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Abstract: Zinc oxide nanoparticles (ZnO NPs) are widely used in versatile applications, from high
technology to household products. While numerous studies have examined the toxic gene profile
of ZnO NPs across various tissues, the specific lipid species associated with adverse effects and
potential biomarkers remain elusive. In this study, we conducted a liquid chromatography-mass
spectrometry based lipidomics analysis to uncover potential lipid biomarkers in human kidney cells
following treatment with ZnO NPs. Furthermore, we employed lipid pathway enrichment analysis
(LIPEA) to elucidate altered lipid-related signaling pathways. Our results demonstrate that ZnO NPs
induce cytotoxicity in renal epithelial cells and modulate lipid species; we identified 64 lipids with
a fold change (FC) > 2 and p < 0.01 with corrected p < 0.05 in HK2 cells post-treatment with ZnO
NPs. Notably, the altered lipids between control HK2 cells and those treated with ZnO NPs were
associated with the sphingolipid, autophagy, and glycerophospholipid pathways. This study unveils
novel potential lipid biomarkers of ZnO NP nanotoxicity, representing the first lipidomic profiling of
ZnO NPs in human renal epithelial cells.
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1. Introduction

Zinc oxide nanoparticles (ZnO NPs) are widely utilized in various industrial and bio-
logical applications, such as coating, cosmetics, paint, drug delivery systems, and biomedi-
cal engineering [1,2]. However, the expanding utilization of ZnO NPs has raised concerns
regarding their potential adverse effects on human health and the environment [3,4]. It
has been suggested by numerous researchers that ZnO NPs pose greater toxicity com-
pared to other metallic oxide nanoparticles such as Al2O3 and TiO2, primarily due to their
tendency to release ions [5]. Studies have indicated that ZnO NPs induce neurotoxicity
through the generation of reactive oxygen species (ROS) by disrupting metal ion home-
ostasis and increasing free zinc ion levels in the cytosol [6,7]. The accumulation of zinc
ions has been associated with ZnO NP-induced cytotoxicity, leading to oxidative stress and
inflammation [8,9].

The ionic species Zn2+ holds a pivotal role within cellular signaling, serving as an
indispensable regulator of protein functionality through its interactions with the sulfur
moieties of cysteine residues found within cellular proteins [10]. This multifaceted ion
exerts influence over a plethora of vital cellular processes, encompassing enzymatic activi-
ties, gene expression mechanisms, and the intricate pathways of signal transduction, as
substantiated by prior research [11,12]. Nonetheless, it is crucial to acknowledge that an
excessive influx of Zn2+, as observed with the introduction of ZnO NPs, can disrupt the del-
icate balance of cellular Zn2+ levels, leading to detrimental outcomes. These consequences
manifest through disrupted Zn2+ homeostasis, resulting in cell death due to mitochondrial
damage, as well as the onset of various pathophysiological conditions [13]. Among these
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maladies, aberrations in growth patterns, immune system dysfunction, and the onset of
neurodegenerative diseases have been empirically documented [14–17]. Upon entering the
biological milieu, nanoparticles, including ZnO NPs, undergo systemic circulation within
the bloodstream, ultimately preferentially accumulating within vital organs such as the
liver, spleen, heart, and kidney [18,19]. Given this propensity for biodistribution, it becomes
imperative to assess the potential renal hazards associated with ZnO NPs, particularly in
the context of their role in urinary excretion as a plausible mechanism for the elimination
of excess Zn2+. Consequently, a comprehensive investigation into the nephrotoxic effects of
ZnO NPs becomes an imperative avenue of scientific inquiry.

Metabolomics offers a valuable means to capture a momentary depiction of cellular
alterations, enabling the identification of plausible metabolic mechanisms and the devel-
opment of potential biomarkers for adverse effects resulting from various environmental
stresses [20,21]. In recent years, numerous researchers have employed metabolomics to
comprehend the intracellular toxicity mechanisms induced by nanoparticles and to identify
potential biomarkers [22–24]. In a recent study conducted by Yan et al., a metabolomics
approach was employed to uncover the pathways involved in energetic metabolism and
membrane impairment in rat kidneys following the oral administration of ZnO NPs for
14 consecutive days [25]. Similarly, a prior investigation by Lee et al., utilized a nuclear
magnetic resonance (NMR)-based metabolomic approach to investigate the metabolic ef-
fects of acute inhalation of ZnO particles in rat lungs [26]. The findings indicated that
ZnO NPs altered the levels of metabolites associated with energy metabolism, cellular
antioxidant defenses, DNA repair, and membrane structure [26]. However, the existing
understanding of lipid perturbations caused by ZnO particle exposure remains limited, in
contrast to the relatively well-established knowledge of hydrophilic metabolite pathways.
Due to the restricted sensitivity and selectivity of NMR, the previous results only revealed
changes in the lipid class containing phosphorylcholine-containing lipids (PC-CLs), which
encompass numerous individual lipid species. Consequently, a more comprehensive analy-
sis utilizing mass spectrometry (MS) is imperative to bridge the knowledge gap concerning
ZnO-induced alterations in lipids and the associated toxic mechanisms.

