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Abstract: Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by
pancreatic β-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the
β-cells of patients with type 2 diabetes and hypoxia, in turn, contributes to the insulin secretion defect
and β-cell loss through various mechanisms, including the activation of hypoxia-inducible factors,
induction of transcriptional repressors, and activation of AMP-activated protein kinase. This review
focuses on advances in our understanding of the contribution of β-cell hypoxia to the development
of β-cell dysfunction in type 2 diabetes. A better understanding of β-cell hypoxia might be useful in
the development of new strategies for treating type 2 diabetes.
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1. Introduction

Diabetes mellitus, a chronic condition marked by hyperglycemia, is one of the leading
causes of death and disability worldwide. It is estimated that 529 million people were
living with diabetes globally in 2021, with type 2 diabetes accounting for 96.0% of all cases,
and the number of people with diabetes is projected to more than double to 1.3 billion
people worldwide by 2050 [1]. Type 2 diabetes results from the complex interplay of
multiple genetic and environmental factors. The genetic background causes insulin resis-
tance and β-cell dysfunction, while being overweight and physical inactivity exacerbates
these metabolic abnormalities [2–4]. Impaired insulin secretion and insulin resistance are
characteristic features of type 2 diabetes [2]. In insulin resistance, pancreatic β-cells increase
insulin secretion to maintain normal glucose tolerance; however, when β-cells are incapable
of increasing insulin secretion, the plasma concentration of glucose increases. Prolonged
exposure to hyperglycemia has deleterious effects on β-cell number and function, a concept
known as glucotoxicity, and this leads to the development and progression of type 2 dia-
betes [5–7]. Hyperglycemia exerts its toxic effects through various mechanisms, including
oxidative stress, endoplasmic reticulum (ER) stress, and inflammation [8–10]. However,
recent studies have indicated that hyperglycemia also induces hypoxia in β-cells [11–13].
Hypoxia, in turn, contributes to β-cell dysfunction via several mechanisms, including
the activation of the hypoxia-inducible factor (HIF) pathway [14,15]. Here, we review
the current knowledge on β-cell hypoxia, focusing on impaired insulin secretion in type
2 diabetes. A better understanding of β-cell hypoxia might be useful in the development of
new strategies for treating type 2 diabetes.

2. Induction of Hypoxia in Pancreatic β-Cells by Hyperglycemia

In normoxic pancreatic β-cells, glucose is metabolized into pyruvate via glycolysis
and is further oxidized in the mitochondria to produce adenosine triphosphate (ATP) via
oxidative phosphorylation. An increase in ATP closes ATP-sensitive potassium channels,
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leading to membrane depolarization, calcium influx, and the exocytosis of insulin [16]. Cel-
lular oxygen levels are regulated by the balance between the supply and demand of oxygen,
and hypoxia occurs when oxygen consumption exceeds the oxygen supply. Given the high
demand of mitochondrial oxidative phosphorylation during insulin secretion, β-cells con-
sume large amounts of oxygen. Indeed, we, and others, have demonstrated that pancreatic
islets and β-cell lines readily become hypoxic under high-glucose conditions [11–13,17].
These studies have also shown that the islets in animal models of type 2 diabetes are
hypoxic [11–13]. Thus, β-cell hypoxia occurs in vivo. In addition, there is a decrease in
blood flow in the islets of animal models of type 2 diabetes [18]. Therefore, insufficient
oxygen supply might also be involved in β-cell hypoxia in vivo.

