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Abstract: In this study, we performed a computational study of binding mechanisms for the
SARS-CoV-2 spike Omicron XBB lineages with the host cell receptor ACE2 and a panel of diverse
class one antibodies. The central objective of this investigation was to examine the molecular factors
underlying epistatic couplings among convergent evolution hotspots that enable optimal balancing of
ACE2 binding and antibody evasion for Omicron variants BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1,
XBB.1.5, and XBB.1.5 + L455F/F456L. By combining evolutionary analysis, molecular dynamics simu-
lations, and ensemble-based mutational scanning of spike protein residues in complexes with ACE2,
we identified structural stability and binding affinity hotspots that are consistent with the results of
biochemical studies. In agreement with the results of deep mutational scanning experiments, our
quantitative analysis correctly reproduced strong and variant-specific epistatic effects in the XBB.1.5
and BA.2 variants. It was shown that Y453W and F456L mutations can enhance ACE2 binding
when coupled with Q493 in XBB.1.5, while these mutations become destabilized when coupled with
the R493 position in the BA.2 variant. The results provided a molecular rationale of the epistatic
mechanism in Omicron variants, showing a central role of the Q493/R493 hotspot in modulating
epistatic couplings between convergent mutational sites L455F and F456L in XBB lineages. The results
of mutational scanning and binding analysis of the Omicron XBB spike variants with ACE2 receptors
and a panel of class one antibodies provide a quantitative rationale for the experimental evidence
that epistatic interactions of the physically proximal binding hotspots Y501, R498, Q493, L455F, and
F456L can determine strong ACE2 binding, while convergent mutational sites F456L and F486P are
instrumental in mediating broad antibody resistance. The study supports a mechanism in which the
impact on ACE2 binding affinity is mediated through a small group of universal binding hotspots,
while the effect of immune evasion could be more variant-dependent and modulated by convergent
mutational sites in the conformationally adaptable spike regions.

Keywords: SARS-CoV-2 spike protein; ACE2 host receptor; mutational scanning; binding energetics;
antibody binding; immune evasion; allosteric communications

1. Introduction

The wealth of structural and biochemical investigations conducted on the spike (S) gly-
coprotein of the SARS-CoV-2 virus have provided crucial insights into the mechanisms that
regulate virus transmission and immune evasion. This glycoprotein, tasked with facilitating
the virus’s entry into host cells, undergoes significant conformational shifts between closed
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and open states. These structural transitions are driven by allosterically coupled motions
of the flexible N-terminal S1 subunit, which includes the N-terminal domain (NTD), the
receptor-binding domain (RBD), and two structurally conserved subdomains known as
SD1 and SD2 [1–9]. The intricate coordination among these structural domains orchestrates
conformational shifts within the S protein, fluctuating between the closed state with the
RBD down, and the open state with the RBD up. The efficacy of the S protein in recognizing
and binding to host cell receptors, as well as its ability to evade immune detection, relies
on its capacity to navigate between these distinct structural states, where the dynamic
equilibrium and thermodynamic preferences towards particular functional form can be
modulated by the binding partners [10–15]. The extensive insights gained from biophysical
studies have improved our comprehension of the S protein trimer, illuminating the intricate
interplay between thermodynamics and kinetics that govern spike mechanisms. These
investigations have revealed a nuanced understanding of how mutations and long-range
interactions, particularly between the dynamic S1 subunit and the more rigid S2 subunit,
determine structural alterations within the S protein trimer and influence population shifts
between the open and closed RBD states [16–18].

The abundance of cryo-electron microscopy (cryo-EM) and X-ray structures pertaining
to the S protein variants of concern (VOCs) has deepened our insight into the evolutionary
adaptability of the S protein and the range of molecular mechanisms through which viral
fitness is determined. These mechanisms are mediated by a complex balance between
binding with the ACE2 host receptor and the efficiency of the immune escape [19–28].
The most recent cryo-EM structures and biochemical analyses of the S trimers across the
BA.1, BA.2, BA.3, and BA.4/BA.5 Omicron variants have revealed a significant reduction
in binding affinity for the BA.4/BA.5 subvariants. This confirms that BA.2 exhibits higher
binding affinities compared to the other Omicron variants [29,30]. Structural and biophys-
ical examinations of the Omicron BA.2.75 variant have indicated that, under neutral pH
conditions, the BA.2.75 S-trimer exhibits the highest thermal stability among the Omicron
variants, ranking above BA.1, BA.2.12.1, BA.5, and BA.2. Surface plasmon resonance (SPR)
experiments were conducted for multiple Omicron subvariants, including BA.1, BA.2,
BA.3, BA.4/5, BA.2.12.1, and BA.2.75, revealing a notably higher ACE2 binding affinity in
the BA.2.75 subvariant [31–33]. Structure–functional investigations have confirmed that
the BA.2.75 variant can be endowed with significant antibody evasion potential while
featuring enhanced ACE2 binding as well as improved growth efficiency and intrinsic
pathogenicity [33].

The appearance of the XBB.1 subvariant within the Omicron lineage serves as a note-
worthy illustration of viral evolution. XBB.1.5 bears a notable resemblance to XBB.1, and
is distinguished by a singular and rare two-nucleotide substitution in the RBD when
compared to the ancestral strain [34]. Biophysical investigations of the S trimer binding
with ACE2 have revealed that the binding affinities of BQ.1 and BQ.1.1 are comparable
to that of the BA.4/BA5 variants. In contrast, XBB and XBB.1 exhibit binding affinities
similar to the BA.2 variant. Biochemical studies demonstrated that monoclonal antibod-
ies, which were effective against the original Omicron variant, have exhibited reduced
efficacy against the XBB.1 and BQ.1 subvariants [35]. The exceptional binding affinity
of the XBB.1.5 RBD to ACE2 has been confirmed in other investigations, also revealing
comparable antibody evasion for XBB.1 and XBB.1.5, with much greater transmissibility
for the XBB.1.5 variant [36,37]. Cryo-EM analysis of the XBB.1.5 S ectodomain has high-
lighted a higher ACE2 binding affinity compared to XBB.1, which may contribute to the
observed growth advantages and increased transmissibility of the XBB.1.5 variant [38].
The XBB sublineages XBB.1.5 and XBB.1.16, which share an F486P substitution, have be-
come predominant worldwide (https://nextstrain.org/ (accessed on 5 February 2024)) [39].
XBB.1.16 emerged independently from XBB.1.5 and features two additional substitutions
(E180V in the NTD and T478R in the RBD), showing a greater growth advantage [40].
Emerging variants display increased infectivity and transmissibility compared to previous
Omicron variants, and some RBD residues (R346, K356, K444, V445, G446, N450, L452,
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N460, F486, F490, R493, and S494) have shown mutation in at least five new independent
Omicron lineages.

The XBB descendants that bear an additional F456L mutation, including EG.5 and
EG.5.1 (XBB.1.9.2.5.1), have become one of the currently predominant lineages circulating
worldwide [41]. EG.5 harbors only one additional F456L substitution relative to XBB.1.5,
while its immediate descendant EG.5.1 features Q52H in the NTD and F456L in the RBD [41].
Biochemical studies have shown that the ACE2 binding of EG.5.1 RBD is weaker compared to
that of XBB.1.5, but EG.5.1 exhibits significantly greater immune resistance. F456L substitution
has been implicated as an important determinant in enhanced immunological potential [41].
EG.5 and EG.5.1 were found to be moderately more resistant for class one monoclonal antibod-
ies as compared to XBB.1.5; this is largely mediated by a single F456L mutation on the RBD [42].
This observation was also confirmed in studies of immune evasion of the EG.5.1 subvariant,
which showed that F456L mutation, rather than Q52H, drives the enhanced neutralization
escape of EG.5.1 [43]. EG.5.1 has further evolved, resulting in a descendant lineage named
HK.3 (XBB.1.9.2.5.1.1.3), which harbors L455F (EG.5.1 + L455F) [44]. XBB subvariants bearing
a combination of L455F and F456L flipped substitutions are termed “FLip” variants. These
subvariants include JG.3 (XBB.1.9.2.5.1.3.3), JF.1 (XBB.1.16.6.1), GK.3 (XBB.1.5.70.3), and
JD.1.1, all of which emerged convergently, indicating that acquisition of the L455F/F456L
“combo” can confer a growth advantage to XBB in the human population [44,45].

