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Abstract: The pathogenesis of carcinoma is believed to come from the combined effect of polygenic
variation, and the initiation and progression of malignant tumors are closely related to the dysreg-
ulation of biological pathways. Quantifying the alteration in pathway activation and identifying
coordinated patterns of pathway dysfunction are the imperative part of understanding the malig-
nancy process and distinguishing different tumor stages or clinical outcomes of individual patients.
In this study, we have conducted in silico pathway activation analysis using Riemannian manifold
(RiePath) toward pan-cancer personalized characterization, which is the first attempt to apply the
Riemannian manifold theory to measure the extent of pathway dysregulation in individual patient
on the tangent space of the Riemannian manifold. RiePath effectively integrates pathway and gene
expression information, not only generating a relatively low-dimensional and biologically relevant
representation, but also identifying a robust panel of biologically meaningful pathway signatures
as biomarkers. The pan-cancer analysis across 16 cancer types reveals the capability of RiePath to
evaluate pathway activation accurately and identify clinical outcome-related pathways. We believe
that RiePath has the potential to provide new prospects in understanding the molecular mecha-
nisms of complex diseases and may find broader applications in predicting biomarkers for other
intricate diseases.

Keywords: pathway activation; Riemannian manifold; pan-cancer analysis; personalized characterization;
pathway biomarkers

1. Introduction

Carcinoma is driven by multiple factors and the underlying molecular mechanisms of
cancer pathogenesis are complex; it is one of the most lethal diseases in the world. Genome-
wide association studies (GWASs) and next-generation sequencing technologies [1] have
continuously provided insights into the genetics of cancers, and varied single-gene biomark-
ers have been identified to play an important role in the early diagnosis, prognosis, and
efficacy evaluation of cancers [2,3]. Canonically, most widely used methods are dedicated
to finding differentially expressed genes [4,5]. However, the selection process is subjective,
variations among samples are astronomical, and the functional understanding of the patho-
genesis of carcinoma is intractable [6]. Meanwhile, with the heterogeneity of cells in tissues
and the genetic heterogeneity between patients with complex diseases, most anticancer
drugs are only effective in subgroups of patients [7]; it is urgent to develop personalized
cancer treatments [8–10]. Pathway-based individualized analysis can overcome these chal-
lenges by using robust, aggregate features to reveal the molecular mechanisms of complex
diseases [11].

Pathways are a series of biological activities among molecules in cells and are expres-
sive of the biological processes within cells, such as metabolism, signaling, and growth
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cycles, which will lead to some alteration or obtain some products [12]. Misregulation of
activation for several important pathways has been found to be associated with cancer
initiation and progression [13–16], identifying the pathways involved in the occurrence
and progress of cancer and quantifying their dysregulation are the imperative part of
understanding the process of malignancy. With the development of high-throughput tech-
nologies, a large amount of biological data has been generated, which has produced a rich
set of pathway databases [17–21]. Therefore, it is of great significance to use bioinformatics
tools to mine pathways related to the pathogenesis of cancers based on high-throughput
data for the diagnosis and treatment.

Current quantitative pathway-centric measures have been proposed to evaluate the
pathway activation and identify the dysregulated pathways in cancer initiation and pro-
gression. Some works extract critical features from expression values of genes belonging
to pathways [10,22–24]. Some works consider the intrinsic structures of pathways; they
calculate personalized pathway activation scores based on the topological information of
pathways [11,25]. Many of these methods evaluate the pathway deregulation scores based
on the Euclidean space, and although they are constantly improving the classification ability
of diseases, they are still less than satisfactory in some analyses. They use Euclidean space
since it is easy to be implemented and applied in practice. However, if the data samples
do not lie on Euclidean space, the rationality and effectiveness of these methods cannot be
guaranteed, since the differences calculated on the Euclidean space cannot represent the
real geometrical relations among samples.

