4

Haplotype rs429358-T
rs7412-C

rs429358-T
rs7412-T

rs429358-C
rs7412-C

Residue combination 112-Cys
158-Arg

112-Cys
158-Cys

112-Arg
158-Arg

Ethnicity Allele frequency a

Europeans 0.640–0.900 0.044–0.120 0.052–0.310
Asians 0.620–0.870 0.020–0.140 0.071–0.240
Africans 0.536–0.850 0.031–0.116 0.085–0.407
Native Americans 0.720–0.911 0.0–0.014 0.089–0.280
Oceanians 0.486–0.740 0.0–0.145 0.260–0.368
Our study (Saudi Arabians) b 0.876 0.028 0.096

a Data from references [34,35]; b data from our controls.

Table 6. Primer used for PCR amplification and Sanger sequencing of APOE genotypes.

Primer Type APOE Primer Sequences (5′–3′) Thermal Cycling Conditions

Forward a GACCATGAAGGAGTTGAAGGCCTAC
Initial denaturation—95 ◦C
for 15 min
Cycling—95 ◦C—1 min,
59 ◦C—30 s, 72 ◦C—1 min
for 35 cycles
Final extension—72 ◦C—10 min

Reverse b GATGGCGCTGAGGCCGCGCT

a TGTAAAACGACGGCCAGT and b CAGGAAACAGCTATGACC M13 sequences were tagged at the 5′ end of
the PCR primers and used for Sanger sequencing as described in Methods.
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The statistical evidence supporting a causal association between APOE variants and
glaucoma remains less robust. Numerous studies with inconsistent findings have explored
the association between APOE alleles/genotypes and adult-onset primary open-angle
glaucoma (POAG) in different populations. In Japanese OAG patients, the ε3 allele in-
creased OAG risk, the ε2 allele reduced risk, and the ε4 allele was linked to lower IOP [39].
Conversely, a smaller study in Saudi-origin POAG patients found a significant associ-
ation with the ε4 allele [27], but our own study in a larger Saudi cohort contradicted
this [28]. In Massachusetts and Canadian studies, the ε4 allele showed protective effects
in POAG [24,40]. By contrast, in Brazilian POAG cases, the ε2 allele was associated with
increased risk [41], while the ε4 allele was linked to neuroretinal thinning in normal-tension
glaucoma (NTG) [42]. Conflicting results persist across diverse ethnic groups, including Eu-
ropean [43], Chinese [44], Japanese [45], Turkish [46], and in meta-analyses [25,47] reflecting
population-specific differences.

On the other hand, few studies have explored the association of APOE with PACG
and PXG. A study in Saudi PACG patients found no association with APOE alleles and
genotypes [27], and similar results were reported in large cohorts of German and Italian
PXG patients [48]. Another study in Greek patients reported no APOE association in
pseudoexfoliation syndrome (PXS)/PXG but found an increased risk of POAG in APOE
ε2-carriers [49]. In a Turkish cohort, APOE ε2-carriers were at significantly increased risk of
PXS [50]. However, this finding was not replicated in another Turkish study [51]. A recent
Finnish study found that the APOE ε4 allele protects against POAG and NTG but not
against PXG [32].

In our Saudi cohort, APOE ε2-carriers were found to be at significantly increased risk
of PACG. However, similar to our earlier findings in a POAG cohort [28], no association
of APOE variants was observed in PXG. A previous study has shown that ε2-carriers had
significantly lower IOP than non-ε2-carriers in PXS patients [52]. While ε2-carriers in our
study exhibited notably lower cup/disc ratios compared to ε3/ε3 and ε4-carriers in the
PXG patients, however, no significant associations were found between APOE genotypes
and clinical markers, such as IOP and cup/disc ratio, in the PACG and PXG patients. These
observations support the hypothesis proposed by previous studies that APOE may be
involved in modulating RGC degeneration via an IOP-independent mechanism(s) [24,32,53].

There are several mechanisms through which APOE could potentially play a role in
the pathogenesis of glaucoma. APOE is produced by astrocytes, neurons, retinal Müller
cells, and macrophages [9,54], and variations in the binding properties of APOE isoforms
across different cell types can have significant functional consequences at both the cellular
and molecular levels [55]. Different APOE isoforms have been demonstrated to confer
differing levels of risk associated with glaucoma. Animal experiments suggest that APOE
gene deletion (APOE−/−) and the ε4 isoform may reduce the risk of RGC loss in glaucoma
by inhibiting kainic acid receptor signaling, modulating microglial activation, and reducing
galectin-3 expression [21,24]. Conversely, the presence of the ε3 isoform and overall APOE
gene expression (APOE+/+) may increase the risk of RGC death in glaucoma by promoting
microglial phenotypic changes and upregulating galectin-3 [22]. However, definitive
evidence regarding the beneficial or detrimental impact of the ε2 allele in glaucoma is
lacking in the current literature. Nonetheless, ε2 is reported to be associated with the highest
APOE protein levels [56]. Therefore, it can be speculated that ε2 allele might increase the
risk of PACG, as observed in our study, through any of the aforementioned mechanisms.