Biochemical studies of ACE2 binding with XBB.1.5, XBB.1.5 + L455F, XBB.1.5 + F456L,
and XBB.1.5 + L455F + F456L have revealed that L455F reduces ACE2 affinity, while the
adjacent residue flipping of L455F and F456L leads to enhanced ACE2 binding affinity and
also induces an enhanced immune escape in the class one monoclonal antibodies [46]. The
Omicron subvariant BA.2.86, derived from the BA.2 variant, exhibits significant genetic
differences compared to its predecessors [47–51]. Biophysical studies have measured
ACE2 binding affinities, showing that the XBB.1.5 and EG.5.1 spikes exhibit comparable
affinities to ACE2, while two different constructs of the BA.2.86 S protein showed a >2-fold
increase in binding affinity [48]. The immune evasion capability of the BA.2.86 subvariant
was evaluated using a panel of XBB.1.5-effective neutralizing antibodies, revealing that
BA.2.86 is antigenically distinct from XBB.1.5 and can escape XBB-induced neutralizing
antibodies [49]. A comparative functional analysis of immune evasion and infectivity for
BA.2.86, EG.5.1, and FLip variants showed that BA.2.86 is less resistant to neutralization
compared to XBB.1.5, EG.5.1, and FLip variants [52]. Notably, the FLip variant exhibited
stronger immune escape than its parental variant XBB.1.5 due to both L455F and F456L
mutations. JN.1 is a variant of BA.2.86 which emerged independently from Omicron
BA.2 and harbors an additional L455S mutation, which confers enhanced immune escape
capability [53]. A comparative biochemical analysis showed a reduction in ACE2 binding
affinity for JN.1, indicating that its enhanced immune evasion capabilities come at the
expense of reduced ACE2 binding [53]. The evolutionary pattern of XBB.1.5, E.5.1, and FLip
variants suggests a predominant role of immune evasion, where compensatory mutations
L455GF/F456L may have emerged to restore the decreased ACE2 affinity.

Deep mutational scanning (DMS) experiments and functional studies have suggested
that evolutionary windows for the Omicron variants could be enhanced through epistatic
interactions between variant mutations, in which immune escape mutations can individ-
ually reduce ACE2 binding, but are compensated for through epistatic couplings with
affinity-enhancing Q498R and N501Y mutations [54–58]. Recent evolutionary studies have
revealed strong epistasis between pre-existing substitutions in BA.1/BA.2 variants and
antibody resistance mutations acquired during selection experiments, suggesting that
epistasis can also lower the genetic barrier for antibody escape [59]. DMS analysis of the
XBB.1.5 and BA.2 S proteins showed that the strongest escape mutations are in the RBD
sites 357, 420, 440, 456, and 473, but escape mutations can also reside outside the RBD,
with many of them decreasing ACE2 binding [60]. Another study examined the preference
of each RBD mutation on antibody escape and human ACE2 binding using BA.5-based
DMS profiles and revealed the most important functional hotspots at R403S/K, N405K,
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N417Y, Y453S/C/F, L455W/F/S, F456C/V/L, and H505Y/D positions [61]. Recent DMS
experiments examining BQ.1.1 and XBB.1.5 RBDs binding with ACE2 have unveiled the
important role of epistatic couplings between R493Q and the mutations at positions Y453,
L455, and F456 that define the EG.5.1 and FLip lineages [62]. Convergent evolution of the
XBB lineages has shown that the coordination of evolutionary paths at different sites may
be largely due to epistatic, rather than random, selection of mutations [63,64].

Computer simulation studies have provided important atomistic insights into un-
derstanding the dynamics of the SARS-CoV-2 S protein and the effects of Omicron muta-
tions [65–70]. The conformational dynamics and allosteric modulation of SARS-CoV-2 S
was studied using an smFRET imaging assay, showing the presence of long-range allosteric
control of the RBD equilibrium and antibody binding [71]. The effects of SARS-CoV-2
mutations in the stable fusion core of the S protein on the pre-fusion and post-fusion struc-
tures were investigated in long molecular dynamics (MD) simulations, revealing changes
in the inter-monomer salt bridge in the post-fusion conformation that can affect protein
flexibility and lead to reduced compactness in the assembly [72]. Integrative computational
modeling approaches have revealed that the S protein could function as allosteric regu-
latory machinery [73–77]. By combining atomistic simulations and a community-based
network model of epistatic couplings, we found that convergent Omicron mutations such
as G446S (BA.2.75, BA.2.75.2, XBB), F486V (BA.4, BA.5, BQ.1, BQ.1.1), F486S, F490S (XBB.1),
and F486P (XBB.1.5) can display epistatic relationships with the major stability and binding
affinity hotspots [75]. MD simulations and Markov state models characterized confor-
mational landscapes of the XBB.1, XBB.1.5, BQ.1, and BQ.1.1 Omicron variants and their
complexes, showing that convergent mutation sites could modulate conformational plas-
ticity in the flexible adaptable regions [77]. Recent computational studies have suggested
that Omicron mutations have variant-specific effects on conformational changes in the S
protein, leading to the formation and evolution of druggable cryptic pockets [78–80].

In this study, we performed a computational study of binding energetics for a spectrum
of Omicron variants including the BA.1, BA2, BA.3, BA.4/BA.5, BQ.1.1, XBB.1, XBB.1.5, and
XBB.1.5 + L455F/F456L variants. By combining evolutionary analysis, MD simulations, and
ensemble-based mutational scanning of the S-RBD residues in their complexes with ACE2,
we identified structural stability and binding affinity hotspots. In agreement with the
results of deep mutational scanning experiments, our quantitative analysis correctly repro-
duced strong and variant-specific epistatic effects in the XBB.1.5 and BA.2 genetic variants,
showing a central role of the Q493/R493 hotspot in modulating epistatic couplings be-
tween the convergent mutational sites L455F and F456L. We also conducted structure-based
mutational analysis of the S protein binding with different classes of RBD-targeted anti-
bodies, focusing specifically on the role of XBB.1.5 mutations, as well as L455F, F456L, and
FLip mutations, in mediating resistance to class one antibodies. We presented evidence of
inter-dependence between binding affinity hotspots and antibody resistance substitutions,
which is controlled by the epistatic couplings of Y501, R498, Q493, L455 and F456 residues.
This study provides a quantitative rationale for a mechanism in which the impact on ACE2
binding affinity is mediated through a small group of universal binding hotspots, while the
effect of immune evasion could be more variant-dependent and modulated by convergent
mutational sites in the conformationally adaptable spike regions.

2. Results and Discussion
2.1. Evolutionary and Phylogenetic Analysis of Differences between BA.2 and XBB.1.5 Lineages

The evolutionary differences and divergence of XBB linages among Omicron vari-
ants are illustrated by the phylogenetic analysis of XBB variants using their correspond-
ing clades nomenclature from Nextstrain, an open-source project for real-time track-
ing of evolving pathogen populations (https://nextstrain.org/) [39]. Nextstrain pro-
vides dynamic and interactive visualizations of the phylogenetic tree of SARS-CoV-2,
allowing users to explore the evolutionary relationships between different lineages and
variants. This approach assigns SARS-CoV-2 variants a clade when they reach a fre-
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quency of 20% globally at any time point. A new clade should be at least two muta-
tions away from its parent major clade. According to the Nextstrain-based evolutionary
analysis (Figure 1, Figures S1 and S2), the XBB.1 subvariant is a recombinant of lineage
BJ.1 (BA.2.10.1.1) and BM.1.1.1 (BA.2.75.3.1.1.1), with a breakpoint in the S1 region of the
spike subunit XBB (has the mutations S:V445P (from BJ.1) and S:N460K (from BM.1.1.1),
which are unique to each parent. XBB.1 has NTD mutations V83A, H146Q, Q183E, V213E,
and G252V, and specific RBD mutations (G339H, R346T, L368I, V445P, G446S, N460K, F486S,
F490S, and reversed R493Q) (Table 1). XBB.1.5 (23A clade) is a recombinant variant, as it
descends from XBB (22F clade). XBB.1.5 has additional S mutations, S:G252V and S:S486P,
that are also shared by XBB.1.5 + F456L (EG.5) and XBB.1.5 + L455F/F456L (XBB.1.5.70).
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Figure 1. An overview of the phylogenetic analysis and divergence of Omicron variants including
XBB variants 23A (XBB.1.5) and 23G (XBB.1.5.70). The graph was generated using Nextstrain, an
open-source project for real time tracking of evolving pathogen populations (https://nextstrain.org/).
(A) The phylogenetic analysis focused on BA.2 and XBB lineages. (B) A global phylogenetic view
of Omicron variants. All colors for Omicron variant clades on the panels (A,B) are generated
automatically by the Nextstrain program (https://nextstrain.org/).

Table 1. A summary of accumulated mutations in the Omicron variants.

Omicron Variant Mutational Landscape

BA.1
A67, T95I, G339D, S371L, S373P, S375F, K417N, N440K,
G446S, S477N, T478K, E484A, Q493R, G496S, Q498R,
N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

BA.2 T19I, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K, E484A,
Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

BA.4 T19I, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A,
F486V, R493Q reversal, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

BA.5
T19I, LPPA24-27S, Del 69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K,
L452R, S477N, T478K, E484A, F486V, R493Q reversal, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K,
D796Y, Q954H, N969K

BQ.1.1
T19I, LPPA24-27S, H69del, V70del, V213G, G142D, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K,
K444T, L452R, N460K, S477N, T478K, E484A, F486V, R493Q reversal, Q498R, N501Y, Y505H, D614G, H655Y, N679K,
P681H, N764K, D796Y, Q954H, N969K

XBB.1
T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, E484A, F486S, F490S, R493Q reversal, Q498R, N501Y,
Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K
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Table 1. Cont.