In order to further improve the classification accuracy, we have firstly developed
a Riemannian manifold-based method, RiePath, to evaluate the pathway deregulation
scores for each patient on the tangent space of the Riemannian manifold. It can not only
convert gene-level expression information to pathway-level deregulation information, so
as to achieve the dimensionality reduction, but also has the potential to identify essential
biological pathways as biomarkers.

We compare RiePath to other feature engineering algorithms; the results show that our
method can not only obtain higher clustering accuracy in the discrimination of normal and
tumor samples and reproducibility, but also effectively capture the potential prognostic-
related pathway biomarkers, which have the functional interpretability to explore the
biological mechanism of carcinoma from a molecular level.

2. Results
2.1. Performance Comparison with Other Feature Engineering Methods

For further comparison, we first build a scheme from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/, accessed on 7 April 2024) Breast invasive carci-
noma (BRCA) cohort to demonstrate the performance of our approach, as well as compare
it with other state-of-the-art feature engineering methods. We first randomly select 50 sam-
ples from disease and normal samples. Then, the pathway activation matrix is calculated by
each feature engineering algorithm according to the RNA-seq data of the randomly selected
samples, where each row represents a pathway and each column represents a sample.
Next, limma R package is used to perform differential expression analysis and select the
top 10 differential expression pathways based on the adjusted p values. Subsequently, we
utilize the hierarchical clustering algorithm to divide the 100 samples into two classes and
compare the clustering results and sample labels through the adjusted rand index (ARI)
evaluation index. The above steps are repeated 50 times in each method.

To demonstrate the discrimination effectiveness of pathway activation calculated
by RiePath, We choose four representative pathway activation measurement algorithms:
CORGs [10], GSVA [26], PLAGE [27], and ssGSEA [28], and the compared methods are
implemented with default parameters.

CORGs defines a subset of genes in a pathway named as condition-responsive genes,
which are considered to play a crucial role in each pathway. For each pathway, the pathway

https://portal.gdc.cancer.gov/
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activity score is evaluated by a combined z-score derived from the expression of condition-
responsive genes.

GSVA is a gene set variation analysis method that calculates the variation in gene set
enrichment over a sample population as the pathway activation. GSVA sorts genes based
on the Kernel estimation of the cumulative density function of genes in the gene set, and
calculates a Kolmogorov–Smirnov-like rank statistic for each gene set.

PLAGE can analyze the dysregulation level of a pathway by estimating the path-
way activity based on the first eigenvector in the singular value decomposition of gene
expression data.

ssGSEA is a single sample gene set enrichment analysis method, and the enrichment
score is computed by the integration of the difference between weighted Empirical Cumu-
lative Distribution Functions (ECDFs) of the genes in the signature and the ECDFs of the
remaining genes.

The hierarchical clustering results measured by ARI index for clustering accuracy
are shown in Figure 1. Higher ARI values means that samples with the same label are
better clustered into one class, which can also prove that the feature engineering method
of calculating the pathway activation can better capture the deviation of patients from the
signature of healthy samples. As expected, the pathway dysregulation scores calculated
by RiePath have more stable and better clustering performance than the other compared
methods, and the pairwise comparison between RiePath and the other four methods using
the t test can prove that the differences are statistically significant.

Figure 1. Hierarchical clustering comparison measured by ARI index.

Then, we compare the reproducibility of RNA-seq data to evaluate the how well
gene-level sample differences are kept at the pathway level [12,29]. The reproducibility
score (RS) is defined as the reciprocal of the weighted average of mean squared error (MSE):

RS =
(N

2 )

∑1≤a,b≤N{Sim(Xa, Xb)− Sim(Aa, Ab)}2 (1)

where X = [X1, . . . , XN ] is the gene expression matrix, A = [A1, . . . , AN ] is the pathway
activation matrix, and Sim denotes the cosine similarity.