In this study, we conducted a lipidomic investigation on human kidney cells subjected
to ZnO NPs, leading to the discovery of previously unidentified lipid biomarkers and
the identification of perturbed lipid-related pathways. Furthermore, we employed liquid
chromatography mass spectrometry (LC/MS) to compare the lipidomic profiles between
cells treated with a vehicle and those treated with ZnO nanoparticles. Lastly, we evaluated
the modified lipid-related pathways using a lipid pathway enrichment analysis (LIPEA).

2. Results
2.1. ZnO NPs Induce Toxicity in Human Kidney Cells

The physical characterization data of ZnO nanoparticles have been conducted in our
previous research [27]. In brief, ZnO NPs were irregular and rod-shaped with smooth
surfaces; the average size of ZnO NPs was 110 ± 41 nm [27]. The zeta potential of ZnO
NPs in cell culture medium was negative (−9.7). The polydispersity index (PDI) indicates
the solubility and stability of NPs in PBS and culture medium, and a PDI value lower than
0.2 is associated with a high homogeneity of the nanoparticles. The values of PDI for ZnO
NPs in PBS and RPMI were 0.174 and 0.131, respectively [27]. To assess the cytotoxic impact
of zinc oxide nanoparticles (ZnO NPs) on HK2 cells, sequential concentrations of ZnO NPs
were administered over a 24 h period. Prior to each experimental treatment, the ZnO NPs
underwent a 5 min sonication process to homogenize the particles and prevent aggregation.
Exposure to ZnO NPs resulted in a notable reduction in cell viability after 24 h, with an
observed IC50 value of approximately 20 µg/mL (Figure 1A). Subsequent experiments
were conducted using a concentration of 20 µg/mL of ZnO NPs, chosen based on the
previously determined IC50 value. Due to the rapid dissolution of ZnO nanoparticles
into Zn2+, we observed the presence of liberated intracellular Zn2+ using FluoZin-3 AM
after ZnO NP treatment. Exposure to ZnO nanoparticles resulted in the substantial release
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of Zn2+ (Figure 1B), leading to a notable decline in cell viability (Figure 1A). Xia et al.
noted that the generation of reactive oxygen species (ROS) represents a primary toxico-
logical mechanism associated with both natural and engineered nanoparticles, including
ZnO NPs [28]. To validate the importance of ROS in our investigation, we assessed ROS
production by detecting DCF through flow cytometry. Our findings revealed a notable
increase in intracellular ROS levels upon exposure to ZnO NPs (Figure 1C). Furthermore,
our previous findings demonstrated that pretreatment with NAC, aimed at eliminating
excess ROS post ZnO NPs exposure, significantly mitigated the cellular damage induced by
ZnO NPs [27]. These findings strongly suggest that ROS serves as the principal mediator
of ZnO NPs-induced cytotoxicity.
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Figure 1. Zinc ions liberated from zinc oxide nanoparticles (ZnO NPs) initiate cell death in proximal
tubule epithelial cells. (A) HK2 cells were subjected to varying concentrations of ZnO NPs over a
24 h period. The cytotoxic effects induced by ZnO NPs were evaluated using the MTT assay, and
the determination of the IC50 value was conducted employing GraphPad Prism 9 software. (B) The
intracellular concentration of Zn2+ was determined and quantified via flow cytometry analysis.
(C) Levels of reactive oxygen species (ROS) subsequent to exposure to ZnO NPs were assessed using
the ROS indicator DCF. Data are presented as mean ± SEM (**** p < 0.0001).

2.2. Significant Alterations in Lipid Composition Are Noted Following Treatment with ZnO NPs

Lipids constitute a varied group of compounds with a wide array of structural and
signaling roles. Previously, our research has concentrated on understanding the toxicity
mechanisms associated with ZnO NPs. To ascertain alterations in lipid composition induced
by ZnO NPs, we initially conducted untargeted lipidomics to assess their impact on HK2
cells. To compare the lipidomics data response to ZnO NPs, a principal component analysis
(PCA) was carried out using total Log2FC datasets without threshold restrictions. Although
higher dispersion was shown in ZnO NP-treated cells than in vehicle treated cells, the
metabolic profile in the ZnO NPs treatment group was clearly different from that of the
control exposure group (Figure 2A), indicating that endogenous metabolite levels in the
treated group have changed significantly compared to the control group. To examine
alterations in lipid species levels, univariate statistical analysis was utilized to identify
significant differences in lipidome profiles between cells treated with ZnO NPs and control
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cells. Figure 2B indicates the fold changes and corresponding p-values of the detected
lipids. The x-axis represents the log2 fold change in relative abundance of each species
in ZnO NP-treated cells compared to untreated control cells, while the y-axis depicts the
log10p-value. Volcano plot analysis revealed 170 differential metabolites between ZnO NPs
and control groups (Figure 2B; Table S1). Subsequently, this dataset was further scrutinized
to pinpoint the most pronounced lipid changes, employing statistical methods to identify
species exhibiting significant alterations at a 95% confidence level. The alteration of lipids in
the ZnO-NP-treated cells was visualized by heatmaps (Figure 2C). The heatmap visualizes
the relative increase (red) or decrease (blue) of lipids in each group of samples. 124 lipids
were significantly upregulated, and 46 lipids were significantly downregulated in the ZnO
NPs group compared to the control group.
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Figure 2. Principal component analysis (PCA) plots and hierarchical clustering analysis for lipidomic
data from ZnO NP-treated HK2 cells in the negative and positive ion modes of UPLC/Q-TOF-MS.
(A) PCA plot for HK2 cell samples between ZnO NPs treatment group and control group in positive
ion mode (ESI+) and negative ion mode (ESI−). (B) Volcano plot illustrating metabolomics data.
The x-axis denotes the mean fold-change ratio (log2 scale) in the relative abundance of metabolites
between two samples. The y-axis indicates the statistically significant p-value associated with the
fold-change ratio for each metabolite. (C) Hierarchical clustering heatmap of lipid species data for
the ZnO NPs treatment group and the control group. Levels of normalized peak area are shown on
the color scale, with numbers indicating the fold difference from the mean.
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2.3. Lipid Biomarkers of ZnO NP Treatment