Omicron Variant Mutational Landscape

XBB.1.5
T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, E484A, F486P, F490S, R493Q reversal, Q498R, N501Y,
Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

XBB.1.5 + F456L
T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, V445P, G446S, F456L, N460K, S477N, T478K, E484A, F486P, F490S, R493Q reversal, Q498R,
N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

XBB.1.5 + L455F/F456L
T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N,
R408S, K417N, N440K, V445P, G446S, L455F, F456L, N460K, S477N, T478K, E484A, F486P, F490S, R493Q reversal,
Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K

The mutational landscape of XBB variants shows that these variants are highly
similar (Table 1). XBB.1.5.70 (23G clade) descended from the variant XBB.1.5, and has
the ‘FLip’ genotype (S:L455F and S:F456L). It emerged in early 2023 in South America,
becoming dominant in Brazil around September 2023. In the second half of 2023, it was
responsible for more than a third of global XBB.1.5-derived sequences. In sequences col-
lected since 1 September 2023, it has been most common in South America, in particular
Brazil (48%), Chile (27%), Argentina (23%), and Colombia (12%). Outside of South Amer-
ica, it has been most common in Japan (8%) and Italy (5%), and has been present at rates
of 1–5% in North America and Europe (https://nextstrain.org/). [39]. Phylogenomic
reconstruction indicates that the genomes of BQ.1 (clade 22E) are clustered within the
not-monophyletic GSAID Clade 21L, with a close relationship with the BA.5 Omicron
subvariant (Figure 1). BQ.1, which is a direct descendant of BA.5, has additional spike mu-
tations in some key antigenic sites (K444T and N460K). Its first descendant, BQ.1.1, carries
a further additional mutation R346T [81,82]. Despite considerable mutational differences
between newly emerged Omicron variants, structural analysis of the RBD complexes with
ACE2 for these variants has revealed highly similar RBD conformations and the same bind-
ing mode of interactions, rendering overall very minor differences in the crystallographic
conformations (Figure 2 and Figure S3).

2.2. Mutational Profiling Analysis of Omicron Variants Identifies Key Identifies Universal and
Variant-Specific Structural Stability and Binding Affinity Hotspots in the SARS-CoV-2 RBD
Complexes with ACE2

We performed MD simulation studies of the RBD–ACE2 complexes for the
BA.1-BA.4/BA.5, BQ.1.1, and XBB variants (Supplementary Materials, Figures S4 and S5).
The RMSD profiles for the RBD residues showed convergence of the MD trajectories for the
BA.2 and XBB.1.5 complexes, where all three trajectories reached a steady equilibrium state
after 400 ns (Supplementary Materials, Figure S4). The divergence of the RMSD profiles
for the XBB.1 complex (Supplementary Materials, Figure S4) suggested a more heteroge-
neous ensemble and a greater flexibility of ACE2. The RMSD profiles for the Omicron
BQ.1.1 RBD showed convergence for all microsecond trajectories, reaching the steady state
after ~300 ns (Supplementary Materials, Figure S5). The RMSDs for the ACE2 displayed a
certain degree of variability among the trajectories of the BQ.1 and BQ.1.1 variants, indicat-
ing functionally significant plasticity of both binding partners in the RBD–ACE2 complexes.
In general, the MD simulations suggested that the RBD residues in the XBB.1.5 and BQ.1.1
complexes undergo relatively moderate fluctuations as compared to the more dynamic
parent variants XBB.1 and BQ.1. Although the conformational dynamics of the Omicron
RBD–ACE2 complexes for all studied variants are generally similar, some variants such as
XBB.1.5 and BQ.1.1 appeared to induce greater stability of the RBD residues and RBD–ACE2
interfaces (Supplementary Materials, Figures S4 and S5).

https://nextstrain.org/


Int. J. Mol. Sci. 2024, 25, 4281 7 of 28

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 29 
 

 

XBB.1 

T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, 

R408S, K417N, N440K, V445P, G446S, N460K, S477N, T478K, E484A, F486S, F490S, R493Q reversal, Q498R, N501Y, Y505H, 

D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K 

XBB.1.5 

T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, 

R408S, K417N, N440K, V445P, G446S,N460K, S477N, T478K, E484A, F486P, F490S, R493Q reversal, Q498R, N501Y, Y505H, 

D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K 

XBB.1.5 + F456L 

T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, 

R408S, K417N, N440K, V445P, G446S, F456L, N460K, S477N, T478K, E484A, F486P, F490S, R493Q reversal, Q498R, N501Y, 

Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K 

XBB.1.5 + L455F/F456L 

T19I, V83A, G142D, Del144, H146Q, Q183E, V213E, G252V, G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, 

R408S, K417N, N440K, V445P, G446S, L455F, F456L, N460K, S477N, T478K, E484A, F486P, F490S, R493Q reversal, Q498R, 

N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K 

 

Figure 1. An overview of the phylogenetic analysis and divergence of Omicron variants including 

XBB variants 23A (XBB.1.5) and 23G (XBB.1.5.70). The graph was generated using Nextstrain, an 

open-source project for real time tracking of evolving pathogen populations 

(https://nextstrain.org/). (A) The phylogenetic analysis focused on BA.2 and XBB lineages. (B) A 

global phylogenetic view of Omicron variants. All colors for Omicron variant clades on the panels 

(A,B) are generated automatically by the Nextstrain program (https://nextstrain.org/). 

 

Figure 2. Structural organization and binding epitopes of the SARS-CoV-2-RBD Omicron complexes
with human ACE enzyme. (A) The cryo-EM structure of the BA.2 RBD -ACE2 complex, pdb id 7XB0
(only RBD is shown). The RBD is in cyan surface, the binding epitope is in green surface, and the
BA.2 RBD mutations are in red. (B) The top view of the BA.2 RBD. The ACE2 binding residues are
shown in pink sticks. (C) The cryo-EM structure of the BA.4/BA.5 RBD -ACE2 complex, pdb id
8AQS (only RBD is shown). The RBD is in cyan surface, the binding epitope is in green surface, the
BA.4/BA.5 RBD mutations are in red. (D) The top view of the BA.4/BA5 RBD. The ACE2 binding
residues are shown in pink sticks. (E) The cryo-EM structure of the XBB.1 RBD -ACE2 complex, pdb
id 8IOV (only RBD is shown). The RBD is in cyan surface, the binding epitope is in green surface,
the XBB.1 RBD mutations are in red. (F) The top view of the XBB.1 RBD with the ACE2 binding
residues shown in pink sticks. (G) The cryo-EM structure of the XBB.1.5 RBD -ACE2 complex, pdb
id 8WRL (only RBD is shown). The RBD is in cyan surface, the binding epitope is in green surface,
the XBB.1.5 RBD mutations are in red. (H) The top view of the XBB.1.5 RBD with the ACE2 binding
residues in pink sticks.

