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Abstract: Bone tumors, particularly osteosarcoma, are prevalent among children and adolescents.
This ailment has emerged as the second most frequent cause of cancer-related mortality in adolescents.
Conventional treatment methods comprise extensive surgical resection, radiotherapy, and chemother-
apy. Consequently, the management of bone tumors and bone regeneration poses significant clinical
challenges. Photothermal tumor therapy has attracted considerable attention owing to its minimal
invasiveness and high selectivity. However, key challenges have limited its widespread clinical use.
Enhancing the tumor specificity of photosensitizers through targeting or localized activation holds
potential for better outcomes with fewer adverse effects. Combinations with chemotherapies or
immunotherapies also present avenues for improvement. In this review, we provide an overview
of the most recent strategies aimed at overcoming the limitations of photothermal therapy (PTT),
along with current research directions in the context of bone tumors, including (1) target strategies,
(2) photothermal therapy combined with multiple therapies (immunotherapies, chemotherapies, and
chemodynamic therapies, magnetic, and photodynamic therapies), and (3) bifunctional scaffolds for
photothermal therapy and bone regeneration. We delve into the pros and cons of these combination
methods and explore current research focal points. Lastly, we address the challenges and prospects
of photothermal combination therapy.

Keywords: phototherapy; photothermal therapy; bone cancer; tumor therapy; nanoparticles

1. Introduction

Bone cancer typically encompasses malignant tumors of the bone, which are catego-
rized as either primary or metastatic bone tumors based on their tumor origin. Among
these, primary bone tumors, notably osteosarcoma, are prevalent among adolescents and
young adults 10 to 30 years of age, with a peak incidence [1,2]. The indications for limb
salvage surgery have expanded and it has become the predominant surgical approach due
to advancements in medical technology and biomedical engineering including the devel-
opment of 3D printing technology and implant materials [3,4]. En bloc tumor resection
and bone defect reconstruction are utilized for primary malignant tumors, while metastatic
bone tumors are treated with tumor palliative resection and bone defect management [5],
significantly impacting the patients’ quality of life. However, regardless of the surgical
approach employed, tumor recurrence or residual presence [4] are still clinical challenges
due to residual tumor cells still existing and forming in a dormant state after en bloc tumor
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resection as the seeds of relapse. Additionally, the efficacy of chemotherapy and other
comprehensive treatments is suboptimal, resulting in the survival of cells that have spread
beyond the tumor capsule. The survival rate among patients experiencing postoperative
tumor recurrence is below 20%, thereby exposing them to the potential for a subsequent
amputation [6]. This outcome significantly diminishes the patients’ quality of life, amplifies
societal health economic costs, and imposes a substantial burden on families.

To mitigate the reoccurrence of bone tumors, conventional treatments such as chemother-
apy and radiotherapy are commonly employed, alongside emerging approaches like abla-
tion [7] (microwave, cryotherapy, radiofrequency, etc.), targeted therapy, and immunosup-
pression. Nevertheless, certain bone tumors exhibit resistance to radiotherapy; patients have
local or systemic adverse reactions subsequent to radiotherapy, chemotherapy, and drug
administration. Ablation is primarily applied in benign tumors, whereas malignant bone
tumors cause elevated postoperative complications, thereby inflicting harm upon the adjacent
healthy tissues [8]. It is therefore imperative to advance the development of novel clinical
therapies that possess non-invasive attributes, high efficiency, and a commendable safety
profile, with the aim of mitigating recurrence rates and fostering the process of osteogenesis. It
is necessary to explore strategies for achieving an efficient and secure approach to eradicating
bone tumor cells subsequent to surgical intervention for bone tumors.

