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Abstract: Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their
unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes
during their propagation in vitro. In this study, we investigated whether polyploidy can compromise
MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of
polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta,
and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through
all comparisons. Then, we selected the master regulators using the protein interaction enrichment
analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained
from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC.
The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that
polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from
the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity,
DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage
associated with the NUA4/TIP60 complex. These features were complemented by the activation of
the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the
pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that,
although polyploidy does not induce oncologic transformation of MSC, it might compromise their
therapeutic properties because of global epigenetic changes and alterations in fundamental biological
processes. The obtained results can contribute to the development and implementation of approaches
enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.

Keywords: cancer cell; mesenchymal stem cell; oncologic safety; therapeutic properties; circadian clock;
polyploidy; DNA damage; chromatin opening; NUA4/TIP60; histone acetylation; cilia; centrosome;
hypertranscription

1. Introduction

Mesenchymal stem cells (MSC), commonly referred to as “adult stem cells”, are
multipotent stromal cells of diverse origins. The highest concentrations of these cells are
found in the bone marrow, umbilical cord blood, placenta, endometrium, and adipose
tissue [1,2]. According to the concept of the perivascular origin of MSC, these cells are
ubiquitously present in almost all vascularized tissues [3]. The remarkable properties
of MSC include the ability to self-renew and multipotently differentiate into various cell
types such as osteoblasts, chondrocytes, myocytes, and adipocytes [4–7]. In addition, they
exhibit the production of a variety of beneficial growth factors and cytokines [8,9], which
distinguishes them from other cell types [5].

Attracting attention of both scientists and clinicians, MSC have gained increasing
importance due to their unique properties that make them exceptionally valuable for
medical applications. Noteworthy, among these qualities are their ease of isolation and
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cultivation, plasticity, and their inherent tropism for damaged areas—a phenomenon known
as homing [10]. In addition, MSC are effective modulators of inflammatory responses,
promoting processes of tissue repair, healing or regeneration through the production of
numerous mediators, cytokines, chemokines, and signaling molecules [11].

While exhibiting anti-inflammatory, anti-apoptotic, and antibacterial effects in dam-
aged tissues, MSC also have the ability to activate other resident stem cells and stimulate
neo angiogenesis [10]. The clinical picture reflects the growing importance of MSC: more
than 1450 clinical trials of MSC involving several thousand patients have been registered
(www.clinicaltrials.gov assessed on 14 December 2023). Despite the ongoing evolution of
the scientific understanding of stem cell tissue differentiation, transplantation, and inte-
gration [12], MSC have already become a reality in clinical settings due to their enormous
therapeutic potential [3]. The natural scarcity of MSC in adult tissues requires extensive
ex vivo culture to achieve significant numbers of cells for clinical use [5]. However, this
in vitro expansion process creates problems that contribute to the manifestations of aging,
genetic instability, and accelerated polyploidization, which leads to the accumulation of
additional genomes in cells of both human and murine origin [3,13]. Although aging
and genetic instability are generally accepted criteria for treatment failure, the impact of
polyploidy in this context remains largely unexplored [1,2].

The phenomenon of polyploidy Implies complete duplication of the entire genome [14,15].
Unlike aneuploidy and polyteny, polyploidy is not accompanied by large-scale chromoso-
mal rearrangements, including deletions, insertions, and translocations, because it main-
tains gene dosage balance [14,16]. Apparently, that is why polyploidy has only recently
started to attract attention. At the same time, polyploidy can promote gene expression
deregulation via epigenetic changes caused by chromatin opening originating from an
altered nuclear surface to volume ratio and other rearrangements of chromatin architec-
ture [17]. Currently, polyploidy is considered as a prerequisite of global DNA instability
and aneuploidy [18–20]. It is also important to note that recent investigations revealed a
tight association between polyploidy and genome instability that appears during DNA
replication in the first S phase following induction of tetraploidy [18,21]. It was also es-
tablished that polyploidy in proliferating cells can provoke malignancy via unscheduled
polyploidy [18,21,22]. Moreover, polyploidy is a prevailing large-scale epigenetic defect
in human cancer, contributing significantly to the genesis of approximately 30–40% of all
solid tumors, often manifesting as early events in tumorigenesis [18,22–28].

Currently, the impact of polyploidy on the oncological safety of MSCs remains largely
unexplored. At the same time, there is evidence that polyploidy can enhance signaling
pathways related to stemness, morphogenesis, growth, and survival that are able to promote
carcinogenesis [29]. Thus, in adipose tissue, polyploid MSC show elevated levels of
specific stemness factors compared to their diploid counterparts, including Krueppel-like
Factor 4 (KLF4) and secreted growth factors such as Insulin-like Growth Factor 1 (IGF1),
reflecting a promotion of the embryonic phenotype and activation of signaling pathways
related to growth processes [30]. Accordingly, the investigations of murine heart interstitial
cells revealed that tetraploid cells exhibit a higher proliferative potential than diploid
counterparts, demonstrating an ability to evade senescence associated with DNA instability
and endomitosis [31]. In essence, these findings collectively imply that polyploidy has
the capacity to modify the biological properties of MSC and the composition of their
secreted paracrine factors, potentially compromising the oncological safety of both the
MSC themselves and the cells they interact with.

In this study, we focused on the identification of the common features of polyploidy,
primarily related to the oncogenic potential in cells with valuable therapeutic properties,
such as MSC. The investigation of how polyploidy affects oncological safety of MSC, will
enables us to further improve their clinical properties and will lead to a better understand-
ing of ploidy-related mechanisms of gene regulation. For this purpose, we utilized an
extensive comparative transcriptome analysis of the publicly accessible gene expression
datasets containing evidence of ploidy-associated gene expression changes in cancer cells
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and in MSC. We used this comparative approach because of its ability to reveal fundamen-
tal, evolutionarily conserved traits in transcriptome and gene regulatory networks that are
common in cells with different specialization and proliferation abilities [32].

The extensive search of databases with appropriate quality yielded four databases
obtained with MSC of various origins (i.e., MSC of mouse bone marrow, human and mouse
placenta, and mouse interstitial cardiac cells) [31,33–35]. In all these databases, the authors
presented and compared mRNA seq data for isolated and sorted tetraploid and diploid cells.
Moreover, in all studies the authors declared that they focused only on polyploidy—related
features. For cancer cells, we used the comprehensive database integrating sequencing
data from roughly 10,000 primary human cancer samples and essentiality data from ap-
proximately 600 cancer cell lines [22]. Here we identified and investigated the common
effects of polyploidy, i.e., the effects that are evolutionarily conserved in cancer cells and in
MSC. To find these fundamental effects, we revealed common manifestations of polyploidy
by analyzing consistently ploidy up- or downregulated genes through all databases and
all comparisons.

To validate the applicability of the identified ploidy-associated gene signatures to
other clinically relevant cell types, we compared the obtained results with the mRNA
sequencing data related to cardiac progenitor cells (CP) and young cardiomyocytes (CARD)
obtained from the iPSC of the patients diagnosed with hypoplastic left ventricle (HPLV)
syndrome and of healthy people [36]. We choose this particular database because HPLV is
associated with a dramatic hyperpolyploidization of both CP and CARD cell types [36].
To our knowledge, this study is the only one where the authors carefully investigated
changes in both the transcriptome and the ploidy of cardiomyocytes and their progenitors
influenced by HPLV. In this paper, we focused only on the consensus ploidy-deregulated
genes whose expression changed similarly in all compared cell types.