The oxygen tension of most mammalian cells is in the range of 20–65 mmHg (equiva-
lent to 3–9% O2) [19] and the mean tissue oxygen tension at the surface of normal mouse
islets is 44.7–45.7 mmHg (6.3–6.4% O2) [20]. Hypoxic responses are reported to occur
at 0.5–5% oxygen tension in culture conditions in vitro [21]. Consistently, exposure of
MIN6 β-cells to 5% oxygen tension causes cellular hypoxia with impaired insulin secre-
tion and inhibits β-cell growth; 3% oxygen tension readily induces apoptosis, indicating
that moderate hypoxia is a stress factor for β-cells and reduces β-cell number and func-
tion [22,23]. Therefore, hypoxic stress is a likely mechanism that underlies β-cell failure in
type 2 diabetes [22,24,25] (Figure 1).
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tor family and consist of an oxygen-sensitive HIF-α subunit and a constitutively expressed 
HIF-1β/aryl hydrocarbon receptor nuclear translocator (ARNT) subunit [21,26,27]. There 
are three forms of HIF-α (HIF-1α, HIF-2α, and HIF-3α), but the majority of HIF transcrip-
tional responses seem to be attributed to HIF-1α and HIF-2α [28]. During normoxic con-
ditions, HIF-α is hydroxylated at the two proline residues within the oxygen-dependent 
degradation domain by prolyl hydroxylase domain (PHD) proteins in the presence of ox-
ygen, 2-oxoglutarate, and iron. Hydroxylated HIF-α subunits are polyubiquitylated by 
von Hippel–Lindau protein and targeted for proteasomal degradation. Under hypoxic 
conditions, HIF-α subunits are prevented from hydroxylation by PHD proteins and sub-
sequent degradation. As a result, stabilized HIF-α dimerizes with HIF-1β and activates a 
large number of target genes, including those involved in glycolysis, erythropoiesis, and 
angiogenesis by binding to the hypoxia response elements in their promoter regions. 

Three forms of PHD proteins (PHD1, PHD2, and PHD3) are expressed in β-cells [29] 
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Figure 1. Role of hypoxic stress in pancreatic β-cells. Hyperglycemia induces hypoxia in β-cells,
mostly due to the high levels of oxygen consumption required for insulin secretion. Hypoxia, in turn,
exerts deleterious effects on β-cell function and number, leading to progressive β-cell failure in type
2 diabetes.

3. Roles of HIFs in Pancreatic β-Cells

The maintenance of oxygen homeostasis is important for ATP production and energy
availability in cells. Therefore, all mammals have processes to sense, respond to, and correct
hypoxia. HIFs are the key regulators of oxygen homeostasis in the cellular response to
hypoxia. HIFs are members of the basic helix-loop-helix Per-Arnt-Sim transcription factor
family and consist of an oxygen-sensitive HIF-α subunit and a constitutively expressed
HIF-1β/aryl hydrocarbon receptor nuclear translocator (ARNT) subunit [21,26,27]. There
are three forms of HIF-α (HIF-1α, HIF-2α, and HIF-3α), but the majority of HIF tran-
scriptional responses seem to be attributed to HIF-1α and HIF-2α [28]. During normoxic
conditions, HIF-α is hydroxylated at the two proline residues within the oxygen-dependent
degradation domain by prolyl hydroxylase domain (PHD) proteins in the presence of
oxygen, 2-oxoglutarate, and iron. Hydroxylated HIF-α subunits are polyubiquitylated by
von Hippel–Lindau protein and targeted for proteasomal degradation. Under hypoxic
conditions, HIF-α subunits are prevented from hydroxylation by PHD proteins and sub-
sequent degradation. As a result, stabilized HIF-α dimerizes with HIF-1β and activates a
large number of target genes, including those involved in glycolysis, erythropoiesis, and
angiogenesis by binding to the hypoxia response elements in their promoter regions.

Three forms of PHD proteins (PHD1, PHD2, and PHD3) are expressed in β-cells [29]
and HIF-1α is degraded rapidly under normal oxygen conditions. However, HIF-1α is
present in normoxic β-cells [30]. Glucose transporter type 2 (GLUT2) is a low-affinity glu-
cose transporter that is required for the maintenance of normal glucose-stimulated insulin
secretion in β-cells [31]. Glucokinase (GCK), a rate limiting enzyme of glycolysis, acts as
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a glucose sensor for physiological insulin secretion in β-cells [32]. Interestingly, deletion
of the Hif1a gene in β-cells causes impaired insulin secretion and glucose intolerance in
mice with a decreased expression of Slc2a2 (encoding GLUT2) and Gck (encoding glucok-
inase) [30]. Consistently, HIF-1α knockdown decreases Slc2a2 and Gck expression levels
and markedly suppresses insulin secretion in MIN6 β-cells under normoxic conditions [30].
Thus, HIF-1α expression at basal levels is essential for insulin secretion, although the un-
derlying mechanisms for the decreased expression of Slc2a2 and Gck by HIF-1α deficiency
are unclear (Figure 2A,B). Furthermore, HIF-1α protects against β-cell destruction in type
1 diabetes, the autoimmune type of diabetes [33,34]. In addition, HIF-1β/ARNT deficiency
also impairs insulin secretion by β-cells [35,36]. Intriguingly, reduced HIF-1α and HIF-
1β/ARNT expression has been observed in the islets of type 2 diabetic patients [30,35].
Furthermore, HIF-1 signaling is complexly repressed by hyperglycemia through PHD
protein-dependent mechanisms [15,37]. These observations strongly suggest that HIF-1
proteins play an important role in maintaining β-cell function, and the impairment of HIF-1
signaling is involved in β-cell dysfunction in type 2 diabetes.