In recent years, the photothermal therapy (PTT) of tumors has attracted considerable
attention due to its minimal invasiveness and high selectivity [1,9,10]. Phototherapy (PT), as
its name implies, involves the utilization of light for therapeutic purposes in the treatment
of various diseases. Centuries ago, ancient civilizations employed sunlight as a remedy for
skin ailments such as psoriasis, and leukodystrophy. In contemporary times, the advent of
laser technology has enabled individuals to exploit its localized intense heat for cellular
ablation, albeit with significant constraints in tumor treatment. These limitations primarily
stem from the laser’s remarkable specificity in targeting malignant cells and the necessity for
a light source with a high power density to induce cellular death. Through advancements
in contemporary medical technology and nanometer materials, it has been discovered that
the utilization of light-based modalities holds potential for tumor treatment [11].

Phototherapy (PT), which includes photodynamic therapy (PDT) and PTT, relies
on the efficient conversion of light energy into heat energy by the photothermal agent
(PTA) to exert cytocidal effects on tumor cells (Figure 1). This is due to the heightened
sensitivity of cancer cells, compared to normal cells, to elevated temperatures. When
the local temperature reaches or exceeds 42 ◦C, certain thermoresistant cellular proteins
(antishock proteins) undergo denaturation, resulting in physical alterations to chromatin
and the inhibition of DNA synthesis and repair [12]. Consequently, cancer cells ultimately
perish while normal tissues endure. This antitumor method is a minimally invasive and
highly effective.

PTAs include organic dye molecules, organic nanoparticles, noble metal materials,
carbon-based materials, and other inorganic materials [11] (Figure 2). PTAs are important
factors in PTT, and can effectively absorb and convert light energy into heat under a light
source with a specific wavelength. They absorb energy from photons and transform from a
ground state singlet to an excited singlet state. The return to the ground state is modulated
by collisions between the excited PTA and its surrounding molecules. This increase in
kinetic energy results in the heating of the surrounding microenvironment.
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Figure 1. Mechanisms of PTT and PDT. PTT: relies on the efficient conversion of light energy into heat
energy by the PTA to exert cytocidal effects on tumor cells. PDT: activates PS to generate ROS, leading
to apoptosis, necrosis, or autophagy, ultimately resulting in cytotoxicity and cell death. Created
with Figdraw (SWSWO1b012). Before PTA was extensively researched, cancer was often treated
separately with laser equipment through methods such as laser interstitial thermal therapy by directly
inserting laser fibers into the tumor and using PTT to directly kill the tumor. This method is used for
prostate cancer, liver tumors [13,14], and is also known as laser ablation. However, like other ablation
methods, it cannot accurately irradiate malignant tumors and protect normal tissues, and direct
laser ablation requires high power, so there are still significant limitations in using light-induced
heat directly. In 2003, Hirsch et al. [15] developed a metallic PTA in which silica nanoparticles were
enveloped by small gold colloids to create gold–silica nanoshells, which were subsequently modified
with polyethylene glycol (PEG) to maintain the stability of the nanoshell colloid. After exposure
to NIR light (820 nm, 35 W/cm2), human breast carcinoma cells cultured with the obtained PTA
lost viability, while cells cultured with only NIR light or PTA viability. The study suggests that
the low-power near-infrared light irradiation of PTA can noninvasively kill tumor cells, and the
surrounding normal healthy tissues are not affected. PTT is a noninvasive, controllable, and targeted
strategy by which to eliminate tumor cells; therefore, it has been widely studied for bone cancer
therapy in the past decade [16].