Overall, our data revealed no link between features of oncogenic transformation
and polyploidy in MSC. At the same time, we found that polyploidy induces a dramatic
reorganization of basic biological properties and therefore can alter therapeutic properties
of clinically relevant MSC, CP, and CARD. Specifically, our results identified a functionally
cohesive picture of ploidy-related changes that are coordinated by the activation of the
NUA4/Tip60 chromatin opening complex operating via histone acetylation.

2. Results
2.1. Characterization of Ploidy Regulated Gene Sets

The analysis of the consensus ploidy up- and downregulated gene sets was performed
using two different approaches. In the first approach, we investigated the complete sets of
358 upregulated genes and of 425 downregulated genes (Supplementary Tables S1 and S2).
In the second approach, we focused only on the essential regulators (hub genes) identified
by the gene-centered protein interaction enrichment analysis (PIEA) [37]. This procedure
yielded 113 ploidy-induced and 105 ploidy-inhibited essential regulators demonstrating
consistent ploidy-dependent expression (Supplementary Tables S3 and S4). We applied this
approach because it can distinguish between the genes that really drive disease (i.e., hub
regulators) and those that are just associated with the disease but do not play an essential
role [38–40].

Below we provide a detailed functional description of the most important groups of
the enriched gene modules that were revealed by the Metascape and the collection of gene
signature analysis (see methods, please). We also paid attention to molecular complexes
identified by the MCODE clustering algorithm implemented in Metascape [41]. In addition,
we analyzed gene composition for essential pathways with unclear functions but implicated
in cancer and cell activation using the String server [42].
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2.2. Gene Modules Upregulated by Polyploidy Reveal Global Transcriptome Activation
2.2.1. Polyploidy Promotes Housekeeping Functions

The pathway enrichment analysis uncovered a comprehensive picture indicating that
polyploidy enhances the transcriptome. This is evident from the features of hypertran-
scription, such as the activation of housekeeping functions and the upregulation of gene
modules containing evolutionarily conserved essential genes that are necessary for cell
survival [43]. The functional enrichment analysis of 358 ploidy-upregulated genes and
113 upregulated master regulators (Supplementary Tables S1 and S2), using the collection of
gene signatures, revealed the highly significant upregulation of “housekeeping genes”, “top
10% AT3 SW-degenerate synonymous sites”, and “top 10% selection-favored in primates
vs. rodents” (Table 1). These gene signatures include the vital human genes that are under
the strongest purifying selection [37,44]. The induction of these signatures points to the
activation of cellular processes especially important for cell survival. Similarly, the “3rd
PIN cluster” is associated with housekeeping cellular functions adapted for multicellular
organization [45]. Furthermore, the Metascape analysis, MCODE clustering, and the enrich-
ment of gene signatures identified a pronounced upregulation of gene modules associated
with housekeeping functions including ribosomal RNA maturation, cell cycle regulation,
cellular transport, organelle assembly and biogenesis, insulin-like growth factor receptor
signaling pathway, and mRNA metabolism (Figures 1A,B and 2A,B).

Table 1. Gene signatures and pathways that are enriched in ploidy upregulated usual genes (358 gene
set) and for master regulators (113 gene set).

Pathway/Signature Gene Number O/E Ratio * FDR **
Housekeeping functions
Organelle biogenesis and
maintenance (Reactome) 16 8.18 4.78 × 10−08

Housekeeping genes [46] #& 50 2.34 2.02 × 10−07

Gene Expression (Reactome) 33 3.17 3.64 × 10−07

TF-cofactors Animal TFDB [47] 23 3.88 3.58 × 10−06

Intra-Golgi and retrograde Golgi-to-ER
traffic (Reactome) 10 9.62 1.66 × 10−05

Golgi-to-ER retrograde transport (Reactome) 7 11.00 4.43 × 10−04

AURKA Activation by TPX2 (Reactome) 6 14.08 5.24 × 10−04

Centrosome maturation; Recruitment of mitotic
centrosome proteins and complexes
(Reactome) #&

6 12.85 7.83 × 10−04

COPI-dependent Golgi-to-ER retrograde traffic
(Reactome) # 6 12.69 8.16 × 10−04

Regulation of PLK1 Activity at G2/M
Transition (Reactome) #& 6 11.68 1.21 × 10−03

IGF1 pathway (Pathway Interaction
Database) #& 4 24.47 1.82 × 10−03

Top 10% AT3 SW-degenerate synonymous
sites [37] #& 27 2.33 1.88 × 10−03

3rd PIN cluster [45] #& 22 2.62 2.28 × 10−03

Membrane Trafficking (Reactome) 13 3.67 4.33 × 10−03

Processing of Capped Intron-Containing
Pre-mRNA (Reactome) 8 5.76 5.96 × 10−03

mRNA Splicing—Major Pathway (Reactome) 7 6.74 6.12 × 10−03

Mitotic G2-G2/M phases (Reactome) 7 6.66 6.30 × 10−03

Vesicle-mediated transport (Reactome) 13 3.45 6.62 × 10−03

Insulin-like Growth Factor-2 mRNA Binding
Proteins (IGF2BPs/IMPs/VICKZs) bind
RNA (Reactome)

2 114.18 6.62 × 10−03

mRNA Splicing (Reactome) #& 7 6.45 7.14 × 10−03
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Table 1. Cont.

Pathway/Signature Gene Number O/E Ratio * FDR **
Spliceosome (Kegg) 6 7.73 8.24 × 10−03

Top 10% selection-favored in mammals [44] 21 2.38 9.03 × 10−03

Cell Cycle, Mitotic (Reactome) 11 3.71 1.15 × 10−02

Cell Cycle (Reactome) 12 3.35 1.45 × 10−02

Cellular responses to stress (Reactome) 9 3.47 5.77 × 10−02

RNA Polymerase II Transcription (Reactome) 5 5.72 8.24 × 10−02

Insulin Pathway (Pathway Interaction
Database) #& 3 11.95 8.60 × 10−02

Unicellularity
Unicellular genes [48] # 77 2.08 1.30 × 10−11

Human-yeast 1:1 orthologs (Ensembl) 19 3.37 4.28 × 10−04

Unicellular genes [49] #& 52 1.75 6.14 × 10−04

Unicellular PIN cluster [44] 36 1.94 3.26 × 10−03

Myc signaling and stemness
MYC interactants (String) 15 3.18 5.61 × 10−03

Kit receptor signaling pathway (Reactome) 4 2.18 5.48 × 10−03

HALLMARK_MYC_TARGETS (Molecular
Signatures Database) # 7 5.99 1.06 × 10−02

C-MYC pathway (Pathway Interaction
Database) #& 3 23.35 1.57 × 10−02

Chromatin and DNA damage response
EpiFactors database [50] #& 26 6.23 2.73 × 10−11

Chromatin organization; Chromatin modifying
enzymes (Reactome) #& 14 8.72 2.41 × 10−07

HATs acetylate histones (Reactome) #& 8 9.65 2.87 × 10−04

HALLMARK_DNA_REPAIR (Molecular
Signatures Database) # 8 9.13 3.96 × 10−04

DNA Damage/Telomere Stress Induced
Senescence (Reactome) # 4 8.56 5.95 × 10−02

Epigenetic regulation of gene expression
(Reactome) # 5 5.79 8.05 × 10−02

Ciliogenesis
Cilium Assembly (Reactome) #& 14 12.75 2.39 × 10−09

Anchoring of the basal body to the plasma
membrane (Reactome) # 9 15.73 1.43 × 10−06

Loss of proteins required for interphase
microtubule organization from the centrosome;
Loss of Nlp from mitotic centrosomes
(Reactome) #

6 14.68 4.41 × 10−04

* O/E (Observed/Expected) ratio: the ratio of the number of observed genes to the number of genes expected
under a random distribution. ** FDR (false discovery rate): statistical significance adjusted for multiple testing.
#—Confirmed by CP; &—Confirmed by young CARD. Gene pathways and signatures from the same functional
groups are marked with similar colors.