The smaller the distance between gene expression and pathway activation values,
the greater the RS value is, which demonstrates that the sample space of the inferred
pathway activation scores approaches that of the original gene expression. This is due to
the fact that pathways only contain a small subset of genes, accounting for approximately
one-third of all genes in the gene expression. After calculating the pathway activation
scores, repeatability characteristics can measure how well the distance between samples
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in terms of pathway activation can maintain the characteristics of the original data (i.e.
all genes). As shown in Table 1, RiePath obtains the highest RS value compared to other
feature engineering methods on each cancer type dataset, which means that our method is
effective in retaining the characteristics of the original transcriptome data.

Table 1. Reproducibility comparison measured based on MSE for the five feature engineering algorithms.

Dataset RiePath CORGs GSVA PLAGE ssGSEA

BLCA 198.78 0.98 1.04 0.98 196.87
BRCA 352.89 0.97 1.05 0.95 252.27
COAD 286.14 0.93 1.01 0.94 281.74
HNSC 263.76 0.95 1.05 0.97 254.19
KICH 389.52 0.83 1.02 0.77 293.59
KIRC 309.68 0.94 1.00 0.96 297.61
KIRP 387.01 0.91 1.01 0.94 316.69
LGG 688.92 0.94 1.00 0.91 635.00
LIHC 227.58 0.86 1.02 0.89 212.01
LUAD 271.53 0.97 1.03 0.95 242.96
LUSC 308.13 0.97 1.02 0.92 262.08

OV 408.63 0.92 1.02 0.94 358.85
PRAD 771.00 0.87 0.97 0.87 620.76
STAD 235.47 0.97 1.03 0.97 231.12
THCA 683.27 0.91 0.96 0.88 621.84
UCEC 220.73 0.98 1.07 0.97 217.65

2.2. The Identification of Dysregulated Pathways

For each pathway, all the tumor samples are firstly divided into two categories, dysreg-
ulated or near-normal samples, based on the mean and standard deviation of the normal
samples’ RiePath scores. If one tumor sample is classified as ‘dysregulated’ on this pathway,
it means that the gene expression level of this tumor sample on this pathway severely
deviates from that of the normal level, and this pathway is classified as ‘dysregulated’ on
this tumor sample correspondingly. Otherwise, the tumor sample is classified as ’near-
normal’ on this pathway and this pathway is classified as ’near-normal’ on this tumor
sample accordingly.

For complex diseases like cancers, several vital pathways are often dysregulated simul-
taneously; the key to consider is how to effectively identify the dysregulated pathways for a
specific tumor sample and whether there are differences among different cancer categories.
Therefore, we comprehensively investigate the Kyoto Encyclopedia of Genes and Genomes
(KEGG, https://www.genome.jp/kegg/, accessed on 7 April 2024) [17] pathways and
Molecular Signatures Database (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb,
accessed on 7 April 2024) [30] Hallmark gene sets. Figure 2A shows the violin plot of
percentage of dysregulated pathways on each sample in KEGG and Hallmark category; for
the 16 tumor types, it can be seen that there are obvious differences. Kidney chromophobe
(KICH) shows the highest proportion of dysregulated pathways, which is 98%. Conversely,
Low-grade gliomas (LGG) shows the lowest proportion (79%). Interestingly, the percent-
ages of dysregulated samples on each pathway in the KEGG and Hallmark category have
less variation among the 16 kinds of cancer, as shown in Figure 2B. Moreover, for each of
the 16 tumor categories, we also make a survey of the number of pathways dysregulated in
all patients. As shown in Figure 2C, there are 344 pathways in the KEGG and Hallmark
category, and the number of pathways perturbed in all disease samples are highest in KICH
(256 pathways), and conversely, the least in LGG (32 pathways).

https://www.genome.jp/kegg/
http://www.gsea-msigdb.org/gsea/msigdb
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Figure 2. Survey of the important pathways in the 16 cancer types. (A) The violin plot of percentage
of dysregulated pathways on each sample in KEGG and Hallmark category. (B) The violin plot of
percentage of dysregulated samples on each pathway in KEGG and Hallmark category. (C) The
number of pathways dysregulated in all patients. (D) The similarity of the overlapping prognostic
pathway biomarkers identified in 16 cancer types using the Jaccard index.