Using conformational ensembles obtained from MD simulations, we performed a system-
atic mutational scanning of the RBD residues in RBD–ACE2 complexes (Figure 3). In silico
mutational scanning was performed by averaging the binding free energy changes over the
equilibrium ensembles, allowing for predictions of the mutation-induced changes of the bind-
ing interactions and the stability of the complex. The resulting mutational scanning heatmaps
were reported for the RBD binding interface residues that made stable contacts with ACE2 in
the course of simulations. To provide a systematic comparison, we constructed mutational
heatmaps for the RBD interface residues of the BA.1 (Figure 3A), BA.2 RBD–ACE2 (Figure 3B),
BA.3 (Figure 3C), and BA.4/BA.5 RBD–ACE2 complexes (Figure 3D), and the BQ.1.1 com-
plex (Figure 3E). Consistent with DMS experiments on SARS-CoV-2 S VOCs [54–60], the
hydrophobic residues Y453, L455, F456, F486, Y489, and Y501 were shown to play a decisive
role in the stability and binding of all Omicron variants. The large destabilization changes
were more pronounced for Y453, L455, and F456, while also showing high sensitivity for
F486, N487, R493, T500, Y501, and H505 residues on ACE2 binding (Figure 3A–C). This
analysis was also consistent with our previous studies, suggesting that these conserved
hydrophobic RBD residues may be universally important for RBD stability and binding
across all Omicron variants [83,84]. The common energetic hotspots Y453, F456, Y489,
and Y501 also emerged as critical stability and binding hotspots in the experimental DMS
studies [54–56]. The mutational scanning heatmap for the S Omicron RBD residues shows
that the largest and most consistent destabilization changes were observed for the Y489 and
Y501 residues (Figure 3). Strikingly, all modifications in these positions resulted in large
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losses of stability and binding affinity. Another group of the interfacial RBD residues that
were shown to make critical contributions to protein stability were at the Y453, L455, and
F456 positions. Mutations in these positions showed a consistent destabilization pattern,
especially in the BA.2 (Figure 3B) and BA.3 variants (Figure 3C). Our results also confirmed
that the Y501 position is the most critical binding affinity hotspot in the S Omicron RBD
complex with ACE2. This is consistent with the experimental data, showing that N501Y
mutation alone can induce a six-fold improvement in binding affinity [85]. Moreover, a
tight cluster of binding affinity hotspots in this region, formed by Y501, R498, S496, and
H505 residues, make the dominant contribution to the binding affinity (Figure 3). Although
structural and dynamic similarities yield fairly similar energetic heatmaps, there are a
number of notable differences that provide insight into the binding mechanisms of the
Omicron variants. Of particular interest are the differences that emerged in the BA.4/BA.5
mutational heatmap (Figure 3D). The structure of the BA.4/BA.5 RBD–ACE2 complex is
similar to other variants, but this variant features the L452Q/R mutation [86]. Additionally,
BA.4 and BA.5 have an additional F486V mutation, along with reversion of R493 back to
the wild-type Q493.
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Figure 3. Mutational profiling of the RBD intermolecular interfaces in Omicron RBD–ACE2 complexes.
The mutational scanning heatmaps are shown for the interfacial RBD residues in the BA.1 RBD–ACE2
complex (pdb id 7WBP) (A), BA.2 RBD–ACE2 complex (pdb id 7XB0) (B), BA.3 RBD–ACE2 complex
(pdb id 7XB1) (C), BA.4/BA.5 RBD–ACE2 complex (pdb id 8AQS) (D) and BQ.1.1 RBD–ACE2
complex (pdb id 8IF2) (E). The standard errors of the mean for binding free energy changes and
are within ~0.11–0.15 kcal/mol, using averages based on a total of 1000 samples obtained from the
three MD trajectories for each complex.

The structure of the BA.4/BA.5 RBD–ACE2 complex showed a loss of interactions
between F486V and the adjacent ACE2 residues F83 and F28 compared to other variants,
while Q493 was shown to have reestablished a hydrogen bond interaction with ACE2 K31
residue, an interaction previously lost with the appearance of the Omicron lineage due
to the charge repulsion between R498 and K31 [86]. One prominent study of BA.4/BA.5
binding suggested a potential reduction of favorable interactions and binding due to both
F486V and R493Q mutations [29], while another study [87] claimed that the F486V muta-
tion in BA.4/BA.5 spike decreases hACE2 binding activity, but also that BA.4/BA.5 RBD
showed higher binding affinity to hACE2 compared with BA.1 and BA.2 spike due to
R493Q reversion. The mutational heatmap for the BA.4/BA.5 variant revealed more
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tolerance in the F486V position, but also smaller changes in the hydrophobic positions
L453 and L455 (Figure 3D). Evolutionary studies have also indicated that BQ.1 and BQ.1.1
convergently increase viral fitness by acquiring substitutions at the R346, N460, and
K444 residues, leading to increased ACE2 binding affinity during evolution from the
BA.5 variant [88]. Consistent with the overall increased stability and binding in BQ.1.1, we
found an increased number of binding hotspots (Figure 3E), particularly in residues Y449,
Y453, L455, and F456 in the middle region of RBD, as well as at positions V486, N487, Y489,
F490, Q493, T500, Y501, and H505. The enhanced affinity of the BQ.1.1 RBD against ACE2
has been linked with N460K, even though N460K is not in direct interface with ACE2 [89].
Our results suggest that N460K can contribute to strengthening of the RBD interaction
network, and could rigidify other important sites at the RBD interface, thus increasing the
contributions of other notable hotspots in the flexible regions. We argue that the BQ.1.1
mutations N40K, R346T, and K444T may act allosterically by stabilizing the key binding
interface segments, despite the fact that these sites themselves are not directly involved in
the interaction with ACE2.

Mutational scanning heatmaps for the XBB variants highlighted a spectrum of bind-
ing free energy changes in the RBD interface residues that maintained stable contacts
with the ACE2 receptor during simulations. First, we noticed a consistent presence of
shared binding energy hotspots across the XBB RBD–ACE2 complexes that correspond
to the hydrophobic centers Y453, L455, F456, Y489, and Y501 (Figure 4). The heatmaps
showed that the Y489 and Y501 hotspots are particularly sensitive to modifications across
all XBB variants, as most of the substitutions in these positions induce significant destabi-
lizing effects with ∆∆G > 2.0 kcal/mol (Figure 4). Previous DMS experiments have also
demonstrated that Y453, L455, F456, F486, and Y489 play a fundamentally critical role in
determining both the structural stability of the RBD fold and binding with ACE2 [54–60].
Mutational maps showed that the increased hydrophobicity in the Y453, L455, and F456 po-
sitions, e.g., Y453F/W and L455F/W, may result in neutral or modestly favorable binding
changes [89]. Interestingly, the three adjacent RBD hotspots Y453, L455, and F456, located
within the central strands comprising the ACE2 interface, showed appreciable epistatic
shifts between BA.2 and BQ.1.1 or XBB.1.5, including prominent epistatic changes in the ef-
fects of mutations Y453W, L455W/F, and F456L, depending on the genetic background [62].

Mutational heatmaps also showed that mutations in the S486 position of XBB.1 (Figure 4A)
are more tolerant as compared to scanning of P486 in the XBB.1.5 variant (Figure 4B), which is
consistent with the more favorable ACE2 binding related to S486P modifications. The heatmaps
of the XBB.1.5 + F456L (Figure 4D) and XBB.1.5 + L455F/F456L FLip variants (Figure 4E)
demonstrated that mutations of P486 at positions other than the reversed P486F mod-
ification are typically only moderately destabilizing and are unlikely to impose significant
binding loss. These results corroborate DMS experiments that quantified the effects of
F486 mutations (F486V/I/S/L/A/P), showing that even though substitutions of F486 can
reduce binding, F486P imposes the lowest cost in RBD affinity loss and has the largest
increase in RBD expression [54–56,60]. Consistent with that, it was found that mutations
in this position exemplified by F486V (present in BA.4/BA.5), F486I, F486S (XBB.1), and
F486P (shared by XBB.1.5, EG.5, EG.5.1, FLip) represent a convergent evolutionary hotspot,
which is one of the major hotspots for escaping neutralization by antibodies. Another crit-
ical site of convergent evolution is reversed R493Q mutation, and mutational scanning
results showed that modifications at Q493 positions are destabilizing (Figure 4). This is
consistent with the notion that R493Q may compensate for partial binding loss incurred by
F486P mutation. Our findings are also in agreement with previous studies showing that
R493Q reversal may induce an increased affinity of the RBD with ACE2 receptor [90]. The
mutational heatmap of the XBB.1.5 Flip RBD residues highlighted the increased stabilization
role of the Y453, F455, and L456 residues (Figure 4E).
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Figure 4. Mutational profiling of the RBD intermolecular interfaces in Omicron RBD–ACE2 complexes. The
mutational scanning heatmaps are shown for the interfacial RBD residues in the XBB.1 RBD–ACE2 complex (A),
XBB.1.5 RBD–ACE2 complex (B), XBB.1.5 + L455F RBD–ACE2 complex (C), XBB.1.5 + F456L RBD–ACE2
complex (D) and XBB.1.5 + L455F/F456L FLip RBD–ACE2 complex (E). The standard errors of the mean for
binding free energy changes and are within ~0.08–0.18 kcal/mol, using averages based on a total of 1000 samples
obtained from the three MD trajectories for each complex.

2.3. Probing Epistatic Relationships in the XBB.1.5 and BQ.1.1 Variants Using
Mutational Scanning

Recent DMS experiments have examined the impacts of all mutational changes and
single-codon deletions in the BQ.1.1 and XBB.1.5 RBDs on ACE2 binding affinity and RBD
folding efficiency, revealing the expanded character of epistatic couplings between RBD
residues in addition to dramatic epistatic perturbations induced by N501Y, namely promi-
nent epistatic interactions between R493Q reversed mutations and mutations at positions
Y453, L455, and F456 that define the newly emerging EG.5.1 and FLip lineages [62]. Strik-
ingly, the epistatic interactions between these sites are background-specific, as mutations
Y453W and F456L have been shown to decrease ACE2-binding affinity 2.2- and 6.6-fold
in the Omicron BA.2 variant but enhance ACE2-binding affinity 7.1- and 1.9-fold in the
XBB.1.5 variant, while L455W has been shown to enhance ACE2-binding affinity 2.5-fold in
BA.2, but decrease affinity 7.4-fold in the XBB.1.5 variant [62]. We compared the results
of the mutational profiling for XBB.1.5 and BQ.1.1 RBD residues with the recent DMS
experiments for three variants (Figure 5) [62].