Potential lipid biomarkers in the kidney cells were extracted based on statistical anal-
yses, with the parameters of the altered lipids satisfying the criteria |Log2FC| > 1 and
p < 0.05. In brief, a total of 64 compounds showed alterations after treatment with ZnO
NPs. In ZnO NP-treated cells, 50 and 14 compounds were upregulated and downregu-
lated, respectively, compared to the vehicle-treated cells (Table 1). We classified altered
lipids according to their lipid classes. A total of five lipid classes, i.e., glycerolipids, sph-
ingolipids, glycerophospholipids, fatty acyls, and prenol lipids, were identified in ZnO
NP-treated cells (Table 1). Our lipidomic analysis strongly emphasized the enrichment of
phosphatidylethanolamine (PE) in glycerophospholipids and ceramide in sphingolipids.
Specifically, every sphingolipid species accumulated, including SM and ceramides in the
ZnO NPs group. Ceramides, sphingolipids that mediate cell death and have been associ-
ated with autophagy induction [29], were examined in our study. Our findings indicate a
notable accumulation of ceramides, particularly species C18:0 and C18:1, subsequent to
ZnO NP treatment.

Table 1. Untargeted lipidomic profiles altered by ZnO NPs exposure in HK2 cells.

Superclass Lipid (Identification) Observed
m/z

p
(Corrected)

Abundance
Log FC

[veh] [ZnO]

Glycerolipids DG(20:0/20:1(11Z)/0:0) 678.6162 7.4 × 10−7 0.536 19.035 18.499

Sphingolipids

SM(d18:1/18:0) 730.5989 3.3 × 10−3 14.996 18.123 3.127
Cer(d18:0/14:0) 511.4964 2.5 × 10−2 2.860 16.907 14.047
Cer(d18:0/16:0) 539.9166 2.3 × 10−5 16.872 20.649 14.858
Cer(d18:0/17:0) 553.5434 1.6 × 10−7 0.633 14.837 14.205
Cer(d18:0/20:0) 595.5903 1.8 × 10−3 15.566 17.523 1.958
Cer(d18:0/22:0) 623.6216 1.4 × 10−7 0.633 20.380 19.748
Cer(d18:1/17:0) 551.5277 3.4 × 10−2 14.449 15.514 1.065
Cer(d18:1/18:0) 565.5434 9.3 × 10−3 17.203 18.558 1.355
Cer(d18:1/20:0) 593.5747 3.1 × 10−2 16.762 17.815 1.052
Cer(d18:1/22:0) 621.6060 2.9 × 10−4 14.878 18.000 3.123
Cer(d18:1/24:0) 649.6373 4.1 × 10−5 17.798 21.086 3.289

CerP(d18:0/16:0) 619.4941 1.7 × 10−2 2.382 14.299 11.917
asialo-GM2(d18:1/24:0) 1176.8223 1.2 × 10−3 14.195 16.616 14.484

GlcCer(d16:1/22:0) 755.6275 2.0 × 10−2 17.860 19.132 1.272
GlcCer(d16:1/23:0) 769.6432 3.6 × 10−2 15.137 16.312 1.175
GlcCer(d18:0/16:0) 701.5806 1.4 × 10−7 0.633 21.054 20.421
GlcCer(d18:0/18:0) 729.6119 1.4 × 10−7 0.633 18.707 18.075
GlcCer(d18:0/20:0) 757.6432 1.4 × 10−7 0.633 18.353 17.720
GlcCer(d18:0/22:0) 785.6745 2.8 × 10−5 16.733 20.923 4.190
GlcCer(d18:0/24:0) 813.7058 9.5 × 10−6 16.018 20.384 4.366