PDT is a therapeutic approach that involves the utilization of a photosensitizer (PS)
and optical activation techniques with minimal invasiveness for the treatment of tumor-
related ailments. A PS, when selectively accumulated in tumor tissues, can be activated
by specific nonthermal wavelengths of light to generate reactive oxygen species (ROS)
(Figure 3), particularly singlet oxygen [17]. This process has direct cytotoxic effects on
cancer cells, leading to apoptosis, necrosis, or autophagy, ultimately resulting in cytotoxicity
and cell death [18]. PDT requires three components: a photosensitizer, molecular oxygen,
and light [11]. Although PDT has been applied in treating superficial tumors such as skin
cancer and esophageal cancer, its application faces several limitations in the context of
bone tumors. These include the following: (1) limited light penetration: most PDT light
sources have a shallow penetration depth, which poses challenges for treating deep-seated
bone tumors [19,20]; (2) selective accumulation challenges: PSs used in PDT are primarily
organic small molecules, and there is a need for further investigation into their selective ac-
cumulation in tumor cells [9,20]; (3) the therapeutic effects are oxygen dependent, but most
bone tumors are characterized by a hypoxic microenvironment [11]. This issue contributes
to the low production of reactive oxygen species (ROS), and consequently, a weakened
toxic antitumor effect. For PTT, although they are not used clinically, many PTAs and their
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corresponding light sources have been explored. When the near-infrared wavelength is
in the window of biological tissue, it can penetrate biological soft tissue to a depth that
enables noninvasive tumor treatment [21,22]. Moreover, as the scientific understanding
of nanomaterials [23] has continued to deepen, it has been shown that nanotechnology
can lead to multimodal synergistic therapies by combining various therapeutic elements
into a nanoplatform, so it has been widely studied over the past 30 years. In recent years,
PTT has been commonly used in combination with other therapies to improve the overall
therapeutic effect of bone tumors.
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Although most studies are in the preclinical stage, it is still necessary to summarize
the related research progress in recent years. In this review, we focus on the latest research
on photothermal therapy, classify and summarize studies, and discuss the challenges and
opportunities for the application of PTT in the treatment of bone tumors.

2. Mechanisms and Characteristics of PTT
2.1. Mechanisms of PTT

The biological effects of PTT on cancerous and noncancerous cells are complex and
multifaceted, influenced by various factors such as the NIR parameters, the tumor microen-
vironment, and host immune responses. The biological effects on cells following PTT can
include cell necrosis or apoptosis, angiogenesis modulation, inflammatory response, and
immune modulation.

The issues with respect to cell necrosis or apoptosis include the following. (1) Di-
rect high-temperature damage: The elevated temperature of tumor cells destroys the cell
membrane structure and affects active transport on the cell membrane, disrupting the
balance between intracellular and extracellular flow, ultimately leading to cell rupture and
death [25]. (2) Intrinsic pathway to cell apoptosis: Cell stress induced by PTT such as DNA
damage and heat shock activates the intrinsic pathway, forming apoptosome complexes,
triggering caspase-9 activation, and initiating a series of downstream events, ultimately
leading to cell apoptosis [26]. (3) A novel perspective is necrosis dangling, suggesting
that cancer cell necrosis and apoptosis are temperature-dependent. At temperatures of
41–42 ◦C, cancer cells release heat shock proteins to mitigate heat damage. However, as
the temperature rises to 45 ◦C, cancer cells undergo necrosis or apoptosis, with cancer cell
necrosis occurring at 49 ◦C [27]. After cancer cell necrosis, the membrane is damaged, re-
leasing intracellular substances into the extracellular matrix. The tumor microenvironment
also releases cytokines including calreticulin (CRT), high-mobility group box 1 (HMGB1),
adenosine triphosphate (ATP), and tumor-associated antigens, inducing immunogenic
cell death (ICD) [28]. Noncancerous cells exhibit lower sensitivity to heat and are less
likely to enter a stressed state. However, although noncancerous cells are more tolerant
to higher temperatures than cancer cells, they are still affected to some extent. Therefore,
precise local heating is a key issue in PTT research, where upconversion nanomaterials
have demonstrated promising potential [29].

With respect to angiogenesis modulation, the vascular structure of tumor cells is often
disordered, with a low heat response and high blood flow. When the temperature rises
under PTT, the endothelial cells of the blood vessel wall are damaged, leading to reduced
blood flow. When the temperature reaches 45 ◦C, tumor cells experience blood stasis and
decreased oxygen supply, which can induce cell apoptosis. Moreover, the hypoxic state
and reduced blood flow of tumor cells can inhibit their growth and metastasis [30,31].
Conversely, the vascular tissue of noncancerous cells expands under high-temperature
conditions, increasing blood flow and promoting heat dissipation, with minimal impact.