2.2.2. Polyploidy Reawakens Programs of Unicellularity and Stemness

Another important feature of the global transcriptome activation is the reawakening
of genetic programs that are typically dormant in differentiated cells [43]. These programs
trigger a regression to fundamental traits associated with unicellularity, early embryonic
development, and cellular pluripotency [51,52]. The phylostratigraphy analysis indicated
that both sets of the upregulated genes (i.e., the 358 genes and 113 master regulators, Sup-
plementary Tables S1 and S2) are enriched in the genes of unicellular origin, i.e., belonging
to the first two evolutionary phylostrata (Prokaryota-unicellular Eukaryota) according
to phylostratigraphy [48,49], as well as to the unicellular genes in the giant unicellular
cluster of interactome according to [44] (Table 1). Another evidence of unicellularity is the
enrichment of the 358 gene set in a signature with the conserved genes shared between
human and yeast “Human-yeast 1:1 orthologs (Ensembl)” (Table 1). This result is in good
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agreement with previous data uncovering a tight association between polyploidy and
ancient evolutionary programs of unicellularity [19,28,53–55].
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Figure 1. The enrichment of polyploidy-induced genes from the 358 gene set. (A) Bar graph of en-
riched terms related to gene modules and processes. The statistical significance of enrichment is 

Figure 1. The enrichment of polyploidy-induced genes from the 358 gene set. (A) Bar graph of
enriched terms related to gene modules and processes. The statistical significance of enrichment
is shown on the X-axis (−log10 (p)). (B) Protein interaction network and MCODE components
(densely connected network components) identified in the gene list. The network and MCODE
components were constructed on the basis of physical interactions taken from the String server
(physical score > 0.4). The coding by colored circles indicates the results of the MCODE component
pathway and process enrichment analysis. (C) The three best-scoring terms related to the MCODE
components. The figure illustrates the main effects of polyploidy, including the chromatin opening via
ATP dependent remodeling and the NUA4/Tip60 histone acetylating complex. It also demonstrates
the boosting of housekeeping processes, development, DNA repair, and ciliogenesis associated with
the boosting of the centrosome cycle (A,B).
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Figure 2. The enrichment of polyploidy-induced genes from the 113 gene set including master
regulators. (A) Bar graph of enriched terms related to gene modules and processes. The statistical
significance of enrichment is shown on the X-axis (−log10 (p)). (B) Protein interaction network
and MCODE components (densely connected network components) identified in the gene list. The
network and MCODE components were constructed on the basis of physical interactions taken from
the String server (physical score > 0.4). The coding by colored circles indicates the results of the
MCODE component pathway and process enrichment analysis. (C) The three best-scoring terms
related to the MCODE components. This figure illustrates a good concordance between the data
obtained for all 358 genes and for the master regulators. This is clearly seen for general chromatin
remodeling (A–C) and chromatin remodeling associated with the NuA4/Tip60 histone acetylating
complex. It also uncovers the activation of housekeeping and developmental processes, DNA repair
(A,B), ciliogenesis, and the centrosome cycle (A).
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The manifestations of stemness include the Metascape gene pathways “chordate em-
bryonic development”, “regulation of stem cell population maintenance” (Figure 1A) and
“hepatobiliary embryonic development”, (Figures 1A and 2A). Accordingly, the enriched
signatures include the pathways related to Myc signaling (“Myc_targets” and “c-Myc
pathway”) (Table 1). These pathways confirm that polyploidy promotes stemness because
c-Myc is one of the Yamanaki factors implicated in pluripotency maintenance [56–60].

2.2.3. Polyploidy Promotes Chromatin Opening and Activates Related Double Strand
Break DNA Repair Pathways

One of the usual causes of global transcriptome activation, or hypertranscription,
is the chromatin opening [43,61]. In accordance with this observation, our Metascape
analysis identified the highly significant upregulation of several gene modules related to
chromatin organization and epigenetics (Figures 1A–C and 2A–C). Remarkably, the mod-
ules “SRCAP-associated chromatin remodeling complex” and “SAGA/STAGA complex”
promote chromatin relaxation. The SRCAP complex is an ATP-dependent chromatin remod-
eler [62], whereas the “SAGA/STAGA complex” is a chromatin-modifying transcriptional
coactivator interacting with DNA damage-binding factors and the c-Myc oncogene [63–65].
In accordance with this data, the enrichment analysis performed using the collection of
gene signatures uncovered the upregulation of several pathways related to signaling via
c-Myc and DNA damage (Table 1).

In line with these results, the MCODE clustering identified a molecular complex
NuA4/Tip60-HAT related to chromatin decondensation. This complex enriches the ploidy-
induced genes with a remarkable statistical significance (p < 10−16 for the 358 gene set and
p < 10−11 for 115 genes, as shown in Figure 1A–C; Figure 2A–C). The NuA4/Tip60-HAT
is a histone acetyltransferase/chromatin remodeling complex playing a pivotal role in
chromatin relaxation and DNA repair [66]. It is also important that the NuA4/Tip60-HAT
in association with the STAGA acetyltransferase complex promotes highly reliable and
accurate DNA repair through the pathway of the “double strand DNA repair” executed
via homologous recombination [67]. This result is particularly important in the context of
adaptive strategies related to polyploidy.

2.2.4. Polyploidy Boosts Ciliogenesis and Centrosome Cycle

The Metascape analysis and the collection of gene signatures uncovered the enrich-
ment of ploidy-upregulated genes in the gene modules related to primary cilia, transport
via cilia, and the centrosome cycle. Our data found the pathways “cilium assembly”,
“intraflagellar transport”, “intraciliary transport”, and “regulation of centrosome cycle”
(Figures 1A and 2A) and the gene modules “Anchoring of the basal body to the plasma
membrane” and “Loss of proteins required for interphase microtubule organization from
the centrosome” (Table 1). In accordance, the MCODE clustering revealed the molecular
complexes involved in intraciliary transport and intraflagellar transport (Figure 1B,C). The
simultaneous upregulation of gene modules implicated in ciliogenesis and the centrosome
cycle can be explained by the fact that cilia consist of exactly the same microtubule barrels
as centrioles that normally live within the centrosome [68].