GlcCer(d18:0/26:1(17Z)) 839.7214 4.8 × 10−4 14.536 17.495 2.960
GlcCer(d18:1/18:0) 727.5962 3.6 × 10−2 18.700 19.804 1.103
GlcCer(d18:1/22:0) 783.6588 1.1 × 10−4 15.857 19.295 1.072
GlcCer(d18:1/24:0) 811.6901 7.9 × 10−5 17.680 21.039 3.360
LacCer(d18:0/14:0) 835.6021 3.4 × 10−7 0.633 13.736 13.103
LacCer(d18:0/16:0) 863.6334 7.7 × 10−4 14.835 17.061 2.226
LacCer(d18:0/18:0) 891.6647 3.7 × 10−2 2.873 15.061 12.188
LacCer(d18:0/24:0) 975.7586 1.4 × 10−7 0.633 15.982 15.349
LacCer(d18:0/24:1) 973.7429 2.9 × 10−4 14.684 17.590 2.905

Prenol Lipids Loroxanthin ester 764.5744 1.6 × 10−7 0.633 15.808 15.175

Fatty Acyls N-arachidonoyl tyrosine 467.3036 2.5 × 10−2 2.701 16.869 14.167
N-oleoyl taurine 389.2600 2.5 × 10−7 0.536 17.091 16.555
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Table 1. Cont.

Superclass Lipid (Identification) Observed
m/z

p
(Corrected)

Abundance
Log FC

[veh] [ZnO]

Glycerophospholipids

PE(12:0/18:0) 663.4839 4.1 × 10−2 16.210 14.996 −1.214
PE(12:0/20:0) 691.5152 1.3 × 10−2 17.396 16.029 −1.367

PE(14:1(9Z)/22:1(11Z)) 743.5465 3.8 × 10−7 15.602 0.505 −15.097
PE(17:1(9Z)/20:3(8Z,11Z,14Z)) 753.5309 4.8 × 10−3 13.579 14.973 1.394

PE(18:0/0:0) 481.3168 8.4 × 10−4 14.884 17.881 2.997
PE(18:1(9Z)/22:1(11Z)) 799.6091 1.2 × 10−2 17.703 16.534 −1.170

PE(19:0/0:0) 495.3325 5.3 × 10−3 18.065 20.749 2.684
PE(20:1(13E)/20:0) 801.6248 2.2 × 10−2 15.342 14.079 −1.263

PE(20:2(11Z,14Z)/18:3(6Z,9Z,12Z)) 765.5309 7.5 × 10−7 0.536 16.458 15.922
PE(20:2(11Z,14Z)/22:0) 827.6404 1.0 × 10−2 16.269 14.160 −2.109

PE(20:3(8Z,11Z,14Z)/22:1(11Z)) 823.6091 2.3 × 10−7 15.182 16.273 1.092
PE(22:0/12:0) 719.5465 4.5 × 10−2 21.434 20.365 −1.070

PE(O-16:0/18:3(9Z,12Z,15Z)) 699.5203 1.4 × 10−7 0.633 18.848 18.215
PE(O-18:0/14:1(9Z)) 675.5203 1.7 × 10−3 17.999 15.761 −2.238

PE(O-18:0/18:4(6Z,9Z,12Z,15Z)) 725.5359 2.4 × 10−3 17.094 19.268 2.175
PE(O-18:0/20:4(5Z,8Z,11Z,14Z)) 753.5672 3.6 × 10−3 16.267 18.210 1.943

PE(O-20:0/20:2(11Z,14Z)) 785.6298 1.1 × 10−2 16.238 14.953 −1.285
PE(O-20:0/22:4(7Z,10Z,13Z,16Z)) 809.6298 3.9 × 10−7 0.633 13.987 13.354

PG(15:0/17:1(9Z)) 720.4941 2.9 × 10−3 0.536 17.568 17.033
PG(15:1(9Z)/18:4(6Z,9Z,12Z,15Z)) 726.4472 6.4 × 10−6 13.761 1.084 −12.677

PG(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 794.5098 3.4 × 10−2 14.952 16.088 1.136
PG(16:1(9Z)/20:3(8Z,11Z,14Z)) 770.5098 4.8 × 10−2 3.536 14.294 10.758
PG(18:3(6Z,9Z,12Z)/20:1(11Z)) 798.5411 3.5 × 10−4 2.477 14.774 12.297

PI(13:0/17:0) 782.4945 5.8 × 10−7 0.633 13.985 13.353
PS(14:0/20:3(8Z,11Z,14Z)) 757.4894 9.6 × 10−6 14.625 1.881 −12.745
PS(20:3(8Z,11Z,14Z)/22:0) 869.6146 3.4 × 10−2 15.945 17.142 1.197

PS(21:0/22:4(7Z,10Z,13Z,16Z)) 881.6146 6.1 × 10−3 15.964 14.599 −1.365
PS(22:0/22:4(7Z,10Z,13Z,16Z)) 895.6302 5.2 × 10−4 0.633 12.455 11.822