While correlation between the DMS experiments and mutational scanning data was
observed, we also found a significant dispersion of the distributions (Figure 5). It was
noticed that the computational predictions of destabilizing changes were often larger
than the experimentally observed values. Nonetheless, the scatter plots showed a fairly
appreciable correspondence between the predicted and experimental free energy differences
for large destabilizing changes with ∆∆G > 2.0 kcal/mol (Figure 5). This allowed for
identification of the major binding affinity hotspots, where mutations cause pronounced
energetic changes.
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Figure 5. The scatter plots of the DMS-derived binding free energy changes and computational
mutational scanning of the RBD residues to estimate mutational effects on ACE2 binding. The
effect on ACE2 receptor-binding affinity (∆ log10 KD) of every single amino-acid mutation in
SARS-CoV-2 RBD was experimentally determined by high-throughput titration assays using DMS
experiments. The results of computational mutational scanning were averaged over conformational
ensembles obtained from all-atom MD simulations. The scatter plot of the experimental and com-
puted binding free energy changes for the Omicron XBB.1.5 RBD–ACE2 complex, pdb id 8WRL (A)
and BQ.1.1 RBD–ACE2, pdb id 8IF2 8 (B). The standard errors of the mean for binding free energy
changes are within ~0.16–0.25 kcal/mol, using averages based on a total of 1000 samples obtained
from the three MD trajectories for each complex. The red lines on panels (A,B) represent the regression
lines of the corresponding scatter plots.

To validate the computational model and gain further insights into mechanisms
of epistatic couplings of the RBD hotspots, we probed the role of Omicron changes in
BA.2 to BQ.1.1 and XBB.1.5 that could be responsible for these sign epistatic shifts. Based
on the experimental analysis [46], the residues 453, 455, and 456 were found to be in close
proximity to residue 493, which underwent changes during virus evolution from Q493R in
the BA.1 and BA.2 variants, and reversed R493Q in BQ.1.1 and XBB.1.5.

We compared the DMS and computed correlation plots in which binding free energy
changes were evaluated in the BA.2 and XBB.1.5 backgrounds for residues Y453, L455, and
F456 (Figure 6).

The central focus was on the epistatic changes observed in the DMS data for the
Y453W, L455W, and F456L mutations in the BA.2 and XBB.1.5 variants. This analysis
allowed us to highlight the differences in the effects of mutations depending on the genetic
background, and therefore examine potential epistatic contributions. We found consid-
erable correspondence in patterns of DMS and computed binding free energy changes,
strikingly identifying the same critical mutations as outliers from the linear relationships. It
should be noted that strong correlations between binding free energy changes induced by
mutations in two diverse backgrounds point to positions that produce the same functional
effect regardless of the effects of other residues. This would typically result in the additive
contribution to the binding free energy. Epistasis is a genetic phenomenon where the effect
of one mutation can be altered depending on the presence of other mutations, resulting in
non-additive impacts of mutations on specific functions. The pronounced deviations from
linear correspondences in these plots can be attributed to mutations which have dramati-
cally different effects in the BA.2 and XBB.1.5 variants, and therefore may be implicated
in non-additive epistatic relationships (Figure 6). The scatter plots of binding free energy
changes caused by mutations of Y453 in the BA.2 and XBB.1.5 backgrounds showed a linear
pattern in both DMS analysis (Figure 6A) and computed value (Figure 6B). The Y453W
mutation experimentally yielded ∆G = 0.34 kcal/mol in the BA.2 background, pointing
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to a destabilization effect and an opposite favorable effect of ∆G = −0.44 kcal/mol in the
XBB.1.5 variant (Figure 6A). For the computed changes due to Y453F mutation, the corre-
sponding values were ∆G = 0.75 kcal/mol in the BA.2 variant, and ∆G = −0.27 kcal/mol
in XBB.1.5 (Figure 7B).
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Figure 6. A comparison of the scatter plots for the DMS-based free energy changes and computa-
tional mutational scanning of the RBD residues in the different genetic backgrounds. The effect on
ACE2 receptor-binding affinity (∆ log10 KD) of every single amino-acid mutation in SARS-CoV-2 RBD
was experimentally determined by DMS experiments. The results of computational mutational scanning
were averaged over conformational ensembles obtained from all-atom MD simulations. The standard
errors of the mean for binding free energy changes are within ~0.11–0.19 kcal/mol using averages based
on a total of 1000 samples obtained from the three MD trajectories for each complex. (A) The scatter plot
of the experimental DMS free energy changes induced by mutations of Y453 in the BA.2 and XBB.1.5
backgrounds. (B) The scatter plot of the computed free energy changes induced by mutations of Y453 in
the BA.2 (Q493R) background and XBB.1.5 (R493Q) background. (C) The scatter plot of the experimental
DMS free energy changes induced by mutations of L455 in the BA.2 and XBB.1.5 backgrounds. (D) The
scatter plot of the computed free energy changes induced by mutations of L455 in the BA.2 and XBB.1.5
backgrounds. (E) The scatter plot of the experimental DMS free energy changes induced by mutations of
F456 in the BA.2 and XBB.1.5 backgrounds. (F) The scatter plot of the computed free energy changes
induced by mutations of F456 in the BA.2 and XBB.1.5 backgrounds. The position of the Y453W, L455W,
and F456L mutations are indicated by arrows and annotated. The red lines on panels (A,B) represent the
regression lines of the corresponding scatter plots.

These results are in excellent agreement with the experiment highlighting epistatic
shifts between BA.2 and XBB.1.5, manifested in this case in a dramatic change in the effects
of mutations in different variants [62]. Even more dramatic changes in epistatic shifts
were evident in DMS analysis of the L455W mutation, where the DMS data yielded a
stabilizing effect of ∆G = −0.4 kcal/mol in the BA.2 variant, and an opposite effect of
∆G = 0.87 kcal/mol in the XBB.1.5 variant (Figure 6C). The computational results repro-
duced the opposite trend of L455W in different backgrounds, but the free energy changes
were smaller at ∆G = −0.11 kcal/mol in the BA.2 variant, and ∆G = 0.37 kcal/mol in the
XBB.1.5 variant (Figure 6D). According to the DMS analysis, the mutational change at F456L
is favorable in the XBB.1.5 variant, causing ∆G = −0.29 kcal/mol stabilization, but is unfa-
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vorable in BA.2, inducing a significant destabilizing effect of ∆G = 0.82 kcal/mol (Figure 6E).
Our computational predictions were consistent with the experiments, showing that F456L
is destabilizing with ∆G = 1.17 kcal/mol in the BA.2 variant, but becomes advantageous
for binding in the XBB.1.5 + F456L mutant, leading to ∆G = −0.21 kcal/mol (Figure 6F).
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Figure 7. A comparison of the scatter plots for the DMS-based free energy changes and computa-
tional mutational scanning of the RBD residues in the different genetic backgrounds. The effect on
ACE2 receptor-binding affinity (∆ log10 KD) of every single amino-acid mutation in SARS-CoV-2
RBD was experimentally determined by DMS experiments. The results of computational mutational
scanning were averaged over conformational ensembles obtained from all-atom MD simulations. The
standard errors of the mean for binding free energy changes are within ~0.14–0.22 kcal/mol using
averages based on a total of 1000 samples obtained from the three MD trajectories for each complex.
(A) The scatter plot of the experimental DMS free energy changes induced by mutations of Y453 in the
BA.2 and BQ.1.1 backgrounds. (B) The scatter plot of the computed free energy changes induced by
mutations of Y453 in the BA.2 (Q493R background) and BQ.1.1 (R493Q backgrounds). (C) The scatter
plot of the experimental DMS free energy changes induced by mutations of L455 in the BA.2 and
BQ.1.1 backgrounds. (D) The scatter plot of the computed free energy changes induced by mutations
of L455 in the BA.2 and BQ.1.1 backgrounds. (E) The scatter plot of the experimental DMS free energy
changes induced by mutations of F456 in the BA.2 and BQ.1.1 backgrounds. (F) The scatter plot of the
computed free energy changes induced by mutations of F456 in the BA.2 and BQ.1.1 backgrounds.
The position of the Y453W, L455W, and F456L mutations are indicated by arrows and annotated. The
red lines on panels (A,B) represent the regression lines of the corresponding scatter plots.