2.3. Polyploidy Downregulates Gene Modules Related to Immunity, Apoptosis, and the
Circadian Clock
2.3.1. Polyploidy Downregulates Pathways Related to Cell Death and Apoptosis

The most important gene module identified by the Metascape analysis that demon-
strates highly significant ploidy-dependent downregulation for all genes (425 genes, Sup-
plementary Table S3) and for master regulators (105 genes, Supplementary Table S4) is the
“Pathway in cancer” (hsa05200) (Figures 3A and 4A, Table 2).
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Figure 3. The enrichment of polyploidy-inhibited genes related to the set of 425 genes. (A) Bar graph
of enriched terms related to gene modules and processes. The statistical significance of enrichment is
shown on the X-axis (−log10 (p)). (B) Protein interaction network and MCODE components (densely
connected network components) that were identified in the gene list. The network and MCODE
components were constructed on the basis of physical interactions taken from the String server
(physical score > 0.4). The coding by colored circles indicates the results of the MCODE component
pathway and process enrichment analysis. (C) The three best-scoring terms related to the MCODE
components. This figure illustrates the main functional features of gene modules enriching for all
ploidy-inhibiting genes, including the downregulation of pathways related to the circadian clock, cell
death and apoptosis (A–C), (A,B), and immunity.
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 Figure 4. The enrichment of polyploidy-inhibited genes from the 105 gene set including master
regulators. (A) Bar graph of enriched terms related to gene modules and processes. The statistical
significance of enrichment is shown on the X-axis (−log10 (p)). (B) Protein interaction network and
MCODE components (densely connected network components) that were identified in the gene list.
The network and MCODE components were constructed on the basis of physical interactions taken
from the String server (physical score > 0.4). The coding by colored circles indicates the results of the
MCODE component pathway and process enrichment analysis. (C) Three best-scoring terms related
to the MCODE components. This figure illustrates a good concordance between the data obtained
for all 425 genes and 105 master regulators. Especially, it is seen for the gene modules implicated in
apoptosis, immunity (A–C), and the circadian clock (A,B).
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Table 2. Gene signatures and pathways that are enriched in ploidy downregulated genes (425 gene
set) and for master regulators (105 gene set).

Pathway/Signature Gene Number O/E * Ratio FDR **
Immunity
HALLMARK_TNFA_SIGNALING_VIA_NFKB
(Molecular Signatures Database) 18 16.11 2.03 × 10−14

Immune System (Reactome) 39 3.36 7.21 × 10−10

HALLMARK_INFLAMMATORY_RESPONSE
(Molecular Signatures Database) 14 12.53 1.39 × 10−09

Regulation of toll-like receptor signaling
pathway (WikiPathways) 11 14.17 5.53 × 10−08

Cytokine Signaling in Immune
system (Reactome) 21 5.07 1.12 × 10−07

Innate Immune System (Reactome) 26 3.67 6.75 × 10−07

Toll-like Receptor Signaling
Pathway (WikiPathways) 8 14.04 1.07 × 10−05

Toll-like receptor signaling pathway (Kegg) 8 13.77 1.21 × 10−05

Signaling by Interleukins (Reactome) 15 5.21 1.62 × 10−05

Thymic Stromal LymphoPoietin (TSLP)
Signaling Pathway (WikiPathways) 6 22.86 2.01 × 10−05

IL2-mediated signaling events (Pathway
Interaction Database) 6 20.66 3.22 × 10−05

HALLMARK_IL2_STAT5_SIGNALING
(Molecular Signatures Database) 9 8.10 1.11 × 10−04

Toll-Like Receptors Cascades (Reactome) 8 9.55 1.17 × 10−04

TNF related weak inducer of apoptosis
(TWEAK) Signaling Pathway (WikiPathways) 5 21.32 2.07 × 10−04

DAP12 signaling (Reactome) 11 5.60 2.54 × 10−04

DAP12 interactions (Reactome) 11 5.37 3.65 × 10−04

HALLMARK_ALLOGRAFT_REJECTION
(Molecular Signatures Database) 10 8.95 1.62 × 10−05

TNF signaling pathway (Kegg) 6 9.95 1.41 × 10−03

Fc epsilon receptor (FCERI)
signaling (Reactome) 10 4.87 1.67 × 10−03

Activated TLR4 signaling (Reactome) 6 9.51 1.67 × 10−03

Apoptosis and cell death
Apoptosis—multiple species (Kegg) 9 50.36 2.96 × 10−11

Apoptosis Modulation and
Signaling (WikiPathways) 10 19.68 1.54 × 10−08

Apoptosis (Kegg) 10 12.98 6.75 × 10−07

Programmed Cell Death (Reactome) 10 10.47 4.72 × 10−06

Intrinsic Pathway for Apoptosis (Reactome) 6 24.98 1.33 × 10−05

HALLMARK_APOPTOSIS (Molecular
Signatures Database) 9 10.01 2.48 × 10−05

Apoptosis (Reactome) 9 9.59 3.22 × 10−05

Apoptosis (WikiPathways) 7 14.92 3.22 × 10−05

Apoptosis-related network due to altered
Notch3 in ovarian cancer (WikiPathways) 6 20.27 3.48 × 10−05

Caspase cascade in apoptosis (Pathway
Interaction Database) 5 17.91 4.58 × 10−04

Circadian clock 9 35.03 8.55 × 10−10

BMAL1:CLOCK, NPAS2 activates circadian
gene expression (Reactome) 9 35.03 8.55 × 10−10

Circadian Clock (Reactome) 9 23.35 2.77 × 10−08

Circadian rhythm related genes (WikiPathways) 12 10.69 1.91 × 10−07

Circadian rhythm (Kegg) 5 28.88 5.12 × 10−05

Circadian rhythm related genes (WikiPathways) 12 10.69 1.91 × 10−07
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Table 2. Cont.

Pathway/Signature Gene Number O/E * Ratio FDR **
Tumor suppressor genes 23 4.22 4.85 × 10−07

TSGene downregulated pancancer (Tumor
Suppressor Gene database 23 4.22 4.85 × 10−07

TSGene all (Tumor Suppressor Gene database) 23 4.06 9.07 × 10−07

Validated targets of C-MYC transcriptional
repression (Kegg) 5 11.74 8.97 × 10−04

Hippo signaling pathway (Kegg) 12 5.45 6.05 × 10−03

* O/E (Observed/Expected) ratio: the ratio of the number of observed genes to the number of genes expected
under a random distribution. ** FDR (false discovery rate): statistical significance adjusted for multiple testing.
Gene pathways and signatures from the same functional groups are marked with similar colors.

The downregulation of “Pathway in cancer” might suggest that polyploidy plays a role
in tumor suppression. To investigate this suggestion, we analyzed the gene composition of
this pathway using the String server (Figure 5). The results indicated that about 70% of
genes encompassing “Pathways in cancer” (i.e., 20 of 28) were implicated in the regulation
of cell death (“Regulation of programmed cell death” (GO:0043067)), thus pointing to
the fact that the ploidy-downregulated branch of the “Pathway in cancer” module is
not related to tumor suppression (but rather, exhibits an opposite effect). Our manually
curated collection of gene signatures indicates that polyploidy is associated with the
downregulation of tumor suppressor genes (“TSG downregulated pancancer”) (Table 2),
thus confirming that polyploidy may rather activate carcinogenesis than suppress it.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 13 of 30 
 

 

Figure 4. The enrichment of polyploidy-inhibited genes from the 105 gene set including master 
regulators. (A) Bar graph of enriched terms related to gene modules and processes. The statistical 
significance of enrichment is shown on the X-axis (−log10 (p)). (B) Protein interaction network and 
MCODE components (densely connected network components) that were identified in the gene 
list. The network and MCODE components were constructed on the basis of physical interactions 
taken from the String server (physical score > 0.4). The coding by colored circles indicates the re-
sults of the MCODE component pathway and process enrichment analysis. (C) Three best-scoring 
terms related to the MCODE components. This figure illustrates a good concordance between the 
data obtained for all 425 genes and 105 master regulators. Especially, it is seen for the gene modules 
implicated in apoptosis, immunity (A–C), and the circadian clock (A,B). 

The downregulation of “Pathway in cancer” might suggest that polyploidy plays a 
role in tumor suppression. To investigate this suggestion, we analyzed the gene compo-
sition of this pathway using the String server (Figure 5). The results indicated that about 
70% of genes encompassing “Pathways in cancer” (i.e., 20 of 28) were implicated in the 
regulation of cell death (“Regulation of programmed cell death” (GO:0043067)), thus 
pointing to the fact that the ploidy-downregulated branch of the “Pathway in cancer” 
module is not related to tumor suppression (but rather, exhibits an opposite effect). Our 
manually curated collection of gene signatures indicates that polyploidy is associated 
with the downregulation of tumor suppressor genes (“TSG downregulated pancancer”) 
(Table 2), thus confirming that polyploidy may rather activate carcinogenesis than sup-
press it. 