PS(O-16:0/14:1(9Z)) 691.4788 9.3 × 10−7 15.318 0.505 −14.814
PS(O-20:0/21:0) 847.6666 5.2 × 10−4 15.863 18.837 2.974

PS(P-20:0/17:2(9Z,12Z)) 785.5571 3.6 × 10−6 14.488 1.084 −13.405

2.4. Different Lipid Species Are Associated with Sphingolipid Metabolism

To investigate the lipid alteration-related signal pathway, we carried out a LIPEA
signal pathway analysis based on the KEGG database source for overexpression and
pathway topology analysis. Lipid species altered by ZnO NPs exposure were presented
as a heatmap (Figure 3A). Different lipid species were analyzed using LIPEA p-values
corrected to less than 0.05, and finally, nine lipid signal pathways were found in ZnO
NP-treated cells (Figure 3B). As we expected, based on the changes in lipid composition,
sphingolipid metabolism, sphingolipid signaling pathways, and glycerophospholipid
pathways, ZnO NP-treatment was highly ranked. In this study, the ceramide synthase
pathway was manually curated, leading to the identification of a set of lipid metabolite
reactions following treatment with ZnO NPs. These reactions encompass both the de novo
and sphingomyelin pathways of ceramide production (Figure 3C).
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Figure 3. Different lipid species are associated with metabolism. (A) Heatmap with abundance of the
interested lipids from vehicle and ZnO NPs-treated groups (listed in Table 1). (B) Pathway enrichment
analysis of lipid metabolites by LIPEA. Results include sphingolipid metabolism, glycerophospholipid
metabolism, the sphingolipid signaling pathway, ferroptosis, autophagy, necroptosis, leishmaniasis,
and glycosylphosphatidylinositol anchor biosynthesis. (C) overview of ceramide production by
the sphingolipid signaling pathway, manually curated from ZnO NPs treatment. The metabolites
participating in reactions are represented in red.

2.5. Increase in Ceramide Levels and Induction of Cell Death by ZnO NP Treatment

In support of the observed increase in ceramide species subsequent to ZnO NP treat-
ment as unveiled by lipid profiling analysis, a comparative assessment of ceramide im-
munoreactivity was performed between ZnO NP-treated cells and their respective controls.
Immunofluorescent labeling confirmed a significant elevation in ceramide levels within the
ZnO-treated cells compared to the untreated control cells (Figure 4A). To investigate the
role of ceramide species in the cell death induced by ZnO NPs treatment, HK2 cells were
treated with fumonisin B1, an inhibitor of ceramide synthase. We confirmed fumonisin
B1 treatment effectively inhibited ceramide biosynthesis induced by ZnO NP exposure,
and subsequently, the cellular distribution of ceramide was restored to levels similar to
those observed in the vehicle-treated group (Figure 4A). Upon exposure to ZnO NPs, the
survival rate of cells was approximately 50%, whereas co-treatment with both ZnO NPs
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and fumonisin increased cell viability to 69% (Figure 4B). These results suggest that the
heightened levels of ceramide induced by ZnO NP exposure contribute to cell death in
HK2 cells.
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3. Discussion

In the present study, we investigated the effect of ZnO NPs on lipid homeostasis in
human kidney cells by using lipidomics techniques to search for biomarkers that may play
a key role in inducing nephrotoxicity. Exposure to the ZnO NPs caused more prominent
alterations in the lipid metabolic pathways associated with sphingolipid metabolism and
glycerophospholipid metabolism compared to the control administered.

The lipidomic analyses revealed significant alterations in the glycerophospholipid
metabolic pathway of HK2 cells following exposure to ZnO NPs, particularly in the PE, PS,
and PG species. Among the detected changes, a total of 18 PEs, 5 PGs, and 7 PSs exhibited
significant modifications in the ZnO NPs-treated group. Of these, 9 PE subclasses (50%),
4 PGs (80%), and 4 PSs (57.14%) were upregulated, indicating disruption in the homeostasis
of these lipid classes within the glycerophospholipid metabolic pathway. Such disturbances
are suggestive of alterations in membrane lipid composition, which may ultimately impact
the physical properties and functional integrity of cellular membranes, potentially lead-
ing to apoptosis and inflammation [30,31]. In healthy mammalian cells, the plasma lipid
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membrane typically comprises approximately 45–55% phosphatidylcholine (PC), 15–25%
phosphatidylethanolamine (PE), and 5–10% phosphatidylserine (PS). PC exhibits a uniform
distribution across the cell membrane, whereas PS and PE are predominantly located on the
inner leaflet rather than the outer leaflet of the plasma membrane [32]. However, during
various pathological conditions such as apoptosis, thrombosis, and tumor vasculature,
PS and PE are known to undergo translocation from the inner to the outer membrane
leaflet, rendering them noteworthy targets for cell death processes including apoptosis
and ferroptosis [33]. Pathway analysis results show that ferroptosis is induced as a cell
death mechanism in cells treated with ZnO NPs. Among several membrane phospho-
lipids, arachidonic acid-containing phosphatidylethanolamine (PE-AA) is known to be a
major target of lipid peroxidation that induces ferroptosis [34], and two species among
the lipid metabolites we discovered were confirmed to be PE-AA-related species in the
ferroptosis pathway.