In contrast, it has also been reported that HIF-1 expression is increased in the β-cells
of various diabetic animals, including ob/ob mice, mice fed a high-fat diet, and db/db
mice [12,38]. Sustained HIF-1 overexpression in β-cells by the deletion of the Vhl gene
(encoding the von Hippel–Lindau protein) causes impaired insulin secretion and glucose
intolerance in mice [39–41], indicating that the upregulation of HIF-1α is deleterious to
β-cell function and contributes to diabetes. HIF-1 activates the transcription of genes en-
coding glucose transporter type 1 (GLUT1), glycolytic enzymes (e.g., glucose-6-phosphate
isomerase and phosphoglycerate mutase 1), pyruvate dehydrogenase kinase 1 (PDK1),
lactate dehydrogenase A (LDHA), and monocarboxylate transporter 4 (MCT4) [42]. PDK1
inactivates pyruvate dehydrogenase, the enzyme that converts pyruvate into acetyl-CoA
for the mitochondrial tricarboxylic acid cycle. LDHA stops the entry of pyruvate into the
tricarboxylic acid cycle by converting it into lactate, and MCT4 promotes the extrusion of
lactate from cells. Consequently, the main impact of HIF-1 in glucose metabolism is a shift
in energy metabolism from mitochondrial respiration to glycolysis. However, mitochon-
drial oxidative metabolism plays a critical role in the control of insulin secretion [43]. The
deleterious effects of HIF-1α on insulin secretion might be explained by the attenuation
of mitochondrial activity (Figure 2C). Intriguingly, the treatment of diabetic mice with the
HIF-1α inhibitor PX-478 improves insulin secretion and glucose tolerance [38], suggesting
that the inhibition of HIF-1α might be a potential treatment for type 2 diabetes (Figure 2D).
Taken together, these results indicate that a balanced and adequate amount of HIF-1 activity
is necessary for normal insulin secretion by pancreatic β-cells.

HIF-2α, a paralog of HIF-1α, also dimerizes with HIF-1β to activate target genes
in response to hypoxia. However, HIF-1α and HIF-2α play distinct roles in β-cells. As
described above, β-cell-specific Hif1a knockout mice exhibit impaired insulin secretion and
glucose intolerance [30]. In contrast, HIF-2α deficiency in β-cells does not impair insulin
secretion or glucose tolerance in mice on a normal chow diet [44]. A chronic increase in
mitochondrial metabolism enhances electron flux along the mitochondrial transport chain,
resulting in an increased production of reactive oxygen species (ROS) [44–46]. HIF-2α plays
important roles in the regulation of cellular redox state by activating anti-oxidant gene
expression, including Sod2 (encoding superoxide dismutase 2) and Cat (encoding catalase),
and protecting against mitochondrial damage by ROS [47]. Consistently, the expression
of anti-oxidant genes is decreased in the islets of β-cell-specific Hif2a knockout mice and
these mice develop impaired insulin secretion and glucose intolerance when fed a high-fat
diet [44]. These results indicate that HIF-2α preserves β-cell function under metabolic
overload conditions by stimulating anti-oxidant gene expression.
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Figure 2. Roles of hypoxia-inducible factor (HIF)-1 in insulin secretion by β-cells. (A) Glucose is
metabolized via the glycolytic pathway and mitochondrial oxidative phosphorylation, resulting in the
generation of adenosine triphosphate (ATP), KATP channel closure, Ca2+ entry, and insulin exocytosis.
Under normoxic conditions, HIF-1α is degraded by von Hippel–Lindau (VHL) proteins. (B) HIF-1α
is degraded under normal oxygen conditions, but remains present in normoxic β-cells. HIF-1α
deficiency causes impaired insulin secretion with a decreased expression of glucose transporter
type 2 (GLUT2) and glucokinase (GCK). (C) HIF-1α overexpression switches glucose metabolism
from mitochondrial oxidation to glycolysis, thereby leading to the attenuation of mitochondrial
activity and impaired insulin secretion. (D) Treatment with the HIF-1α inhibitor PX-478 prevents the
upregulation of HIF-1α targets (GLUT1, HK2, LDHA, and PDK1) and restores insulin secretion in
metabolic workload. HK2, hexokinase 2; LDHA, lactate dehydrogenase A; MCT4, monocarboxylate
transporter 4; PDH, pyruvate dehydrogenase; PDK1, pyruvate dehydrogenase kinase 1.