Similar agreements with the DMS experiments were found in mutational scanning of the
RBD residues 453, 455, and 456 in the BQ.1.1 variant. The DMS yielded ∆G = 0.34 kcal/mol for
Y453W in the BA.2 variant and ∆G = −0.38 kcal/mol in the BQ.1.1 variant (Figure 7A). For the
computed changes due to Y453F mutation, the corresponding values were ∆G = 0.75 kcal/mol
in BA.2, and ∆G = −0.54 kcal/mol in BQ.1.1 (Figure 7B). For L455W mutation, the DMS
data yielded a stabilizing effect of ∆G = −0.4 kcal/mol in the BA.2 variant, and an op-
posite effect of ∆G = 0.69 kcal/mol in the BQ.1.1 variant (Figure 7C). The computational
results displayed ∆G = −0.11 kcal/mol in the BA.2 variant and ∆G = 0.09 kcal/mol in
BQ.1.1, indicating a less dramatic shift in the BQ.1.1 variant compared to the experimen-
tal evidence (Figure 7D). F456L was found to be favorable in the BQ.1.1 variant, causing
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∆G = −0.29 kcal/mol stabilization, while being unfavorable in BA.2, inducing a significant
destabilizing effect of ∆G = 0.82 kcal/mol (Figure 7E). According to in silico analysis, F456L
was highly unfavorable (∆G = 1.17 kcal/mol) in the BA.2 variant, but neutral in in the
BQ.1.1 (∆G = 0.19 kcal/mol) (Figure 7F). The results demonstrated that epistatic couplings
may be less significant when shifting from BA.2 to BQ.1.1 variants as compared to the
stronger nonadditive effect in the XBB.1.5 variant.

The results confirmed the experimentally observed epistatic couplings for the
XBB.1.5 and BA.2 variants, where the Y453W and F456L mutations had more favorable
effects on binding when coupled with Q493 (XBB.1.5) rather than R493 (BA.2). At the
same time, L455W showed a more favorable binding with R493 in the BA.2 background.
The F456L mutation is particularly well tolerated in XBB.1.5. indicating strong epistatic
contributions are important factors that may drive the evolution of the XBB.1.5 variant.
While an extensive epistatic shift was discovered between Q498R and N501Y mutation
combinations [57,58], the epistatic interactions between Q493, L455F, and F456L were
more gradual. These gradual epistatic changes enable strong ACE2 binding by amplifying
contributions of a small number of binding hotspots, while deploying mutations in other
positions to combat antibody binding. Recent evolutionary studies have suggested a
cumulative effect of many small-effect epistatic modifications, and in the background of
gradual epistatic drifts, a few mutations may occasionally undergo substantial changes in
their effects [91,92].

2.4. Network-Based Community Analysis of Epistatic Couplings in the RBD–ACE2 Complexes

To characterize and rationalize the experimentally observed epistatic effects of the
Omicron mutations, we explored a previously introduced simple clique-based network
model used for describing the non-additive effects of RBD residues. Using the equi-
librium ensembles and dynamic network modeling of the RBD–ACE2 complexes, we
applied mutational scanning to perturb modular network organization, represented by
a chain of inter-connected sable 3-cliques. Specifically, we calculated the probability by
which mutational sites would belong to the same interfacial 3-clique. For this, we gen-
erated an ensemble of 1000 protein conformations from MD simulations of the studied
RBD–ACE2 complexes. To systematically estimate the non-additive effects of XBB.1.5 muta-
tions and L455F/F456L double-site mutations, we constructed dynamic network structures
for each mutant and determined the topological quantities of these networks. By using
mutational changes in the Omicron positions over the course of the MD simulation tra-
jectory for the RBD–ACE2 complexes, we attributed RBD and ACE2 interfacial sites that
belonged to the same 3-clique to have local non-additive effects, while the effects of specific
mutations on changes affected the entire distribution, and the total number of 3-cliques at
the RBD–ACE2 interface were attributed to long-range epistatic relationships. If mutational
sites are arranged in a 3-clique structure, all three sites are connected to each other. As a
result, when one site is mutated, it will have a greater effect on the stability of the complex,
because the other two sites will also be affected. Therefore, the presence of a stable 3-clique
structure can be used as a first predictor of potential local non-additive effects.

We computed and compared the distribution of stability in MD-simulated 3-cliques in
the XBB.1.5 FLip RBD–ACE2 complex (Figure 8), showing that the R498 and Y501 sites can
promote a larger number of stable 3-cliques at the central interfacial patch. These results
highlighted the role of the Q493 position in anchoring multiple interaction clusters with
ACE2 residues, while also indicating some level of dynamic coupling with Y453 and Y489
residues. Q493 participates in the following stable cliques: Q493-H34-Y453, Q493-K31-
Y489, H34-K31-Q493, Q493-K31-F456L, L455F-H34-Q493, and Q35-Q493-H34. In addition,
we detected D30-L455F-F456L, L455F-K31-F456L, F456L-T27-Y489, and D30-K31-F456L
cliques that all share a F456L site and link F456L with L455F and D30, K31, and T27 of
ACE2 (Figure 8). This network-based community analysis revealed that the R498, Y501,
Q493, and F456L positions mediate the vast majority of 3-cliques at the binding inter-
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face, and therefore can be responsible for modulating non-additive epistatic relationships
between RBD residues.
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Figure 8. Structural mapping and full annotation of the intermolecular 3-cliques for the
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orange sticks and ACE2 binding interface residues are shown in pink sticks.

The results are consistent with the DMS studies which discovered extensive epistasis
between the R498 and Y501 combination, also revealing that aromatic substitutions are not
tolerated simultaneously at these positions [57,58,62]. The network analysis also revealed
strong couplings in 3-cliques between Q493, Y453, L455F, and F456L residues, which are
dominated by mediators at the Q493 and F456L positions (Figure 8). According to the
community analysis, the non-additive effects may be accentuated by a chain of linked
3-cliques containing Q493 and F456L residues, in which each pair of nodes/residues is
connected by an edge, indicating a strong mutual interaction among amino acids on these
nodes. These observations showed that the cliques at the middle portion of the interface
are mediated through couplings between Q493, L455F, and F456L. Interestingly, the largest
number of cliques include Q493 and F456L, suggesting that these residues may be key
mediators of non-additive couplings. This also agrees with the latest DMS analysis of
XBB variants, showing the ongoing epistatic drift and epistatic interaction between R493Q
reversion and mutations at the 453, 455, and 456 positions [62]. The network community
analysis showed that the topology of the stable interfacial cliques is preserved between the
XBB.1.5 and XBB.1.5 FLip complexes, but the stability of these cliques and their simulation
life time can change. To quantify the degree of epistasis, we also calculated the ratio of Pab
after double mutations to Pab after single mutations. If the probability of two sites belonging
to the same 3-clique during simulation increased after double mutations, it would indicate
that there was an epistatic effect between the two sites.

We found that the simulation lifetime of stable 3-cliques that involve combined muta-
tions R493Q, L455F, and F456L, particularly for cliques Q493-K31-F456L, L455F-H34-Q493,
D30-L455F-F456L, and L455F-K31-F456L, could increase from ~65–70% for XBB.1.5 to
85–90% for these cliques with mutated L455 and F456 in the XBB.1.5 FLip variant complex.
Hence, the non-additive interactions within cliques that are mediated by R493Q and F456L
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may be strengthened, leading to enhanced stability of the binding interface in the FLip
RBD–ACE2 complex. Hence, a clique-based network model can identify highly corre-
lated and potentially non-additive RBD sites and distinguish them from other mutational
sites that are less likely to experience epistatic shifts. To conclude, mutational profiling
combined with network-based community analysis suggested that the Q493, L455, and
F456 sites mediate stable communities at the binding interface and serve as mediators of
non-additive couplings.

2.5. Mutational Profiling of Spike Protein Binding with Monoclonal RBD Antibodies: Revealing
Central Role of F456L and F486P Mutations in Immune Evasion

We performed structure-based mutational analysis of the S protein binding with dif-
ferent classes of RBD-targeted antibodies, focusing on the role of XBB.1.5 mutations as well
as L455F, F456L, and FLip mutations in mediating resistance to class one antibodies. The
latest functional studies have shown that the EG.5 and EG.5.1 variants display resistance
against S2K146 antibody and a more significant neutralization resistance to Omi-3, Omi-18,
Omi-42, and BD-515 class one monoclonal antibodies [42]. For comparison with the experi-
mental data, we specifically examined S2K146 and Omi-3 antibodies, which were experi-
mentally evaluated for evasion properties against the XBB.1.5 + F456L (EG.5), EG.5.1, and
XBC.1.6 variants [42,43]. The structures of the RBD-targeted antibodies used in this analysis
included S-RBD complex with S2K146 (pdb id 7TAS) [93] and S-RBD Omicron complex with
Omi-3 (pdb id 7ZF3) [94]. Mutational profiling analysis of the RBD-antibody complexes for
the XBB.1.5, XBB.1.5 + L455F, XBB.1.5 + F456L, and XBB.1.5 Flip variants (Figure 9) allowed
for direct comparison, with the reported fold changes in binding constants of antibody
binding for these variants in the background of XBB.1.5.