2.3. The Identification of Prognostic Pathway Biomarkers

As the indicators to determine the progression and recurrence of tumors, prognostic
biomarkers play an important role in cancer research. In this study, we propose RiePath to
calculate the pathway activation of each pathway for each patient, and RiePath is applied
in 344 pathways to 7291 disease samples across 16 TCGA cancer types. For each kind of
cancer, we identify candidate prognostic pathway biomarkers using Kaplan–Meier analysis
and setting the significance threshold of log-rank p value less than 0.05, which is consistent
with the threshold used in many studies to identify prognostic biomarkers [7,31].

Supplementary Table S1 lists the prognostic pathway biomarkers identified based
on the RiePath scores across the 16 cancer types. A total of 164 pathways are identified
as promising prognostic pathway biomarkers across 16 cancer types, and the number of
prognostic pathway biomarkers among different kinds of cancer are imbalanced. Most
of the important pathways identified based on our method are mainly concentrated in
Liver infiltrate hepatocellular carcinoma (LIHC) and Thyroid carcinoma (THCA), while a
small number occur in the two kidney cancer types: KICH and Kidney renal papillary cell
carcinoma (KIRP). Moreover, we introduce the Jaccard index to measure the similarity of
the overlapping biomarkers identified in 16 cancer types from a pan-cancer perspective,
and the Jaccard similarity index of two sets of prognostic pathways for each pair of cancer
types is defined as follows:

J(u, v) =
|u ∩ v|
|u ∪ v| =

|u ∩ v|
|u|+ |v| − |u ∩ v| (2)

where u and v are the prognostic pathway biomarker sets of every two cancer types. If
u and v are the same set, that is, the set of prognostic pathway biomarkers for the same
cancer type, J(u, v) = 0. We observe that the overlapping prognostic pathway biomarkers
shared by two cancer types in the KEGG and Hallmark category are very few (Figure 2D),
meaning that the majority of prognostic pathway biomarkers identified in each cancer type
are specific rather than shared, reflecting the diversity of human malignancies. This result
is consistent with the conclusion presented in [7].

2.4. The Selection of Prognostic Pathway Biomarkers

Among the prognostic pathway biomarkers identified based on RiePath, there are
many pathways closely related to the occurrence and progression of cancer, especially
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signaling pathways. Mutations in cancer cell genomes affect signaling pathways that play
key roles in cell growth, proliferation, angiogenesis, survival, apoptosis, and metastasis.
Activation of these pathways will result in the upregulation of transcription factors that
induce epithelial–mesenchymal transition in cells [32]. Several signaling pathways are
critical for the embryonic development, which plays a key role in tumor progression and
changes in response to the therapy in different cancers [33].

In BRCA, several signaling pathways are identified as prognostic pathway biomarkers
based on RiePath scores from the KEGG database. The identification of the cAMP signaling
pathway, PI3K/AKT signaling pathway, and VEGF signaling pathway have been verified
by many studies to play an important role in the occurrence and development of breast
cancer and are closely related to endocrine therapy resistance in the later period of breast
cancer [34–38]. For example, it has been recognized that the elevated levels of intracellular
cAMP will stimulate the growth of the normal human breast epithelial cells in culture [39].
Several studies have demonstrated that cAMP inhibits the growth of established breast
cancer cell lines and breast cancer cells in primary culture [39–41]. In addition to the
KEGG pathway database, we also identify HALLMARK_MTORC1_SIGNALING as the
biomarker for BRCA. MTORC1 signaling has been supported in a previous study where
PIK3CA mutations are associated with gene signature of low MTORC1 signaling in estrogen
receptor-positive breast cancer, and PIK3CA mutations are one of the most common genetic
aberrations in breast cancer [37,42].