2.2. Characteristics of PTT

PTT is a method that utilizes the heat effect generated by light-sensitive materials
absorbing light energy to treat diseases through the mechanisms above-mentioned. The
key lies in the selection of light-sensitive materials; only after passing through these ma-
terials can light energy of a certain wavelength be converted into heat energy. The goal
of researching this noninvasive therapy is to translate it into clinical applications, thereby
alleviating the suffering of tumor patients and improving their survival rates and quality of
life. Therefore, it is necessary to focus on the theoretical characteristics that light-sensitive
materials should possess when applied in the human body, mainly concerning treatment
effectiveness and biological safety. Ideal PTAs possess the following characteristics: (1) ex-
citation wavelength in the NIR range between biological tissue windows I and II; (2) high
selectivity for tumor tissues; (3) low toxicity to other tissues and cells, easily soluble in hu-
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man tissues; (4) relative stability at room temperature; (5) affordable price, simple synthesis,
and easy accessibility.

Regarding treatment efficacy, the primary consideration is the absorption in the NIR
region of the PTA. This is because NIR wavelengths vary in their penetration depth within
the human body. For deep-seated solid tumors, the penetration of NIR to the tumor site to
activate the PTA and elicit its effects is a crucial step. Currently, the NIR penetration depth
in the human body exceeds that of visible light. The penetration of NIR primarily depends
on wavelength and frequency; longer wavelengths penetrate deeper, and higher-frequency
NIR also penetrates deeply. However, higher-frequency NIR also increases the risk of laser
damage to the surrounding healthy tissues [32]. Currently, the NIR wavelength range
mainly includes NIR-I, the first biological window from 650 to 950 nm; NIR-II, the second
biological window from 1000 to 1700 nm; NIR-III, from 1600 to 1870 nm; and NIR-IV, from
2100 to 2300 nm. Most PTAs are currently concentrated in NIR-I, while NIR-II offers deeper
penetration and has been extensively researched in biological imaging, disease diagnosis,
and other areas [33,34]. However, the penetration depth varies among different tissues,
necessitating the selection of the most suitable NIR wavelength and corresponding PTA
based on the tumor’s location.

Secondly, high photothermal conversion efficiency is crucial as it efficiently enables
the conversion of absorbed light energy into heat to elevate the temperature of the targeted
tumor tissue. This can also reduce the required dosage and mitigate associated adverse
reactions. Biological safety is also paramount. The primary course of a PTA involves
its introduction into the human body, reaching the tumor site to exert PTT effects, and
subsequent metabolism, absorption, or excretion in the body. Considering these aspects,
particle size is a primary consideration for PTAs. Currently, most drugs are administered
intravenously, accumulating in tumor cells through enhanced permeability and retention or
targeted delivery. However, prior to reaching their destination, they must evade phagocy-
tosis by macrophages and other cells. Additionally, they should be filtered by the liver and
kidneys, ensuring sufficient accumulation at the tumor site. Within the human body, PTAs
should remain stable under physiological conditions to sustain their efficacy throughout the
treatment period. Furthermore, they should exhibit minimal toxicity and possess excellent
biocompatibility.

3. Nanocarrier Particles—Target Antitumor Treatment with PTT

The success of PTT in treating bone tumors hinges on the accumulation concentration
of PTAs within the tumors. Systemic administration of PTAs results in varied accumulation
properties within tumor cells due to the diverse structures and physical-chemical character-
istics of PTAs. To optimize photothermal treatment outcomes, it has been proposed that
nanomaterials can be leveraged as carriers.