4. Roles of Transcriptional Repressors in Hypoxic β-Cells

HIFs function mainly as transcriptional activators; however, transcriptional repression
also occurs to inhibit energy-demanding processes under hypoxic conditions [48]. Indeed,
approximately 5% of genes, including some involved in insulin secretion, are downreg-
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ulated in hypoxic islets and MIN6 β-cells [22,23,49], indicating that gene repression is
another important adaptive response to hypoxia in β-cells. Global gene expression anal-
ysis revealed that basic helix-loop-helix family member E40 (BHLHE40) and activating
transcription factor 3 (ATF3) are hypoxia-induced transcriptional repressors in pancreatic
β-cells (Figure 3) [23].
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Figure 3. The transcriptional repressor basic helix-loop-helix family member E40 (BHLHE40) is
highly induced in hypoxic β-cells. BHLHE40 inhibits insulin secretion by suppressing the expression
of musculoaponeurotic fibrosarcoma oncogene family A (MAFA), a transcription factor that regulates
insulin exocytosis, and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), which
plays important roles in mitochondrial biogenesis and adenosine triphosphate (ATP) production.

BHLHE40 (also referred to as DEC1/SHARP2/STRA13) is a member of the basic
helix-loop-helix family and functions as a transcriptional repressor by binding to DNA at
class B E-box motifs [50,51]. The transcription factor musculoaponeurotic fibrosarcoma
oncogene family A (MAFA) plays a critical role in glucose-stimulated insulin secretion
by regulating the expression of genes involved in insulin exocytosis, including Stxbp1
(encoding MUNC18-1) and Stx1a (encoding syntaxin 1A) [52,53]. Peroxisome proliferator-
activated receptor-γ coactivator 1α (PGC-1α), which is encoded by Ppargc1a, regulates
mitochondrial biogenesis and ATP production [54]. Expression of the transcriptional
repressor BHLHE40 is highly induced in β-cells by hypoxia and suppresses insulin secretion
by repressing the expression of Mafa and Ppargc1a. Consistently, β-cell-specific Bhlhe40
deficiency improves insulin secretion and glucose intolerance in ob/ob mice.

ATF3 also suppresses the expression of the genes involved in glucose metabolism,
including Ins1 (encoding insulin-1), Ins2 (encoding insulin-2), and Irs2 (encoding insulin
receptor substrate 2) [23,55,56]. Furthermore, the hypoxia-induced upregulation of the
pro-inflammatory Il1b and pro-apoptotic Noxa genes, as well as the activation of caspase-3,
are suppressed by Atf3 deficiency in MIN6 β-cells [23,56,57]. These findings also indicate
that the transcriptional repressor ATF3 is involved in hypoxia-induced β-cell dysfunction
and loss.

5. Hypoxia Regulates Several Stress Pathways in β-Cells

5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolution-
arily conserved serine/threonine kinase. AMPK is activated in response to energy stresses,
such as hypoxia, by sensing the increase in AMP and/or the adenosine diphosphate/ATP
ratio in cells and restores the energy balance by inhibiting anabolic processes that consume
ATP, while promoting catabolic processes that generate ATP [58,59]. Hepatocyte nuclear
factor 4α (HNF4α), a transcription factor belonging to the nuclear receptor superfamily,
plays a critical role in insulin secretion [60,61]. We found that the hypoxia-induced activa-
tion of AMPK reduces insulin secretion by reducing the stability of HNF4α [62]. Therefore,
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downregulation of HNF4α by AMPK activation might be involved in impaired insulin
secretion under hypoxic conditions.