Subsequently, we analyze two signaling pathways: “cAMP signaling pathway” and
“HALLMARK_MTORC1_SIGNALING”. From the waterfall plots and density plots in
Figure 3A,B (first column shows the waterfall plots and second column shows the density
plots), there is a significant difference between the overall RiePath values of the disease
samples and that of the normal samples. Meanwhile, the log-rank test in the survival
analysis (third column of Figure 3A,B) shows significance (p value < 0.05) on these two
pathways, which indicates that these are two prognostic pathway biomarkers. Other visual
summaries of signaling pathways identified by RiePath scores in the remaining cancer
types are shown in Supplementary Figures S1–S15.

Figure 3. cAMP and Hallmark MTORC1 signaling pathways identified by RiePath scores in BRCA.
(A) cAMP signaling pathway. (B) Hallmark MTORC1 signaling pathway. The waterfall and density
plots of RiePath scores in tumor and normal samples are shown in the first and second columns,
and the Kaplan–Meier plots indicate the significant survival difference for the dysregulated and
near-normal patients in the two pathways.
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3. Discussion

Gene-level information has been widely used in the studies of complex diseases,
especially in cancer research. But they are often sensitive to noise and low repeatability.
Integrating gene expression and pathway information can obtain an aggregate and biologi-
cally relevant representation, which quantifies the dysregulation of pathways and has the
potential to identify essential pathways involved in the complex diseases.

In this study, we have proposed a Riemannian manifold-based method, RiePath, to
evaluate the pathway dysregulation scores for each individual patient on the tangent space
of the Riemannian manifold. RiePath converts high-dimensional gene-level expression
information into relatively low-dimensional pathway-level dysregulation information,
generating a compact and biologically relevant representation. This is the first attempt to
apply Riemannian manifold theory to infer the degree of dysregulation at the pathway
level so as to understand the molecular mechanisms of diseases. We apply the proposed
method to the analysis of 16 cancer types. The results demonstrate that RiePath can
not only have higher performance, but also effectively capture the potential prognostic
pathway biomarkers with functional interpretability, which can not only provide better
understandings of the mechanisms of cancer progression and drug therapy, but is also
critical to the improvement of treatments.

RiePath is a clinically relevant predictive method that measures pathway dysregulation
scores using pathway and gene expression data. It can also be extended to any other kind
of data with known pathway assignments. Meanwhile, the development of single-cell
sequencing technologies provides the possibility to reveal the mechanism of complex
diseases at the cellular level [43,44]. RiePath is data-based and the pathway dysregulation is
context-specific, so it also has the potential to be extended to single-cell study in future work.

4. Materials and Methods
4.1. Data Collection

Gene expression profiles and corresponding clinical information used in this study
are generated by TCGA datasets. The high-throughput sequencing data of TCGA are
downloaded from the UCSC Xena browser (https://xenabrowser.net/, accessed on 7 April
2024), and we obtain the Fragments per Kilobase of transcript per Million mapped reads
(FPKM) processed normalized gene expression profiles from each of cancer types. All
the data are log2 transformed. We only keep the first vital in a sequence of samples.
Considering that RiePath and some comparison algorithms need to use normal samples as
the background group, we download the tumor-adjacent tissue samples as normal samples.
Meanwhile, cancer types with more than 10 normal samples and disease samples will be
used in the pan-cancer study to ensure the sufficient sample sizes. Totally, 16 TCGA projects
(BLCA, BRCA, COAD, LGG, HNSC, PRAD, THCA, KIRC, KIRP, KICH, LIHC, LUAD,
LUSC, OV, STAD, UCEC) meet the requirements, as shown in Table 2 and Figure 4B,C.