Recent advancements in the study of nanomaterials [35], encompassing their structure
and size properties, have unveiled several advantages. These include their nanoscale size,
promising drug release characteristics, high surface-to-volume ratio, and inherent antitumor
cell effects, rendering them suitable carriers. Through surface modifications, these carriers
can precisely target tumor cells, ensuring efficient delivery and enhancing distribution and
metabolism in vivo [36–38]. Notably, targeted therapy in medical material engineering
differs from targeted therapy in oncology. In oncology, targeted therapy involves ligands
that inhibit tumors by binding to specific targets, regulating corresponding pathways.
These ‘targets’ typically refer to proteins or other biomolecules such as DNA, RNA, heparin,
and peptides [39]. In medical material engineering, targeted therapy is categorized into two
approaches based on how materials accumulate in tumor cells: active targeting and passive
targeting. Passive targeting primarily relies on the enhanced permeability and retention
(EPR) effect of tumor cells. This mechanism capitalizes on the rapid growth of cancer cells,
characterized by leaky, layered blood vessel structures, and reduced lymphatic clearance
within the tumor tissue. These factors collectively increase the penetration of circulating
nanoparticles into the tumor environment, facilitating targeted drug delivery to tumor
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cells. However, active targeting involves combining drug carriers with receptors, peptides,
or surface molecules that are highly expressed in tumor cells. This modification ensures
that drug accumulation within the tumor cells exceeds that in normal tissues, achieving
precise targeted drug delivery [40,41] (Figure 4). However, relying solely on either passive
targeting or active targeting to increase PTA accumulation has its limitations. Currently, the
primary strategy involves leveraging the advantages of both passive and active targeting
to mitigate constraints and enhance the efficacy of PTT.
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3.1. Passive Targeting

Passive targeting primarily depends on the enhanced permeability and retention (EPR)
effect of tumor cells. However, numerous obstacles hinder the entry of PTA nanopar-
ticles into tumor cells following systemic administration. These obstacles include the
acidic environment of the tumor microenvironment (TME), clearance by the mononuclear
phagocyte system (MPS), the avascular zone with limited convection, and intratumoral
pressure [16,42,43]. In addition to augmenting active targeting, research has revealed
that surface modifications or alterations in physical properties such as shape and size can
enhance the accumulation of PTAs within tumors.

Nanoparticles with a neutral or negatively charged surface contribute to the disper-
sion and stability of PTAs in the biological environment, reducing protein adsorption and
extending circulation time. Currently, surface modification using polyethylene glycol (PEG)
is a widely employed method in research. PEG serves as a “stealth cloak” on the surface
of nanoparticles, shielding them from aggregation, opsonization, and phagocytosis [44].
Researchers such as Klibanov and colleagues have demonstrated that PEGylation signif-
icantly increases the blood circulation half-life of systemically administered liposomes,
extending it from less than 30 min to up to 5 h [45]. Other studies have indicated that the
density of PEG influences the circulation time of nanoparticles [46]. To enhance the PTT
effect, PEG exhibits a favorable photothermal effect on PTAs such as graphene oxide [47],
MoS2 [48], and gold nanoparticles [49]. However, the modification of nanoparticles with
PEG may weaken their interaction with cancer cells [16]. Consequently, the controlled
release of nanoparticles, toggling between “on” and “off”, has become a focal point in
research regarding novel nanomaterials.

In the context of negative targeting, coupling certain small molecules with high yet
nonspecific uptake by tumor cells is a viable approach by which to amplify the EPR effect.
In a study conducted by Cheng, Xu et al. [50], indocyanine green (ICG), polyacrylic acid



Int. J. Mol. Sci. 2024, 25, 4139 8 of 32

(PAA), and n-HA were modified using glucosamine (GA) to create an organic–inorganic
hybrid nanosystem referred to as GA@HAP/ICG-nps. This nanosystem capitalizes on
the fact that tumor cells exhibit high glucose uptake, leading to the EPR effect within
tumor tissues. Consequently, after intravenous injection, GA@HAP/ICG-NPs accumulate
selectively in tumor tissues. Upon NIR irradiation, the nanosystem induced both PTT and
PDT via ICG activation, achieving an impressive tumor inhibition rate of 87.89%. While
the nanosystem’s osteogenic properties were not confirmed, the study introduced a novel
targeting strategy for inhibiting tumors.

3.2. Active Targeting

At present, the technology for preparing drug-loaded nanoparticles is relatively ad-
vanced, and the combination of nonspecific tumor targeting with PTT has been extensively
studied. Some of these targeting approaches also demonstrate inhibitory effects on os-
teosarcoma cells, for example, folic acid (FA), mitochondria-targeting, and so on (Table 1).