Our findings reveal an upregulation of ceramide and sphingomyelin in the ZnO NPs
group, both integral components of the sphingolipid metabolic pathway. Ceramides and
ceramide-derived sphingolipids serve as structural constituents of cell membranes linked
to oxidative stress and inflammation, potentially contributing to liver and renal toxicity.
Inflammation and an excess of saturated fatty acids prompt the continual synthesis of
new ceramides [35]. Notably, our results demonstrate a significant increase in 29 ceramide
subclasses within the ZnO NPs group compared to the control group. The heightened
ceramide levels subsequent to ZnO NPs administration may induce autophagy-mediated
cell death in renal failure [27]. Ceramide is implicated in the regulation of cell growth arrest
and the induction of cell death [36]. It plays a well-established role in initiating programmed
cell death in response to various stimuli, such as growth factor withdrawal, death receptor
activation, hypoxia, and exposure to chemotherapeutic agents [37,38]. Although numerous
studies have confirmed the significant role of ceramide in mediating lethal autophagy,
the precise underlying mechanisms remain incompletely understood. An initial report
by Dbaibo et al. demonstrated that arsenic trioxide (As2O3) induces the accumulation
of cytotoxic levels of ceramide in human leukemia cells by promoting de novo ceramide
synthesis [39]. Qian et al. further illustrated that As2O3 triggers not only apoptosis but
also autophagic cell death in leukemia cell lines, with the latter being attributed to the
upregulation of Beclin-1 protein and effectively prevented by the autophagy inhibitor [40].
In a study on malignant glioma cells, ceramide was found to induce autophagic cell death,
as evidenced by the presence of autophagic vacuoles, acidic vesicular organelles, and LC3B-
II lipidation [41]. In human leukemia cells (HL-60) and Chinese hamster ovary cells (CHO),
ceramide-activated protein phosphatases (Cer-CAPPs) were found to exert inhibitory effects
on the Akt-mTOR pathway, promoting autophagy and inducing autophagy-mediated cell
death. Conversely, the S1P-S1P3 signaling pathway activated the Akt-mTOR pathway,
counteracting autophagy and suppressing lethal autophagy [42]. Our previous research
revealed that HK2 cells, human renal cells exposed to ZnO NPs, undergo cell death through
autophagy [27]. Through the lipidomics signaling pathway analysis conducted in this
study, we have additionally confirmed that ZnO NPs induce pathways such as autophagy
and ferroptosis.

Ceramides are abundantly present in the kidney and play crucial roles in regulating
various cellular processes [43]. Previous research has implicated ceramides in the patho-
genesis of acute kidney injury induced by ischemic reperfusion, toxic insults, and oxidative
stress [44]. In the normal mouse kidney cortex, specific ceramide species, including C24,
C22, and C16, have been identified [45]. Ischemia/reperfusion or nephrotoxic injury leads
to a transient reduction in renal ceramide levels, followed by a 2–3-fold increase in ceramide
concentrations [46]. The ceramide synthase inhibitor fumonisin B1 attenuates hypoxia-
reoxygenation or radiocontrast-induced renal tubular epithelial cell injury, suggesting
that increased ceramide synthase activity contributes to elevated ceramide generation,
ultimately leading to apoptotic changes in renal epithelial cells [46,47]. In this study, we
observed an elevation in ceramide levels in HK2 cells exposed to ZnO NPs compared to the
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control group through fluorescent staining. Cell death induced by ZnO NP exposure was
determined to initiate lethal autophagy processes via ceramide synthesis. The restoration of
cell death was observed upon treatment with the ceramide synthesis inhibitor. In the future,
it will be imperative to conduct research aimed at elucidating the mechanisms underlying
the cellular homeostasis of individual species of ceramide in the induction of renal fibrosis.

In line with our current findings, Chavez Soria et al. demonstrated that treatment
with copper oxide nanoparticles (CuO NPs) for 24 h led to a significant increase in the
accumulation of ceramides, including C18:0, C18:1, and C22:0, in the colorectal cancer cell
line HCT-116 [22]. Interestingly, CuO NPs did not induce any alterations in the composition
of fatty acids and PE. Conversely, treatment with ZnO NPs for the same duration resulted
in a notable upregulation not only of ceramides but also of PE species in our current
findings. Of particular interest, our lipidomics data revealed that ZnO NPs triggered the
accumulation of N-oleoyl taurine, which is a member of the fatty acyl superclass. This
compound, recognized as N-acyl taurine, is commonly found in the central nervous system
and kidneys, where it serves as an endogenous lipid messenger capable of activating
transient receptor potential (TRP) calcium channels [48,49]. Notably, in cancer research,
N-acyl taurine has been identified as an anticancer molecule, demonstrating the ability to
induce cell cycle arrest in the human prostate adenocarcinoma cell line [50]. Moreover, the
accumulation of N-acyl taurine in conjunction with acylcarnitine has also been implicated
in the dysfunction of β cells by increasing calcium flux, contributing to the development
of type 2 diabetes [51,52]. Building upon our previous research, which demonstrated that
exposure to ZnO NPs induces autophagic cell death via lysosomal TRPML1 (Mucolipin 1)
activation in HK2 cells [27], we propose that ZnO NP-induced N-acyl taurine may play a
role in TRPML1 activation, leading to an increase in cytosolic Zn2+ levels through enhanced
lysosomal activity. However, it is noteworthy that N-acyl taurine is closely associated
with TRPV (Vanilloid) channels primarily located on cell membranes [48,53]. Thus, further
investigation is warranted to elucidate the relationship between N-acyl taurine and TRP
(Mucolipin) channels in the context of ZnO NPs. Moreover, the concurrent stimulation of
ceramide, PE, and N-acyl taurine could potentially serve as markers for ZnO NP-induced
cytotoxicity in kidney cells. Additional studies are required to comprehensively understand
the intricate mechanisms underlying the cytotoxic effects of ZnO NPs and their implications
for cellular homeostasis.