Pathways come from the KEGG database and MSigDB Hallmark gene sets. For the
pathway data from KEGG database, the KGML (KEGG XML) files are parsed into graph
models maintaining all essential pathway attributes using the KEGGgraph package [45].
For a pathway, it contains nodes and edges; a node represents a gene, and an edge is the
interaction between two genes. Considering the subsequent analysis, genes not existing in
the RNA-seq gene expression data, and the corresponding edges, are discarded. Therefore,
294 pathways with 4156 nodes and 17,349 edges are obtained. Meanwhile, 50 biological
pathways from the MSigDB Hallmark signature collection are also considered into this
study. In total, there are 344 pathways used in our analysis.

https://xenabrowser.net/
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Table 2. Summary of TCGA datasets for pathway analysis.

Code Source Number of Tumor
Samples

Number of Normal
Samples

Number of Total
Samples

BLCA Bladder carcinoma 400 23 423
BRCA Breast invasive carcinoma 1057 136 1193
COAD Colorectal adenocarcinoma 432 54 486
LGG Low-grade gliomas 509 14 523

HNSC Head and neck squamous cell carcinoma 496 48 544
PRAD Prostate adenocarcinoma 428 68 496
THCA Thyroid carcinoma 504 62 566
KIRC Kidney renal clear cell carcinoma 523 78 601
KIRP Kidney renal papillary cell carcinoma 285 32 317
KICH Kidney chromophobe 64 23 87
LIHC Liver infiltrate hepatocellular carcinoma 36 5 417
LUAD Lung adenocarcinoma 499 72 571
LUSC Lung squamous cell carcinoma 489 52 541

OV Ovarian carcinoma 358 19 377
STAD Stomach adenocarcinoma 348 32 380
UCEC Endometrioid carcinoma 534 32 566

Figure 4. Overview of the RiePath algorithm. (A) Illustration of the Riemannian manifold and
tangent space at point C. (B) The number of samples in each cancer type. (C) The 16 TCGA cancer
types that are analyzed in the pan-cancer study. (D) t-SNE data visualization of the RiePath scores
from all patients with tumor tissues of the 16 cancer types.
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4.2. Space of Symmetric Positive Definite (SPD) Matrices

Given a gene expression matrix Xi ∈ RN×E with N genes and E samples, the space of
symmetric matrices can be denoted as follows:

S(N) = {S ∈ RN×N , ST = S} (3)

and the space of positive-definite matrices can be denoted as:

P(N) = {P ∈ RN×N , uT Pu > 0, ∀u ∈ RN} (4)

the space of SPD matrices is denoted as:

SPD(N) = S(N) ∩ P(N) (5)

The space of SPD matrices lie on a differentiable Riemannian manifold M (Figure 4A)
with the dimensionality of N(N + 1)/2 [46].

For two spatial covariance matrices (two points) Ai ∈ RN×N and C ∈ RN×N on the
manifold, the Riemannian distance δR(C, Ai) between them is defined as:

δR(C, Ai) =
∥∥∥log(C−1 Ai)

∥∥∥
F
=

√√√√ N

∑
n=1

log2(λn) (6)

where log(·) denotes the logarithmic operator, || · ||F is the Frobenius norm of a matrix, and
{λn}N

n=1 the real strictly positive eigenvalues of C−1 Ai. This distance represents the length
of unique shortest curve (called geodesic) connecting the two points in the Riemannian
manifold [47].

4.3. Riemannian Tangent Space

The derivatives of each point in the Riemannian manifold can form a tangent space
TC M, and it consists of a set of tangent vectors [48,49]. The tangent space, as a Euclidean
space, is an important space in the analysis of a Riemannian manifold. The logarithmic
mapping operator that can project a point on the manifold to the tangent space at point C
is defined as:

Ai
′ = LogC(Ai) = C

1
2 log(C− 1

2 AiC− 1
2 )C

1
2 (7)

The inverse operation is the exponential mapping that projects a tangent element back
to the original manifold:

Ai = ExpC(Ai
′) = C

1
2 exp(C− 1

2 Ai
′C− 1

2 )C
1
2 (8)

where log(·) and exp(·) are the logarithm and exponential of a matrix, respectively. They are
operators that map one-to-one between Riemannian manifold and tangent space. Figure 4A
illustrates this process.