Moreover, the involvement of APOE in lipid metabolism, complement system regu-
lation, neuroinflammation, blood–brain barrier integrity, oxidative stress, mitochondrial
function, and angiogenesis contributing to Alzheimer’s or age-related macular degenera-
tion pathogenesis [13,16,31] suggests multifaceted mechanisms through which APOE may
contribute to the pathogenesis of PACG. Interestingly, new findings have revealed a role
for APOE in regulating microRNA-controlled cellular signaling in cells of the immune
system and vascular wall, suggesting a role of APOE in intercellular communication [57].
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The presence of a similar mechanism in PACG cannot be ruled out. However, whether
APOE genotypes influence these functions remains to be investigated.

Overall, the association of the APOE ε2 genotype with PACG requires a comprehensive
understanding of the potential biological mechanisms related to aqueous humor dynamics,
vascular factors, genetic interactions, comparative analysis with other ocular diseases, and
consideration of population-specific factors. Further research into these aspects is essential
for elucidating the role of APOE in PACG and its potential clinical implications. By contrast,
the absence of this association in PXG may be attributed to differences in the underlying
disease pathophysiology, genetic heterogeneity, environmental influences, or limitations in
sample size and statistical power.

To conclude, our results show, for the first time, a positive association of APOE
ε2-carriers in PACG, indicating the potential implication of ε2 in elevating the risk of PACG
within the Saudi cohort. This observation suggests a possible role for APOE genetic variants
in the pathogenesis of PACG, adding to our understanding of the genetic underpinnings
of this complex ocular disorder among individuals of Saudi Arabian ancestry. However,
the results require a cautious interpretation since this study is limited by sample size,
especially in the subgroup analysis. Therefore, further validation incorporating larger
population-based cohorts and molecular and functional studies are warranted to elucidate
the underlying mechanisms and factors contributing to these observed associations.

4. Materials and Methods
4.1. Study Design, Ethics Approval, and Participant Characteristics

We conducted a retrospective and exploratory case-control study, sanctioned by the
Institutional Review Board Ethics Committee at the College of Medicine of King Saud
University as per the principles of the Declaration of Helsinki guidelines for human research.
Participants were recruited at King Abdulaziz University Hospital in Riyadh, Saudi Arabia,
as described elsewhere [58].

Briefly, PACG patients (n = 92) exhibited clinical signs of anatomically closed angles,
elevated intraocular pressure (IOP) (≥21 mmHg), optic disc damage with a cup/disc ratio
of at least 0.7, and visual field defects. PXG patients (n = 94) demonstrated the presence
of exfoliation material along the pupil margins or anterior lens capsule, glaucomatous
optic nerve damage, and elevated IOP. Exclusion criteria encompassed secondary glau-
coma types, optic neuropathies not associated with glaucoma, corticosteroid use, ocular
trauma, inadequate fundus visualization, or refusal to participate. Healthy age- and
gender- matched controls (n = 251), aged ≥ 40 years, exhibited normal IOP, open angles on
gonioscopy, healthy optic discs, and lacked a family history of glaucoma.

4.2. Genotyping rs429358 and rs7412 Polymorphisms in the APOE Gene

Peripheral EDTA blood samples were utilized for DNA extraction, followed by PCR
amplification and Sanger sequencing to identify the rs429358 (T>C) and rs7412 (C>T)
variants of the APOE gene, as previously described [28]. The primers used for PCR amplifi-
cation, Sanger sequencing, and the cycling conditions are outlined in Table 6. In brief, DNA
samples were PCR amplified, followed by purification using the QIAquick PCR Purification
Kit (Qiagen, Hilden, Germany) and sequencing with M13 primers using the BigDye Termi-
nator V3.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA, USA). Subsequently,
sequencing analysis was performed on the ABI 3730 XL sequencer (Applied Biosystems),
and nucleotide variations and APOE genotypes were determined using CLC Sequence
Viewer 6.0 (Qiagen), in comparison to the APOE reference sequence (NG_007084.2).

4.3. Statistical Analysis

Statistical analyses were performed using SPSS version 25 (IBM Inc., Chicago, IL, USA)
and SNPStats online software version 1.0. A significance threshold of p < 0.05 was applied,
with Bonferroni’s correction for multiple testing (p = 0.05/2 = 0.025) where appropriate.
Data normality was assessed using the Kolmogorov–Smirnov test. Continuous variables
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were analyzed by the Mann–Whitney U test and the Kruskal–Wallis test for two-group
and three-group comparisons, respectively. The categorical variables and deviation from
Hardy–Weinberg equilibrium were assessed using chi-square and Fisher’s exact tests, as
applicable [30]. The impact of multiple factors, including age, sex, and genotypes, on the
disease outcome was evaluated using binary logistic regression analysis.
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