 
Figure 5. Gene composition of the gene module “Pathway in cancer “(hsa05200) enriched in 
ploidy-downregulated genes. It can be seen that about 70% of the pathway genes (21 out of 30) are 
related to the regulation of apoptosis and programmed cell death (blue and cyan labels). The pro-
tein–protein interaction network was constructed using the String Database [31] at a stringency of 
0.9. 
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downregulated genes. It can be seen that about 70% of the pathway genes (21 out of 30) are related to
the regulation of apoptosis and programmed cell death (blue and cyan labels). The protein–protein
interaction network was constructed using the String Database [31] at a stringency of 0.9.



Int. J. Mol. Sci. 2024, 25, 4185 13 of 27

In accordance with the pro-carcinogenic changes in “Pathways in cancer”, the Metas-
cape analysis identified the suppression of two gene modules related to apoptosis and
cell death: “Apoptosis, multiple species” and “Positive regulation of programmed cell
death”. The pathways demonstrate a highly significant enrichment (p < 10−8 and p < 10−15

for the 425 and 108 gene sets, respectively, Figures 3A and 4A). Our collection of gene
signatures also confirmed the association between polyploidy and the downregulation of
pro-apoptotic pathways (Table 2). Moreover, it revealed the downregulation of several
pathways related to tumor suppression (Table 2).

The Metascape and the collection of gene signatures analysis indicate that the anti-
apoptotic effects of polyploidy are complemented by the downregulation of the “Validated
targets of C-MYC transcriptional repression” encompassing the genes that are repressed by
the Myc oncogene (Figure 3A, Table 2). Thus, the effects of polyploidy found in this study
are in good agreement with the previous observations underpinning the anti-apoptotic
effects of polyploidy in various types of cells and the association between polyploidy and
Myc oncogene induction [69,70].

The pro-survival and anti-apoptotic features of polyploidy were accompanied by
the downregulation of the pathways implicated in morphogenesis and cellular adhesion,
including “tube morphogenesis”, “embryonic morphogenesis”, and “positive regulation
of cell adhesion” (Figure 3A). Considering the multifaceted activation of developmental,
proliferative, and stemness-related pathways by polyploidy, one can conclude that the
influence of polyploidy on the Morphogenesis–Survival–Death axis is very complex and
reveals a bias towards cell survival. This interplay of ploidy-associated genetic events
underscores the complexities in cellular regulation, shedding light on the delicate ploidy-
related mechanisms managing cell fate and survival.

2.3.2. Polyploidy Downregulates the Overlapping Pathways of Cell Activation
and Immunity

Our data identified one more intriguing gene module with unclear functions that is
ploidy-downregulated with high significance, “Cell activation” GO:0001775 (Figure 3A).
To elucidate the functions of this module, we analyzed the genes encompassed by this
module with the String server [42]. The genes related to immunity prevail in this pathway
comprising about 90% of all genes (Figure 6). This observation is in good agreement with
the downregulation of several pathways related to immunity, including “Cellular response
to cytokine stimulus”, “Regulation of canonical NF-kappa B signal transduction”, “Th17 cell
differentiation pathway”, and “Regulation of leucocyte apoptotic processes” identified by
both the Metascape and the collection of gene signatures (Table 2, Figures 3A–C and 4A–C).

2.3.3. Polyploidy Attenuates Pathways Related to the Circadian Clock

Further pathway enrichment analysis with the aid of the Metascape identified several
gene modules related to rhythmic processes (Table 2, Figures 3A–C and 4A–C). Employing
MCODE clustering helped us to uncover a large molecular complex involved in the regula-
tion of the circadian clock (Figures 3B and 4B). Within this complex, the genes exhibited a
strong significance of enrichment in the pathways related to circadian processes (p < 10−10

for all ploidy-regulated genes and p < 10−11 for master regulators). This high statistical
significance underscores the biological relevance of these findings, indicating a tightly
orchestrated ploidy-regulated network governing circadian rhythms. Accordingly, our
collection of gene signatures further augments this result identifying the pathways linked
to the regulation of rhythmic processes.
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2.4. The Ploidy-Regulated Genes Derived from Early Cardiac Progenitors and Young
Cardiomyocytes Obtained from iPS Demonstrate a Good Agreement with the Results Obtained on
Cancer Cells and MSC

To verify whether the ploidy-related gene signature identified for cancer cells and
MSC can be applied to other therapeutically relevant cells, we accessed the database
presenting the mRNA sequencing data related to the cardiac progenitor cells (CP) and
young cardiomyocytes (CARD) obtained from the iPC of the patients diagnosed with
hypoplastic left ventricle syndrome and healthy people [36]. This study presented the first
evidence that HPLV affects the transcriptome and increases the amount of polyploid cells
in CP and in young CARD by several folds compared to healthy individuals. Therefore,
the comparison of differences in gene expression in CP and young CARD in HPLV patients
vs. healthy individuals with ploidy-related gene signature for cancer cells and MSC can
elucidate the generality of manifestations of polyploidy in different cell types.
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The comparison of signatures representing the ploidy regulated genes in both cancer
cells and MSC, with the mRNA sequencing data from CP and young CARD for HPLV
patients, revealed 233 (for CP) and 171 (for CARD) matched polyploidy upregulated
genes and 244 (for CP) and 183 (for CARD) matched polyploidy downregulated genes
(Supplementary Tables S5–S8).

The results of the bioinformatic analysis confirmed that some ploidy-associated fea-
tures revealed in cancer cells and MSC for the upregulated genes (358 gene set, Table 1) can
also be observed in CP (Supplementary Table S9) and young CARD (171 gene set, Supple-
mentary Table S10). Thus, the Metascape analysis, the collection of gene signatures, and
MCODE clustering identified chromatin rearrangements originating from ATP-dependent
remodeling and histone acetylation via the Nua4/Tip60-HAT complex pointing to chro-
matin decompactization (Supplementary Figures S1A–C and S2A–C, Tables S9 and S10);
The obtained results also revealed the features of hypertranscription, including the activa-
tion of gene modules related to housekeeping functions, embryonality, unicellularity and
DNA damage response (Table 1; Figure 1A, Supplementary Figures S1A and S2A,B). In ad-
dition, as well as for MSC and cancer cells, the data for CP and young CARD confirmed the
activation of gene modules related to ciliogenesis and the centrosome cycle (Supplementary
Tables S9 and S10; Supplementary Figures S1 and S2).

Several gene modules that are enriched in genes from the ploidy-downregulated
gene signature for MSC and cancer cells (425 gene set, Supplementary Table S3, Figure 3)
are also overrepresented among common ploidy-downregulated genes for CP (244 gene
set, Supplementary Table S11, Supplementary Figure S3) and young CARD (183 gene
set, Supplementary Table S12, Supplementary Figure S4). For example, the collection of
gene signatures, Metascape analysis and MCODE clustering identified the downregulation
of molecular complexes related to rhythmic processes and circadian clocks, apoptosis,
immunity, and Myc-repressed pathways (for CP only) (Supplementary Figures S3 and S4,
Supplementary Tables S11 and S12). Thus, altogether, these results provide evidence for
the universality of the ploidy-associated gene signature, supporting the importance of the
role of genomic duplications in the epigenetic regulation of gene expression.