At each point of the manifold, a scalar product can be defined in the associated tangent
space. The tangent space, as a Euclidean space, is an important space in the analysis of a
Riemannian manifold. The tangent space Tc M = {LogC(Ai), Ai ∈ SPD(N)} at point C is a
space of symmetric matrices and there are only N(N + 1)/2 independent elements. The
minimal representation of the tangent space can be found as a vector space [50]:

Tc M = {Ai
′ = upper(C− 1

2 LogC(Ai)C− 1
2 ) ∈ RN(N+1)/2} (9)

where the operator upper(·) is to keep the upper triangular portion of symmetric matrix
and vectorize it.
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The distance between point C and point Ai on the Riemannian manifold M can be
measured as the Euclidean distance from point C and point Ai

′ the tangent space at point
C [49]:

δ(C, Ai
′) = ||Ai

′ − 0||2 (10)

where Ai
′ ∈ TC M the vector in tangent space corresponding to Ai ∈ M. The tangent space

TC M of Riemannian manifold M at point C is shown in Figure 4A.

4.4. Pathway Dysregulation Scores

RiePath is a novel computational algorithm to evaluate pathway deregulation scores
for each individual sample based on Riemannian manifold, enabling the accurate evaluation
of pathway activation and the identification of the powerful pathway biomarkers for the
pan-cancer personalized characterization across 16 cancer types.

RiePath aligns pathways and gene expression data to project samples into the space of
SPD matrices, which evaluates the degree of pathway dysregulation from normal to disease.
To estimate the pathway dysregulation score, we utilize the expression values of genes
belonging to each pathway. There are three steps to measure the pathway deregulation
scores: (1) The covariance matrix of the group of normal samples is calculated. The
covariance matrix is an SPD matrix, which lies on a Riemannian manifold and will be
projected as a point, that is, the reference point C in Figure 4A. (2) An individual patient
will be added into the group of healthy samples, and we will obtain a point whose distance
from the reference point represents the perturbation of the patient. Repeat this step until
we obtain all the perturbed points in the Riemannian manifold based on all the patients.
(3) We map the perturbed points in the Riemannian manifold to the tangent space at the
reference point C and calculate the distance between reference point and each perturbed
point. This distance is considered to be the extent to which each pathway deviates from the
normal in each patient, that is, the extent of dysregulation. After calculating the distances
between all perturbed points and reference point for all the pathways, the high-dimensional
gene expression matrix will be converted into a low-dimensional matrix for pathways and
patients. The t-SNE data visualization of RiePath scores for all tumor samples across the
16 cancer types is shown in Figure 4D. It indicates that tumor samples from the same
cancer type are compactly clustered together and different types of tumor samples are
separated from each other well, which means that the pathway activation values obtained
by our algorithm can effectively distinguish samples of different cancer types. The pathway
activation analysis can provide effective assistance in identifying cancer-specific pathway
biomarkers for precision medicine.

5. Conclusions

In this study, we test a novel method named RiePath, which analyzes the pathway
activation and identifies coordinated patterns of pathway dysregulation using Riemannian
manifold on pan-cancer data. Unlike most of the existing pathway-based inference tools
that calculate the activation of pathways in the Euclidean space, we attempt to introduce a
Riemannian manifold-based method to evaluate the pathway activation for each disease
sample on the tangent space of the Riemannian manifold. We compare the performance
of RiePath and some other feature engineering algorithms, and identify the dysregulated
pathways and candidate prognostic pathway biomarkers based on the RiePath scores.
The results prove the effectiveness of introducing Riemannian manifold to evaluate the
personalized pathway activation for pan-cancer analysis, the effectiveness of generating a
relatively low-dimensional and biologically relevant representation, and the robustness
of identifying a panel of biologically meaningful pathway signatures as biomarkers. We
believe that RiePath has the potential to provide new prospects in understanding the
molecular mechanisms of complex diseases and may find broader applications in predicting
pathway biomarkers for other intricate diseases.
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