Given that this study only examined the HK2 cell line, it cannot fully capture the
elaborate mechanisms of human kidney damage caused by ZnO NP exposure. Nevertheless,
if we apply these findings to the human kidney organoid systems or mouse injury models,
we may expect more practical and clinically relevant outcomes.

4. Materials and Methods
4.1. Reagents

Zinc oxide nanoparticles (ZnO NPs) with a diameter less than 100 nm were dispersed
in phosphate-buffered saline (PBS) and subjected to ultrasonication for 5 min to prevent
aggregation prior to cell treatment. The ZnO NP was then prepared in the culture medium
at various concentrations. ZnO NP and 2,7-Dichlorofluorescein (DCF) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). FluoZin™-3, AM was purchased from Thermo
Fisher Scientific (Carlsbad, CA, USA).

4.2. Cell Culture

HK2 cells were obtained from the Korean Cell Line Bank (Seoul, Republic of Korea).
The HK2 cells were grown in RPMI-1640 (Welgene, Republic of Korea) supplemented with
4.5 g/L D-glucose, 2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 1.5 g/L
sodium bicarbonate, 10% fetal bovine serum (Gibco, New York, NY, USA), 100 U/mL
penicillin, and 100 g/mL streptomycin (Gibco) under an atmosphere of humidified air
containing 5% CO2 at 37 ◦C.
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4.3. Cell Viability

To determine the toxicity of the ZnO NPs, HK2 cells in RPMI 1640 medium supple-
mented with 10% FBS were seeded into a 96-well culture plate (1 × 104 cells/200 µL/well)
in the presence of increasing concentrations of ZnO NPs (0, 1, 2, 5, and 10 µg/mL). The
HK2 cells were incubated for 2 days at 37 ◦C in the presence of CO2. At the end of the
incubation period, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay was conducted to determine the viability of the HK2 cell. The cells following expo-
sure to ZnO NPs for 24 h were incubated with 2 mg/mL MTT at 37 ◦C for 3 h in the dark.
After removing the previous incubated medium, dimethyl sulfoxide (DMSO) was added
to dissolve formazan transformed by live cells. Absorbance was measured at 540 nm by a
microplate reader (SpectraMax® ABS, Molecular Devices, San Jose, CA, USA).

4.4. Measurement of Reactive Oxygen Species (ROS)

DCF was employed for the quantification of reactive oxygen species (ROS) following
the administration of ZnO NPs in HK2 cells. Subsequent to the exposure to ZnO NPs at a
concentration of 20 µg/mL, HK2 cells were subjected to incubation with 2.5 µM of DCF
at 37 ◦C for 30 min in the absence of light. The relative fluorescence intensity of DCF was
assessed using a BD FACS™ Universal Loader (BD Biosciences, San Jose, CA, USA).

4.5. Measurement of Intracellular Zn2+ Level

The FluoZin™-3, AM probe was employed for the assessment of intracellular Zn2+

levels. HK2 cells, subjected to ZnO NPs for a duration of 24 h, were subjected to incubation
with 100 nM FluoZin™-3, AM at 37 ◦C for a duration of 30 min in the absence of light. The
relative fluorescence intensity emanating from FluoZin-3 was subsequently measured and
quantified using a BD FACS™ Universal Loader (BD Biosciences, San Jose, CA, USA).

4.6. Lipid Extraction

Cells were washed twice with an ice-cold PBS solution. For the lipid extraction, the
cells were treated with 400 µL of methanol and collected by scrapping. The collected cells
were homogenized using a sterile pestle on ice for 30 s, and 200 µL chloroform was added.
Sonication in an ultrasonic bath was performed for 30 s with a subsequent resting period
on ice for 30 s, totaling five cycles over 5 min. Additionally, 200 µL of chloroform was
further added, followed by the addition of 360 µL of water. After vortexing, the samples
were centrifuged at 16,000× g at 4 ◦C for 5 min. The lower phase was transferred to glass
tubes using a syringe with a needle. The transferred samples were then dried in a vacuum
concentrator and stored at −80 ◦C until further use.