Impaired protein homeostasis (termed proteostasis) in the ER leads to the accumu-
lation of unfolded and abnormally folded proteins, called ER stress, which activates the
ER unfolded protein response (UPRER) to mitigate proteotoxic stress [63,64]. Hypoxia
increases β-cell death by inhibiting the expression of adaptive UPRER genes, including
Hspa5 (encoding heat shock protein family A member 5), Hsp90b1 (encoding heat shock
protein 90 beta family member 1), Fkbp11 (encoding FKBP prolyl isomerase 11), and spliced
Xbp1 (encoding X-box binding protein 1). These inhibitory effects of hypoxia are mediated
by the activation of c-Jun N-terminal kinase and DNA damage-inducible transcript 3, but
are independent of HIF-1α [65]. Inactivation of UPRER could be a cellular mechanism for
increased cell death by hypoxic stress.

Oxidative stress is provoked in various tissues under high-glucose conditions. Of
note, β-cells are particularly vulnerable to ROS due to their low expression levels of antiox-
idant enzymes, including catalase, glutathione peroxidase, and mitochondrial manganese
superoxide dismutase, and ROS produced in β-cells reduce insulin gene expression by
decreasing the expression and/or DNA binding activity of the pancreatic and duodenal
homeobox 1 (PDX1) transcription factor [66,67]. Intriguingly, hypoxia also increases ROS
generation at the mitochondrial electron transport chain [68,69]. These results strongly
suggest that hypoxia-induced ROS production is also involved in β-cell dysfunction.

From the above, hypoxia affects multiple steps during the process of glucose-stimulated
insulin secretion. Specifically, hypoxia attenuates insulin secretion by shifting glucose
metabolism from mitochondrial respiration to glycolysis through the activation of HIF-1.
Hypoxia also inhibits insulin secretion by suppressing the expression of MAFA (exocy-
tosis) and PGC-1α (ATP production) through the activation of transcriptional repressor
BHLHE40. In addition, the hypoxia-induced activation of AMPK downregulates the ex-
pression of HNF4α, leading to defective insulin secretion. Furthermore, hypoxia-induced
ROS production might inhibit insulin gene expression through the dysregulation of PDX1
(Figure 4).
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6. Conclusions

In diabetes, pancreatic β-cells are locked in a vicious cycle, in which an impaired
insulin response to glucose produces hyperglycemia, which makes β-cells more inefficient
at insulin secretion, and an improvement in hyperglycemia results in at least a partial
recovery of β-cell function [5]. As described in this review, hypoxia makes β-cells suscepti-
ble to dysfunction and failure, and the inhibition of HIF-1α activity and the suppression
of BHLHE40 expression improve insulin secretion and hyperglycemia in animal models
of diabetes, suggesting that hypoxia might be a novel target for the treatment of type
2 diabetes and that improving hypoxia might be beneficial for preventing progressive β-cell
dysfunction in type 2 diabetes. However, hypoxia also induces ATF3 expression, AMPK
activation, UPRER inactivation, and ROS production (Figure 5). Furthermore, HIF-1α
mainly drives the response to acute hypoxia, and its expression decreases during pro-
longed hypoxia [70,71]. Therefore, the severity and duration of hypoxia might differentially
activate adaptive responses in β-cells. A more in-depth characterization of the relative
contribution of each adaptive pathway in the process of β-cell hypoxia is necessary to
deepen our understanding of the pathophysiology of type 2 diabetes. Further work will
provide new knowledge about the impact of hypoxic stress in β-cell dysfunction, as well as
the effectiveness of β-cell hypoxia as an anti-diabetic therapeutic target.
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Figure 5. Roles of hypoxia in β-cell function and number. Hypoxia causes impaired insulin secretion
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E40 (BHLHE40). Hypoxia also suppresses insulin secretion through the activation of adenosine
monophosphate-activated protein kinase (AMPK) and the induction of reactive oxygen species (ROS),
whereas, it promotes β-cell death via the induction of activating transcription factor 3 (ATF3) and the
inhibition of the endoplasmic reticulum unfolded protein response (UPRER).
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