FA has the unique ability to selectively attach to the folate receptor found on the surface
of various human tumor cells including osteosarcoma [51,52]. Xiangtian Deng et al. [53]
designed and developed a bovine serum albumin-folate acid (BSA-FA) functionalized
hybrid nanoplatform (IrO2@ZIF-8/BSA-FA (Ce6), denoted as IZBFC). The zeolitic imida-
zolate framework-8 (ZIF-8) was the drug delivery nanoplatform, IrO2 and Ce6 achieved
synergistic therapeutic effects with respect to PTT-PDT, and BSA-FA on the surface of
IrO2@ZIF-8 was the active targeting agent. The release of Ce6 increased to 42.7% at pH
5.0; in addition, IZBFC is safe and has great potential for drug delivery. Furthermore,
the photothermal conversion efficiency of the IZBF NPs was determined to be approxi-
mately 62.1% in vitro and in vivo, confirming that IZBF NPs can enhance the antitumor
therapeutic efficacy of PTT and PDT. FA-Fe2O3@PDA-miRNA [54] also uses FA to target
osteosarcoma cells and plays a dual role in gene therapy (GT), and PTT.miR-520a-3p has the
ability to expedite apoptosis in osteosarcoma cells by influencing the downregulation of the
recombinant interleukin 6 receptor (IL6R) through the Jak-stat signal transduction pathway.
FA-Fe2O3@PDA-miRNA can enhance the stability of miR-520a-3p. The results indicate that
FA-Fe2O3@PDA-miRNA could induce satisfactory anticancer effects in osteosarcoma, and
the curative ratio is better than that used alone in PTT or GT.

Triphenylphosphonium (TPP) has mitochondria-targeting properties. Many nanocom-
posite particles have been modified with TPP to achieve the active targeting of tumor
cells including osteosarcoma cells. Hongzhi Hu et al. [55] utilized hollow mesoporous
MnO2 (H-mMnO2) nanostructures as a drug delivery system to develop AIBI@H-mMnO2-
TPP@PDA-RGD(AHTPR). Polydopamine (PDA) blocks the pores of H-mMnO2 and can
release encapsulated drugs in an acid environment; azo initiator 2,2’-azobis [2-(2-imidazolin-
2-yl) propane] dihydrochloride (AIBI) decomposes rapidly into highly reactive alkyl radi-
cals under mild heat stimulation. AHTPR can target tumor cells via intravenous injection
and pH/NIR dual-responsive drug release. Furthermore, AHTPR can achieve synergistic
anticancer performance via mitochondria targeting. The synergistic therapy efficacy of
Hu et al.’s system was confirmed by effectively inducing cancer cell death in vitro and
completely eradicating tumors in vivo. There are also reports that TPP can be conjugated
to indocyanine green (ICG)-loaded, polyethylenimine-modified PEGylated nanographene
oxide sheets (TPP-PPG@ICG) to promote mitochondrial accumulation after cellular in-
ternalization [56]. TPP-PPG@ICG has exhibited a remarkably selective anticancer effect
both in vitro and in vivo. This has led to the significant suppression of tumor growth in
mice with doxorubicin-resistant MG63 tumor cells, with no observable toxicity, and holds
significant promise for addressing drug-resistant osteosarcoma.
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Table 1. Summary of active targets.

Author Material PTA Carrier Target

Xiangtian Deng et al.
[53]

IrO2@ZIF-8/BSA-FA
(Ce6) IrO2 and Ce6

Zeolitic imidazolate
framework-8

(metal-organic
framework, MOF)

BSA-FA

Xue Li et al. [54] FA-Fe2O3@PDA-
miRNA Fe2O3@PDA Fe2O3 FA

Hongzhi Hu et al. [55]
AIBI@H-mMnO2-

TPP@PDA-
RGD(AHTPR)

MnO2
Hollow mesoporous

MnO2
TPP

Wei-Nan Zeng et al.
[56] TPP-PPG@ICG ICG

Polyethylenimine-
modified PEGylated
nanographene oxide

sheets

TPP

Peng Lin et al. [57] T-ND Cy7(heptamethine
cyanine)