3. Discussion
3.1. The Analysis of Consensus Genes and Master Regulators Identified Common Features of
Polyploidy across Cancer Cells and Adult Mesenchymal Stem Cells

The primary objective of this study was to investigate whether polyploidy has an
impact on the oncologic safety of MSC through the epigenetic reprogramming of the
transcriptome. To achieve this goal, we examined the shared effects of polyploidy on
the transcriptome of cancer cells and adult MSC from various sources. We developed
a sophisticated bioinformatic approach that allowed us to distinguish the meaningful
signals from background noise and identify relevant biological features. Our focus was
specifically on the consensus genes that were consistently up- or downregulated in all
polyploid vs. diploid cells. Subsequently, we conducted the gene functional enrichment
analysis using databases integrated into the Metascape server. Additionally, we utilized a
manually curated collection of gene signatures to identify ploidy-related effects that may
not be discerned through the Metascape platform. These effects encompassed traits such as
unicellularity and multicellularity, carcinogenesis, tumor suppression, phylostratic gene
shifts, and others. To validate these findings across other therapeutically relevant cell types,
we compared the gene signatures associated with ploidy obtained from mesenchymal stem
cells (MSC) and cancer cells to the ploidy-related transcriptomic alterations observed in CP
and in the young CARD of patients with HPLV compared to healthy individuals [36].

Our analysis revealed shared characteristics among the genes upregulated and down-
regulated by ploidy, confirming the widespread presence of the presented gene signatures.
Thus, using this comprehensive and integrative approach, we identified fundamental fea-
tures associated with polyploidy, providing an understanding of how genome duplication
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alters cell biology. The insights gained from our findings may contribute to the development
of novel strategies for manipulating polyploidization for therapeutic purposes.

3.2. Polyploidy Is Associated with a Hypertranscription State

The indications of polyploidy in gene modules, signatures, and molecular complexes
suggest that genomic duplications play a role in transitioning a cell into a hypertranscription
state. This becomes apparent through the link between polyploidy and well-established
signs of hypertranscription. For instance, hypertranscription promotes pathways that
support essential cellular functions, as well as programs associated with stem cells and
unicellularity [43,61]. In line with these findings, our data reveal the activation of gene
modules related to ribosome biogenesis, mRNA transcription, splicing, cell cycle, and other
housekeeping cellular processes. Previous studies have also highlighted that polyploidy
stimulates basic cellular functions, including increased nucleolar activity, expression of
ribosomal RNA, and overall gene expression [17,19,20,29,69,71–73]. Another significant
characteristic of hypertranscription is the revival of embryonic pathways that are typically
dormant in normal differentiated cells [43,61,74]. In line with this, our data point to the
reactivation of multiple pathways associated with multipotent stemness and unicellular
evolutionary programs. The association between polyploidy, stemness, and ancient evolu-
tionary programs was also noted for differentiated cells, cancer cells, and entire organisms
in several independent studies [17,24–27,54,75–81].

The state of hypertranscription is associated with an open, permissive chromatin
structure [61]. In accordance with this phenomenon, our data indicated that polyploidy
induces epigenetic changes contributing to chromatin opening. This is manifested in the
activation of well-known epigenetic pathways like “Epigenetic Factors” and “Chromatin
Organization”, as well as three pathways promoting chromatin decompactization. The first
pathway is associated with c-Myc signaling, the second involves the “SCRAP Chromatin
Remodeling Complex”, and the third is linked to the “STAGA Complex”. It is well-known
that enhanced signaling through c-Myc opens chromatin at low and high levels of orga-
nization via binding to E-boxes, facilitating the movement of chromatin from the nuclear
periphery to the inner part, and interacting with chromatin-opening complexes [17,28].
Recently, it was discovered that Myc isoforms interact with TRRAP, which is a component
of the TIP60 complex involved in ATP-dependent chromatin remodeling that opens chro-
matin through histone acetylation [82]. The TIP60 complex also replaces canonical histone
H2A with embryonic histone H2A.Z, activating transcription and initiating programs of
stemness [83,84]. In line with these data, our results indicated that ploidy promotes over-
expression of histones H2AZ1 and H2AZ2 (Supplementary Table S1, Figures 1B and 2B).
The second pathway of chromatin remodeling, the “SCRAP-associated Chromatin Re-
modeling Complex”, opens chromatin through ATP-dependent remodeling. The third
pathway is represented by the signaling cascade of “STAGA”, which promotes chromatin
decompactization through histone acetylation [63,65]. Altogether these results are in good
agreement with recent data indicating that whole genome duplication initiates chromatin
conformation changes promoting chromatin relaxation [17,85–87].

One other noteworthy finding substantiating the connection between polyploidy
and chromatin decompactization is the enrichment of ploidy-induced genes belonging
to the molecular complex “NuA4/Tip60”. This multi-subunit complex operates as a
histone acetyltransferase chromatin opener that demonstrates a remarkable conservation
across species, extending from yeast to humans [67]. Functioning as an orchestrator, the
NuA4/Tip60 complex plays a pivotal role in regulating cellular homeostasis, activating the
double strand break DNA repair pathway, as well as safeguarding the delicate equilibrium
of stem cell maintenance and renewal [88]. The involvement of the NuA4/Tip60 complex
in these cellular processes underscores its significance in the choreography of cellular
dynamics and genomic regulation. It is also important to note that our results are in line
with the data of a recent study providing evidence that TIP60 promotes polyploidization
of neonatal cardiomyocytes during normal development [89,90], thus suggesting that we
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identified a really fundamental signaling axis in which TIP60 mutually interacts with
polyploidy via histone acetylation.

In accordance with the literature pointing to the implication of the NuA4/TIP60
complex in the double strand break (DSB) repair pathway [88], our data uncovered the
ploidy-related upregulation of the pathways involved in DNA damage response and ho-
mologous recombination. This finding is in good agreement with the previous studies
indicating that polyploidy promotes genome instability from the first S-phase following
the induction of tetraploidy [21]. Moreover, there is evidence indicating that polyploidy
activates a highly reliable system for repairing double-strand DNA breaks through homol-
ogous recombination [91]. This confirmation not only strengthens our understanding of
polyploidy but also illuminates the interplay between polyploidy and increased reliability
of DNA repair.

Summarizing our data concerning the relationships between polyploidy and hyper-
transcription, it is important to note that all the aforementioned characteristics of polyploidy
are also hallmarks of hypertranscription established by [61]. According to our study, poly-
ploidy in cancer cells, MSC, CP, and in young CARD similarly to hypertranscription state:
(1) promotes housekeeping functions; (2) is associated with a decondensed and open chro-
matin landscape, maintained by the activity of euchromatic ATP-dependent chromatin
remodeling complexes and histone acetylation; (3) increases rRNA transcription and pro-
tein synthesis/translational machinery; (4) activates the response to double-strand DNA
breaks; and (5) induces signaling factors operating via the Myc family of transcription
factors, which are universal transcriptional amplifiers [17]. Moreover, recent experimental
studies have shown that polyploid hepatocytes and epithelial bladder cells differ from
diploid cells in having an increased level of transcription, providing direct confirmation
that polyploidy creates a specific epigenetic state supporting activated transcription [61]. It
is also important to note that ploidy-associated hypertranscription may increase the com-
plexity of gene regulatory networks, which in turn confer cells plasticity and adaptability.
Recent studies presented convincing evidence that genome duplication and the associated
gene regulatory networks (GRN) results in an enhanced variation in signal output, thereby
increasing the potential for survival during environmental upheavals [92]. These find-
ings are in good agreement with the well-established association between polyploidy and
plasticity, adaptability, and stress resistance [15,32,92–99]. The larger DNA and chromatin
masses emerging in polyploid cells can stabilize the chromatin structure in the case of
solvent fluctuations of the cellular microenvironment, which may also enhance stress resis-
tance [100]. Notably, the increased complexity of regulation (probably related to acquired
stress resistance) is accompanied by the decrease of cell and organ functional capacity. It
was clearly shown for cardiomyocytes and hepatocytes [20,71,101–105]. These facts point
to the potentially detrimental effects of polyploidy on cell function and, presumably, on
therapeutic properties.