4.7. Lipid Analysis Using UPLC/Q-TOF-MS

The dried lipids were dissolved in 150 µL of methanol/chloroform (1:1, v/v). We
employed an ultra-performance liquid chromatograph quadrupole time-of-flight mass
spectrometer (UPLC/Q-TOF-MS, Agilent Technologies, Santa Clara, CA, USA; Metabolomics
Research Center for Functional Materials, Kyungsung University, Busan, Republic of Korea)
equipped with an electrospray ion source (ESI) for the analysis. Chromatographic separation
was achieved using a ZORBAX Eclipse Plus C18 Column (95 Å, 1.8 µm, 2.1 mm × 100 mm,
Agilent Technologies), with the column temperature maintained at 50 ◦C. A binary mobile
phase system was utilized: mobile phase A consisting of water/methanol (90:10) with
10 mM ammonium acetate, and mobile phase B consisting of acetonitrile/methanol/isopropanol
(20:20:60) with 10 mM ammonium acetate. Gradient elution with a flow rate of 0.3 mL/min
was conducted as follows: 0 min, 55% B; 5 min, 57% B; 25 min, 100% B; 27 min, 100% B;
27.1 min, 55% B; 30 min, 55% B. For mass spectrometry, an Agilent 6545 Q-TOF (Agilent
Technologies) equipped with positive and negative electrospray ionization (ESI) sources
was set as follows: capillary voltage 4 kV, fragmentor voltage 160 V, gas temperature 250 ◦C,
drying gas 10 L/min, maximum pressure of nebulizer with 35 psi, sheath gas temperature
300 ◦C, sheath gas flow 12 L/min, and RF voltage 750 V.
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4.8. Lipidomic Data Processing

The Mass Profiler Professional software 15.0 (Agilent Technologies, USA) was used
for the visualization, processing, and interpretation of multidimensional LC/MS data. To
ensure comparability, the data underwent normalization using total ion intensity. Statistical
analyses were conducted using multivariate methods, specifically principal component
analysis. The student t-test was utilized to compare the peak height intensity of distinct lipid
metabolites between normal cells and ZnO NP-treated cells. Lipids exhibiting significant
differential expression were identified based on criteria of |Log2FC| > 1 and p < 0.05,
indicating substantial changes in lipid levels between the two groups.

4.9. Pathway Analysis

In order to conduct pathway analysis, a Lipid Pathway Enrichment Analysis (LIPEA)
approach was employed, utilizing a comprehensive database source such as the Kyoto En-
cyclopedia of Genes and Genomes (KEGG). This allowed for the visualization of pertinent
pathways associated with potential lipid biomarkers.

4.10. Immunostaining and Confocal Microscope

After exposing HK2 cells to ZnO NPs for 24 h, they were fixed with a solution of 4%
paraformaldehyde in PBS for 20 min at room temperature. Following fixation, the slides
were treated with a blocking solution containing 5% normal goat serum in PBS for 1 h at
room temperature. Subsequently, the cells were subjected to an overnight incubation at
4 ◦C with primary mouse anti-ceramide antibody (diluted at a ratio of 1:50 in PBS, Enzo
Life Sciences, Farmingdale, NY, USA), followed by a 1 h incubation at room temperature
with anti-mouse Alexa 560-conjugated antibody (diluted at a ratio of 1:1000 in PBS, Thermo
Fisher Scientific). DAPI staining for nuclei was performed for 1 h at room temperature.
The images were captured using a confocal imaging system (A1Rsi+, Nikon Instruments,
Tokyo, Japan) equipped with a 40× oil immersion lens.

4.11. Statistical Analysis

Data were analyzed using GraphPad Prism 10 (San Diego, CA, USA) and expressed as
mean ± standard error of mean (SEM) from a minimum of three independent experiments.
The normal distribution was assessed using the Shapiro-Wilk test. For data that followed a
normal distribution, we employed the unpaired t-test to compare two groups and one-way
analysis of variance (ANOVA) to compare three or more categorical groups. Post-hoc
analysis following a significant difference detected by one-way ANOVA was conducted
using Tukey’s test.

5. Conclusions

In this investigation, we employed a lipidomics approach to elucidate the impact of
zinc oxide nanoparticles (ZnO NPs) on a human kidney cell line (HK2). We hypothesized
that alterations in lipid composition could elucidate the mechanisms underlying the toxicity
of these nanoparticles and offer metabolite markers indicative of ZnO NP-induced toxicity.
Furthermore, untargeted lipidomics analysis in HK2 cells exposed to ZnO NPs revealed
shifts in metabolite composition, notably the accumulation of phosphatidylethanolamines
(PE), phosphoglycerides (PGs), and ceramides. These findings, combined with our previous
research [27], strongly indicate that ZnO NP treatment triggers autophagy and cell death
through mechanisms that are independent of caspase activity but reliant on the production
of ceramide species. These outcomes underscore the complexity of the mode of action of
ZnO NPs, which appears to vary across different tissue cell lines. Nevertheless, further
investigations are warranted to fully elucidate the mechanisms underlying the toxicity and
cellular uptake of ZnO NPs in mammalian cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms25084285/s1.
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