In the analysis of mutational scanning, we specifically focused on the S-antibody binding
energy changes induced by XBB.1.5 mutations and L455F and F456L modifications (Figure 9).
The binding free energy changes in the S-RBD complex with S2K146 (Figure 9A) showed
appreciable losses of binding upon F456L, F486P, and F490S mutation, revealing that these
substitutions are deleterious for S2K146 binding. At the same time, L455F induced only
modest destabilization changes (Figure 9A). For the Omi-3 antibody, we found that the
F456 position presented the dominant binding affinity hotspot, as the destabilization effect
of the F456L mutation (∆∆G = 2.26 kcal/mol) was significantly stronger than that of the
S2K146 antibody (Figure 9B). Common to both S2K146 and Omi-3 antibodies, we also
observed a considerable loss of binding due to F486P mutation (Figure 9A,B). Specific
for Omi-3 antibody was a destabilizing role of N460K mutation, inducing loss of binding
with ∆∆G = 0.83 kcal/mol (Figure 9B). To further examine the effects of mutations in the
L455 and F456 positions on antibody binding, we also performed complete mutational
scanning of these positions against S2K146 (Figure 9C) and Omi-3 (Figure 9D). We observed
two interesting trends in this analysis. First, all modifications of L455 and F456 positions
resulted in appreciable destabilization changes, and for both positions, the loss of binding
was more significant for the Omi-3 antibody. Importantly, we also found that binding losses
for both antibodies were markedly larger upon mutations in the F456 position (Figure 9D).
Furthermore, while both the L455 and F456 sites correspond to the binding hotspots for
Omi-3 antibody, F456 was found to be far more significant than L455 for binding with
S2K146. These findings are in excellent agreement with neutralization profiling assays
showing that the XBB.1.5 + F456L and EG.5.1 lineages are strongly resistant against Omi-3,
Omi-18, and Omi-42 antibodies, but cause less considerable loss of binding for S2K146
antibody [42]. Mutational scanning analysis of the XBB-antibody binding and experimental
evidence suggested that rapidly surging EG.5 and EG.5.1 variants may have evolved to
improve immune escape against class one RBD antibodies by using F456L and F486P
mutations, but this effect does not seem to be uniform, and some monoclonal antibodies,
such as S2K146, could still bind fairly strongly with XBB variants [42].
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Figure 9. Structure-based mutational profiling of the S-RBD complexes with class 1 of RBD antibodies.
The mutational profiling evaluates the binding energy changes induced by XBB.1.5 mutations in the
RBD-antibody complexes. Mutational profiling of the S-RBD complex with S2K146 (A) and S-RBD
Omicron complex with Omi-3 antibody (B). The binding free energy changes are shown in orange
filled bars. The positive binding free energy values ∆∆G correspond to destabilizing changes and
negative binding free energy changes are associated with stabilizing changes. (C) Mutational scanning
of L455 residue in the RBD-S2K146 complex (maroon bars) and RBD-Omi-3 complex (orange bars).
(D) Mutational scanning of F456 residue in the RBD-S2K146 complex (maroon bars) and RBD-Omi-3
complex (orange bars). The experimental structures of the RBD-antibody complexes are shown for
RBD-S2K146 (E), RBD-Omi-3 (F). The RBD is shown in pink-colored surface representation and the
antibodies are shown in ribbons (heavy chain in magenta and light chain in green-colored ribbons).
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Together, the results of mutational scanning and binding calculations of variants with
ACE2 and antibodies clarified the role of FLip mutations in balancing fitness requirements
for strong ACE2 binding and robust antibody escape. Indeed, our results suggested that
F456L alone may not have a significant effect on ACE2 binding, but could instead mediate
strong epistatic couplings with L455F and Q453 to amplify the favorable contributions
of these residues in ACE2 interactions. At the same time, F456L together with F486P
mutations were shown to be central for mediating antibody resistance, which is consistent
with functional experiments showing that the decreased neutralization of EG.5.1 relative
to XBB.1.5 is primarily driven by XBB.1.5-F456L mutation [42,43]. The findings of our
study provide important quantitative rationale for the latest experimental evidence, which
showed that ACE2 binding can be amplified via epistatic interactions of physically prox-
imal binding hotspots, including Y501, R498, Q493, L455, and F456 residues [46,57,58].
Structure-based mutational scanning of the RBD binding interfaces with representative
class RBD antibodies characterized the role of the L455F and F456L mutations in elicit-
ing broad resistance to neutralization, confirming that F456L and F486P may function
as primary drivers of immune escape while individually incurring moderate changes in
ACE2 binding. Our data also pointed to the key role of R493Q mutation in modulating
affinity-enhancing effects of mutational changes in Y453, L455, and F456, showing that
several key RBD hotspots (N501Y, Q498R and R493Q) can exploit epistatic couplings to
enable strong ACE2 binding affinity.

The observed inter-dependence between binding affinity hotspots and antibody resis-
tance substitutions that is manifested by the epistatic couplings of Y501, R498, Q493, L455,
and F456 residues can facilitate antibody escape and affect the direction of virus evolution,
with potential implications for vaccine design [59]. We suggest that through epistatic cou-
plings revealed in the binding computations and network-based community analysis, the
XBB lineages can leverage and amplify the favorable effect of the binding energy hotspots
(L455, F45, Y489, Q493, R498, and Y501) on ACE2 binding, while the cumulative contri-
bution of other RBD positions may be balanced against their prominent role in invoking
immune evasion. Our findings support a hypothesis according to which the impact on
ACE2 binding affinity is mediated through a small group of universal binding hotspots,
while the effect of immune evasion could be more variant-dependent and modulated
through recruitment of different mutational sites in the adaptable RBD regions [95–98].

3. Materials and Methods
3.1. Structure Preparation and Molecular Dynamics Simulations

The crystal and cryo-EM structures of the Omicron RBD–ACE2 complexes were
obtained from the Protein Data Bank. For simulated structures, hydrogen atoms and
missing residues were initially added and assigned according to the WHATIF program web
interface [99]. The missing regions were reconstructed and optimized using the template-
based loop prediction approach ArchPRED [100]. The side chain rotamers were refined and
optimized using the SCWRL4 tool [101]. The protonation states for all the titratable residues
of the ACE2 and RBD proteins were predicted at pH 7.0 using the Propka 3.1 software and
web server [102,103]. The protein structures were then optimized using atomic-level energy
minimization with composite physics and knowledge-based force fields implemented in
the 3Drefine method [104,105]. We considered glycans that were resolved in the structures.
A NAMD 2.13-multicore-CUDA package [106] with CHARMM36 force field [107] was
employed to perform 1µs all-atom MD simulations for the Omicron RBD–ACE2 complexes.
The structures of the SARS-CoV-2 S–RBD complexes were prepared using Visual Molecular
Dynamics (VMD 1.9.3) [108], x and with the CHARMM-GUI web server [109,110] using
the Solutions Builder tool. Hydrogen atoms were modeled onto the structures prior to
solvation with TIP3P water molecules [111] in a periodic box that extended 10 Å beyond
any protein atom in the system. To neutralize the biological system before the simulation,
Na+ and Cl− ions were added in physiological concentrations to achieve charge neutrality,
and a salt concentration of 150 mM of NaCl was used to mimic a physiological concentration.
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All Na+ and Cl− ions were placed at least 8 Å away from any protein atoms and from each
other. MD simulations were typically performed in an aqueous environment in which
the number of ions remained fixed for the duration of the simulation, with a minimally
neutralizing ion environment or salt pairs to match the macroscopic salt concentration [112].
All protein systems were subjected to a minimization protocol consisting of two stages.
First, minimization was performed for 100,000 steps with all the hydrogen-containing
bonds constrained and the protein atoms fixed. In the second stage, minimization was
performed for 50,000 steps with all the protein backbone atoms fixed, and for an additional
10,000 steps with no fixed atoms. After minimization, the protein systems were equilibrated
in steps by gradually increasing the system temperature in steps of 20 K, increasing from
10 K to 310 K, and at each step, a 1ns equilibration was performed, maintaining a restraint
of 10 kcal mol−1 Å−2 on the protein Cα atoms. After the restraints on the protein atoms were
removed, the system was equilibrated for an additional 10 ns. Long-range, non-bonded
van der Waals interactions were computed using an atom-based cutoff of 12 Å, with the
switching function beginning at 10 Å and reaching zero at 14 Å. The SHAKE method was
used to constrain all the bonds associated with hydrogen atoms. The simulations were
run using a leap-frog integrator with a 2 fs integration time step. The ShakeH algorithm
in NAMD was applied for the water molecule constraints. The long-range electrostatic
interactions were calculated using the particle mesh Ewald method [113] with a cut-off of
1.0 nm and a fourth-order (cubic) interpolation. The simulations were performed under
an NPT ensemble with a Langevin thermostat and a Nosé–Hoover Langevin piston at
310 K and 1 atm. The damping coefficient (gamma) of the Langevin thermostat was 1/ps.
In NAMD, the Nosé–Hoover Langevin piston method is a combination of the Nosé–Hoover
constant pressure method [114] and piston fluctuation control implemented using Langevin
dynamics [115,116]. An NPT production simulation was run on equilibrated structures for
1µs, keeping a constant pressure (1 atm) and the temperature at 310 K.