3.3. Polyploidy Promotes Ciliogenesis and the Centrosome Cycle

The comprehensive picture of changes associated with polyploidy is complemented by
the induction of gene modules implicated in the maintenance of centrosomes, primary cilia,
and intraflagellar transport that are parts of a single hybrid organelle, which, depending
on cell physiological status, can function either as cilia or centrosomes [106].

In MSC, cancer cells, CP, and young CARD, the increased activity of pathways related
to centrosomes is in good agreement with previous results demonstrating the association
between polyploidy and centrosome multiplication leading to DNA instability in cancer
polyploid cells [107]. To our knowledge, the association between polyploidy and ciliogene-
sis was not documented previously. Therefore, we cannot compare our results with the
data of other authors. At the same time, the activation of ciliogenesis is in good agreement
with many properties of polyploid cells. Firstly, polyploidy increases cell cycle duration
and impairs cell proliferative capacity [108]. These phenomena may originate from the
antagonistic relationships between the cilia formation and mitosis progression [109]. Cur-
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rently, all studies connecting cilia and entry to mitosis seem to be in agreement with the
fact that ciliary resorption is vital to the cell cycle beginning [110]. This mutually exclusive
relationship is expected because both cilia and mitotic spindles are microtubule-based and
use components of the same molecular machinery [111]. Whereas the mitotic spindle is
essential for cell cycle progression and cytokinesis, the cilia supposedly prevent cells from
entering the cell cycle [111]. Accordingly, it was recently shown that disruption of cytoki-
nesis (accompanying cell polyploidization) can enhance ciliogenesis [18,112]. In addition,
the expression of genes encoding cell membrane proteins and cell receptors negatively
correlates with cell cycle activity [113].

Secondly, the association between polyploidy and multipotent stemness, which was
noted for differentiated cancer cells [76,114] as well as for MSC (this study), can be partially
explained by the important role of cilia in the transmission of multipotency signaling
cascades operating via WNT, NOTCH, Hippo, mTOR, Sonic Hedgehog (SHH), platelet-
derived growth factor receptor-α (PDGFRα), insulin-like growth factor 1 (IGF1), and
transforming growth factor-β (TGFβ) [115,116]. It is also important to note that primary
cilia-dependent signaling is required for MSC proliferation and pluripotency [115,116].
Furthermore, the primary cilia might enhance manifestations of unicellularity because
cilia are an evolutionarily conserved organelle that are already widespread in unicellular
flagellates, for example, in Chlamidomonas [111].

Thirdly, activated ciliogenesis helps to understand the increased resistance of polyploid
cells to stress, DNA damage, apoptosis, immune surveillance, and chemotherapeutic
drugs [79,91,97,117–119]. It was recently shown that ciliogenesis activates double strand
break DNA repair via the NUA4/TIP60 chromatin acetyl transferase complex mentioned
above. Specifically, the cells exhibiting reduced histone acetylation due to the impairment
of the NUA4/TIP60 complex demonstrate weakened repair and prolonged arrest at the
G2-M checkpoint after DNA double strand breaks [111]. Ciliogenesis also protects cells
from apoptosis. Thus, primary cilia stabilization may reduce the abortive cell cycle re-entry
to protect injured postmitotic neurons from apoptosis [120,121]. Additionally, ciliogenesis
protects cells from immunosurveillance thereby enabling them to immunoescape [121]. The
overactivation of primary cilia can increase the anticancer drug resistance [122]. Altogether,
these cilia-associated properties can confer polyploid cells better survival ability under
stress compared to their diploid counterparts.

3.4. Polyploidy Impairs Signaling via the Circadian Clock

One more important feature of polyploidy identified by our study in all investigated
cell types (i.e., MSC, cancer cells, CP, and CARD) is the impaired signaling of the circa-
dian clock. This association was also previously shown for cells of plants, differentiated
mammalian tissues, and tumors [53,123]. Importantly, defective circadian regulation may
also partially explain stemness, retarded proliferation, and DNA damage associated with
polyploidy. The circadian clock does not work appropriately in embryonic stem cells until
they enter differentiation, thereby uncovering mutually exclusive relationships between
the circadian clock and stemness [124]. In accordance, several genes of the circadian clock
participate in the regulation of the cell cycle and DNA damage checkpoints [125,126],
thereby suggesting that circadian clock disruption promotes cell cycle retardation and DNA
instability in polyploid cells.

4. Materials and Methods
4.1. Databases

To investigate the common features in the manifestations of polyploidy in the tran-
scriptomes of tumor cells and MSC, we used data from an integrated database of polyploid
tumors and several databases for polyploid MSC. For the tumors, a set of ploidy-regulated
genes was acquired from the database prepared by Quinton and co-authors [22]. This
database integrates sequencing data of various types of human cancers (about 10,000 sam-
ples) and essential data from approximately 600 cancer cell lines.
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The search for databases with mRNA sequencing and microarray data for polyploid
vs. diploid MSC was conducted on the NCBI website (https://www.ncbi.nlm.nih.gov/
guide/all/, accessed on 14 June 2023) using the keywords “Mesenchymal stem cell AND
(polyploidy OR tetraploidy OR ploidy OR whole genome duplications) AND (transcrip-
tome, OR mRNA sequencing, OR microarray, OR NGS OR next generation sequencing)”.
From all existing databases, we selected only those that were obtained on isolated diploid
and polyploid MSC.

As a result, four databases were selected for MSC studies:
(1) In the database presenting the data for bone marrow MSC [33], the authors gen-

erated tetraploid MSC from diploid MSC by treating them with 1 mmol/L hydroxyurea
(Sigma) followed by 5 mmol/L sodium butyrate. Control treatment included 24 h incuba-
tion with fresh medium before sodium butyrate treatment. Cell ploidy level was analyzed
using a FACScan flow cytometer. Gene expression profile for diploid and tetraploid
cells were evaluated using microarray analysis (Affymetrix, Applied Biosystems). Mi-
croarray data are available at the Gene Expression Omnibus (GEO) website, accession
number GSE39410.

(2) In the database containing the data obtained with freshly isolated cardiac interstitial
cells of the mouse [31], the authors performed cell sorting by ploidy levels, using BD
FACSAria II sorting and analyzed the data with FLOWJO. After sorting, tetraploid and
diploid cells were subjected to single cell mRNA sequencing and transcriptome analysis.
Sequence data that support the findings of this study have been deposited into GEO with
the primary accession code GSE122057.

(3) The data base related to diploid and tetraploid mouse decidual cells was taken
from [34]. Polyploid and diploid cells were separated with the method of centrifugation.
The genome-wide gene expression profile was assessed using microarray hybridization
and analysis according to the Affymetrix recommended protocols [34]. The raw data has
been deposited at the GEO website (accession number GSE28917).