3.2. Mutational Scanning and Binding Free Energy Computations

Mutational scanning analysis of the binding epitope residues was conducted for all
of the studied RBD–ACE2 complexes. Each binding epitope residue was systematically
mutated using all substitutions and corresponding binding free energy changes were
computed using the BeAtMuSiC approach and webserver [117]. BeAtMuSiC is based
on statistical potentials describing the pairwise inter-residue distances, backbone torsion
angles, and solvent accessibilities, and considers the effect of the mutation on the strength
of the interactions at the interface and on the overall stability of the complex. The binding
free energy of the protein–protein complex can be expressed as the difference in the folding
free energy of the complex and the folding free energies of the two protein binding partners:

∆Gbind = Gcom − GA − GB (1)

The change of the binding energy due to a mutation was then calculated as the following:

∆∆Gbind = ∆Gmut
bind − ∆Gwt

bind (2)

We computed the ensemble-averaged binding free energy changes using equilibrium
samples from simulation trajectories. The binding free energy changes were computed by
averaging the results of over 1000 equilibrium samples for each of the studied systems.

The BeAtMuSiC approach is comparable to other knowledge-based structural methods
such as Dcomplex [118] and physics-based FoldX potentials [119]. A large-scale in silico
mutagenesis study using the BeAtMuSiC approach profiled all possible point mutations
in the RBD residues based on their stability and binding with antibodies and the ACE2
receptor, showing that predictions agreed well with various experimental, epidemiological,
and clinical data [120].
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3.3. Network-Based Community Analysis and Clique-Based Model of Epistatic Interactions

A graph-based representation of protein structures [121] was used to represent residues
as network nodes and the inter-residue edges were used to describe non-covalent residue
interactions. The network edges that defined residue connectivity were based on non-
covalent interactions between residue side-chains. The weights of the network edges in
the residue interaction networks were determined by dynamic residue cross-correlations
obtained from MD simulations [122] and coevolutionary couplings between residues mea-
sured by mutual information scores [123]. The edge lengths in the network were obtained
using the generalized correlation coefficients associated with the dynamic correlation and
mutual information shared by each pair of residues. The analysis of the interaction net-
works was performed using network parameters such as cliques and communities. The
Girvan–Newman algorithm [124] was used to identify local communities. In this approach,
edge centrality (also termed edge betweenness) was defined as the ratio of all the shortest
paths passing through a particular edge to the total number of shortest paths in the network.
The method employed an iterative elimination of edges with the highest number of the
shortest paths that go through them. By eliminating edges, the network broke down into
smaller communities. The algorithm started with one vertex, calculated edge weights
for paths going through that vertex, and then repeated it for every vertex in the graph,
summing the weights for every edge. However, in complex and dynamic protein structure
networks, the number of edges often has the same highest edge betweenness. An improve-
ment on the Girvan–Newman method was implemented, and the algorithmic details of
this modified scheme were given in our recent studies [125].

The k-cliques are complete sub graphs of size k in which each node is connected to ev-
ery other node. A k-clique community is determined by the clique percolation method [126],
a subgraph containing k-cliques that can be reached from each other through a series of
adjacent k-cliques. We used a community definition, which specifies that in a k-clique
community, two k-cliques share k − 1 or k − 2 nodes. Computation of the network parame-
ters was performed using the clique percolation method as implemented in the CFinder
program [127]. Given the chosen interaction cutoff Imin, we typically obtained communities
formed as a union of k = 3 and k = 4 cliques. We assumed that residues that belonged to
the same clique during simulations would have stronger dynamic and energetic couplings,
leading to synchronization and potentially epistatic effects. To examine the epistatic effect
of a mutational site, we compared changes in the k-clique community distributions induced
by single and double mutations, and calculated the probability by which the two mutational
sites belonged to the same interfacial 3-clique [128].

We computed the proportion Pab of snapshots in the ensemble in which the two
mutational sites (a, b) belonged to the interfacial 3-clique:

Pab =
∑N

i=1 Cab(i)
N

(3)

Cab(i) = 1 if (a, b) belonged to the same 3-clique. Pab measured the probability that
two sites (a, b) were kept in some 3-clique due to either direct or indirect interactions. The
closer Pab was to 1, the more likely a and b tended to have a tight connection and potential
local epistasis. To further investigate the effect of mutations on the 3-clique probability,
we compared changes in Pab after single and double mutations. If double mutations had
a greater effect on Pab than single mutations, this indicated the potential presence of an
epistatic effect between the two sites.

4. Conclusions

The results of this study provide a molecular underpinning for experimental findings
suggesting that acquiring functionally balanced substitutions, which optimize multiple
fitness tradeoffs such as immune evasion, high ACE2 affinity, and adequate conformational
adaptability, may represent a prevalent strategy in viral evolutionary trajectory. Functional
investigations have revealed that the pathways of evolution leading to significant enhance-
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ments in the binding affinity of Omicron RBD variants with hACE2 are relatively limited
and demand balancing of diverse fitness tradeoffs, such as maintaining RBD stability,
ACE2 binding, and immune evasion. These considerations may limit the scope for the
virus to develop mutations that substantially increase ACE2 binding affinity without com-
promising immune evasion and stability. Consequently, there is growing recognition that
evolutionary pressures involve a complex interplay of thermodynamic factors, resulting
in the identification of specific Omicron mutational hotspots that enhance ACE2 binding
affinity, while allowing other Omicron sites to evolve immune escape capabilities with
minimal destabilizing consequences.

The results of this study also have implications for predicting the evolution of Omicron
variants through better understanding of how epistasis and allosteric interactions are mod-
ulated by mutations. The advent of DMS technologies, ancestral reconstruction techniques,
and high-throughput assays for protein function can enable direct assessment of mutational
effects. Combining a dynamic view of allostery and exploiting conformational ensembles of
S proteins with profiling the effects of individual mutations on binding in different genetic
backgrounds can complement DMS experiments and also provide a structural basis for
understanding the functional consequences of epistasis. Recent DMS studies [54–60] have
emphasized that mutational effects at different sites in the RBD drift randomly during
evolution. These studies and our computational results have indicated that some Omicron
RBD mutations can have conserved binding and stability effects across different genetic
backgrounds, while the effects of mutations in other RBD positions may vary drastically
as a result of epistatic couplings, thus making the effects of mutations less predictable as
proteins evolve [92]. The results of our study are consistent with the idea that epistatic
couplings between binding affinity hotspots may allow for accumulation of diverse and
functionally beneficial (but binding neutral) mutations in other positions to balance im-
mune evasion and ACE2 binding. The revealed patterns are reminiscent of direct evolution
studies, showing that enhanced protein stability can promote broader evolvability and
emergence of beneficial mutations through suppression of deleterious changes [96–98]. The
related ideas of the “epistatic ratchets” and “pivot mutations” that interact with other muta-
tions via epistasis suggest that the formation of multiple epistatically interacting mutations
during evolution makes the reversal of ancestral phenotypes increasingly difficult [129,130].
On other hand, phenotypic shifts caused by single or additive genetic changes are likely to
be readily reversible. These arguments are consistent with the decisive role of the stable
epistatic hotspots Y501 and R498 in ACE2 binding and the presence of epistatic drift in other
RBD sites that mediate immune evasion properties and may determine future “pockets” of
evolutionary changes. Most recent studies have identified “evolvability-enhancing” muta-
tions that could create a genetic background where subsequent mutations are more likely
to be beneficial relative to mutations acquired on an ancestral background [131,132]. The
relationships between epistatic interactions and evolution are complex and while the effects
of some mutations follow predictable fitness-correlated patterns, these patterns depend on
the biological system and on the physical underpinnings of particular phenotypes, such as
protein binding. Although the proposed ensemble-based mutational profiling of the spike
residues can enable robust assessment of mutational effects on stability and binding with
antibodies and the ACE2 receptor, the predictions are limited to a simplified contact-based
analysis of epistatic couplings and are often insufficient for capturing complex fitness
landscapes of virus evolution. Future studies dissecting mechanisms of Omicron mutations
could benefit from the integration of DMS experiments with evolutionary modeling of
epistasis, prediction of allosteric interactions, and in silico mutational profiling of confor-
mational ensembles that can quantify the dynamic effect of mutations on allosteric and
epistatic interactions across different genetic backgrounds.
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