(4) One more database contains data related to tetraploid and diploid human tro-
phoblastic MSC [35]. In this study, human extravillous trophoblastic diploid and polyploid
cells were separated using flow cytometry with a BD FACS Canto II Cell Analyzer. The gene
expression profile in diploid and tetraploid cells was evaluated with mRNA sequencing on
a NovaSeq 6000 S1Flow Cell (Illumina) system. The datasets presented in this study can be
found at BioProject (accession number PRJNA724881) and at the GEO website (accession
number GSE173372).

The mRNA seq data for CP and young CARD obtained from iPC of the patients with
HPLV and of healthy controls were taken from [36]. Here, we focused on CP obtained on
the second day after the induction of cardiogenic differentiation in iPC from patients with
HPLV and on the young cardiomyocytes (CARD) obtained on day 12 from the same iPC
(bulk RNA sequencing data were obtained from #GSE135411). From these data, the amount
of CP and young CARD with polyploid nuclei and several nuclei was several folds higher
in the cells from the HPLV patients compared to health control [36]. The evaluation of cell
ploidy in this study was performed using Flow cytometry.

4.2. Obtaining the Sets of Ploidy-Induced and Ploidy-Suppressed Consensus Genes

First of all, we identified differentially expressed genes (DEGs) between polyploid
and diploid cells. The transcript levels (called ‘expression’ for brevity) were normalized
uniformly for all datasets using the limma’ software https://bioconductor.org/packages/
release/bioc/html/limma.html (accessed on 20 June 2023) implemented in the R package
(with the quantile normalization method) [127]. The limma is the most universal approach
for disparate datasets; it can treat both natural (counts) and real numbers. The revealing of
DEGs was also performed using the limma software. The DEGs were selected according to
the following criteria: p-value < 0.05 and adjusted p-value (FDR) < 0.1. Then, we selected
the genes that were orthologous between human and mouse using the NCBI orthologs
database (https://www.ncbi.nlm.nih.gov, accessed on 20 June 2023). In order to maximize
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the accuracy of identifying common manifestations of polyploidy in MSC and tumor
cells, we focused exclusively on the “consensus” genes. These are the genes that were
consistently induced or suppressed in all five polyploid vs. diploid comparisons taken from
the databases for normal MSC and tumors. Genes induced and suppressed by polyploidy
were analyzed separately. Only the statistically significant DEGs were included in the
analysis. As a result, 358 induced and 422 suppressed consensus genes were selected.
Because these databases are independent, the overall statistical significance for consensus
DEGs is much higher (probabilities of independent events are multiplied).

4.3. Obtaining the Sets of Ploidy-Induced or Ploidy-Suppressed Master Regulator Genes

To reveal the polyploidy-associated master regulator genes, we applied the protein
interaction enrichment analysis (PIEA) to ploidy-regulated genes with more than 5 interac-
tants. The PIEA was performed according to [37]. In brief, PIEA determines the enrichment
of protein interactants from the one-step neighborhood of the protein encoded by a given
gene in a tested gene set. This procedure is similar to the enrichment analysis of pathways,
processes, and other gene signatures in a tested gene set. Yet, as a gene signature, the set
of one-step interactants of a given protein is used. In other words, PIEA identifies the
most important master regulators, whose one-step interactome neighborhood is modularly
enriched in a given DEG set. In our case, these are the hub genes whose interactome was
most strongly up- or downregulated with the change of ploidy. It is important to note that
the identification of hub regulators increases the sensitivity and robustness of the method
and therefore is particularly appropriate for the identification of subtle effects with high
robustness [128].

4.4. Enrichment Analysis of All Consensus DEGs and Consensus Master Regulators Associated
with Polyploidy

For the enriched gene modules and signatures for polyploid vs. diploid MSC and
tumor cells, we used the Metascape (https://metascape.org/gp/index.html#/main/step1
accessed on 18 September 2023) [41]. This is a web-based portal for comprehensive gene
annotation and analysis that covers over 40 independent knowledge bases in an integrated
database, including functional enrichment, interactome analysis, gene annotation, and a
membership search in combination with Gene Ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) tools [41]. Moreover, Metascape provides the gene set
analysis in the context of protein interactions and applies a molecular complex identification
algorithm MCODE to extract protein complexes embedded in the large networks [41,129].

To verify the results obtained with Metascape and obtain new evidence, we compiled
an extensive collection of gene signatures and gene modules, encompassing gene sets
from various databases (BioSystems, KEGG, Reactome, Canonical Pathways, WikiPath-
ways, Molecular Signatures Database, Pathway Interaction Database, and Tumor Sup-
pressor Gene database (TSGene https://bioinfo.uth.edu/TSGene accessed on 9 Septem-
ber 2023)), the Catalogue of somatic mutations in cancer (COSMIC), Network of Cancer
Genes (NCG), EpiFactors database, AnimalTFDB (animal transcription factors), HisgAt-
las (human immunosuppression gene database), etc., as well as those published in the
literature [37,44,45,47–50,130–135].

The analysis of enriched signatures was conducted for all consensus DEGs and
consensus master regulators associated with polyploidy. The total gene set from the
human genome was used as a background for analysis. The enriched signatures with
FDR-values < 0.01 and O/E ratio > 1.5 were collected. (The O/E ratio is the ratio of the
number of observed genes from a signature to the number of expected genes based on a
random distribution.) Specifically, p-values were calculated on the basis of cumulative
hypergeometric distribution, using the Benjamini–Hochberg procedure for multiple testing
corrections to obtain FDR values. In addition, we analyzed gene composition for essential
pathways with unclear functions, i.e., pathways implicated in cancer and cell activation,
using the String server [42].
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5. Conclusions

Altogether, our results present the first comprehensive characterization of common
and evolutionarily conserved mechanisms of ploidy-associated epigenetic regulation of
the transcriptome of cancer cells and MSC. The main result reveals a functionally cohesive
picture of ploidy-related changes that are coordinated by the activation of the NUA4/Tip60
chromatin remodeling complex operating via histone acetylation. Many biological func-
tions of this complex, including canonical (chromatin opening and regulation of DNA
Damage Response) and moon light (ciliogenesis, regulation of centrosome cycle, and
chromosome segregation in mitosis) functions, are associated with polyploidy. The other
ploidy-associated traits can also originate from NUA4/Tip60 hyperactivity. Thus, chro-
matin opening promotes hypertranscription, stemness, and unicellularity; NUA4/Tip60-
associated DNA damage response activates c-Myc and further chromatin opening; and the
activation of ciliogenesis increases resistance to apoptosis and drugs, impairs immunity
and circadian clocks, and boosts signaling of multipotency. The presented results expand
our knowledge of the role of polyploidy in the epigenetic regulation of gene expression
and help to elucidate why polyploidy activates certain biological processes while sup-
pressing others. Furthermore, our data suggests that genome duplications can generate
global epigenetic changes leading to the increased complexity of gene regulatory networks
thereby enabling the combination of programs that are incompatible in diploid state (e.g.,
the programs of stemness and differentiation as well as evolutionary ancient and young
programs). Importantly, our data open the way for future research exploring the effects of
polyploidy in various biological contexts, including in disease progression and therapeutic
interventions. The obtained data can also be valuable for therapeutic practices in multiple
directions: (1) they will contribute to the development and implementation of approaches
enhancing the therapeutic properties of MSC by removing polyploid cells; (2) they will
assist in the creation of new approaches in targeted therapy for cancer cells using a combi-
nation of multiple strategies, including the suppression of signaling cascades implicated in
proliferation, unicellularity, and ciliogenesis; and (3) they will aid in the development of
new approaches for the epigenetic correction of cancer cells.
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