TCF(2-
dicyanomethylene-3-
cyano-4,5,5-trimethyl-

2,5-dihydrofuran)

OTP

Ying Yuan et al. [58] SPN-PT Semiconducting
polymer (PCPDTBT) PCPDTBT

Peptide PT (the original
peptide that has

undergone PEGylation)

Tian, J. et al. [59] HGNs-PEG-CD271 HGNs HGNs CD271

Xiong, S. et al. [60] GTN-
CD133@ICG@HA ICG GTNs HA, CD133

Jingwei Zhang et al.
[61] CM/SLN/ICG ICG SLNs (silica

nanoparticles) CMs (cell membranes)

Yanlong Xu et al. [62] BPQDs-DOX@OPM Black phosphorus
quantum dots (BPQDs)

Black phosphorus
quantum dots (BPQDs)

OPM
(surface-encapsulated
platelet-osteosarcoma

hybrid membrane)

OS targeting peptide (OTP) is a novel strategy that can rapidly identify patient-
personalized targeting ligands for osteosarcoma. Peng Lin et al. used a patient-personalized
OTP that was identified via phage display techniques. A Cy7-TCF supramolecular 2D
nanodisc demonstrated passive tumor-targeting properties against generic solid tumors,
merely relying on EPR effects for its tumor localization. Peng Lin et al. [57] successfully
conjugated OTP to Cy7-TCF. After intravenously injecting tumor-bearing mice with a single
dose, they found that T-ND could not only function as a tumor-customized PTA to precisely
destroy the tumor and inhibit tumor growth, but also effectively penetrate deep into tumor
tissues with an ultralong tumor retention of up to 24 days. This indicates that OTP enables
the active targeting of a Cy7-TCF supramolecular 2D nanodisc. Peptide PT (PPSHTPT) [63]
mimics the natural protein osteocalcin property in vivo for active bone targeting. Ying
Yuan et al. [58] reported on oligopeptide PT-based semiconducting polymer nanoparticles
(SPN-PT). SPN-PT was formulated via the nanoprecipitation method using a semiconduct-
ing polymer (PCPDTBT) encapsuled with polyethylene glycolylated (PEGylated) PT. As
a PTA, PCPDTB can be internalized into OS cells in an active fashion with PT peptide,
permitting accurate early diagnosis for OS by NIR-II fluorescence. In particular, the cellular
uptake of the peptide driven nanoparticles into targeted OS cells was far more rapid than
the control, and it finished within 4 h.
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Osteosarcoma (OS) exhibits widespread genomic alterations with few recurrent mu-
tations. Identifying precise targets for bone tumor cells is of paramount importance in
the context of targeted drug therapy. Currently, the development of novel and feasible
nanomaterials for the targeted photothermal ablation of osteosarcoma stem cells is a promi-
nent research focus. In recent years, there have been emerging specific targets designed to
target osteosarcoma while harnessing the photothermal effect to inhibit osteosarcoma cells.
Examples include CD271, CD133, and the osteosarcoma targeting peptide (OTP). CD271 is
considered to be a surface biomarker for osteosarcoma stem cells. Tian, J. et al. [59] devel-
oped PEGylated multifunctional hollow gold nanospheres (HGNs) based on the CD271
monoclonal antibody. Bifunctional SHPEG-COOH was used to facilitate the covalent link-
age between HGNs and the CD127 antibody (HGNs-PEG-CD271). HGNs-PEG-CD271
achieved excellent cell viability inhibition with NIR. The targeting of CD271 was con-
firmed. In addition, HGNs are hollow nanostructures that can be used as carriers to deliver
drugs. CD133 is a key marker for screening tumor stem cells Xiong, S. et al. [60] also
constructed GTN-CD133@ICG@HA using gold nanoparticles loaded with CD133, ICG, and
hyaluronic acid A(HA). CD133 targeted osteosarcoma tumor stem cells and HA targeted
tumor cells and protected the photosensitized drugs loaded onto nanoprobes. Furthermore,
when induced by mild irradiation with a single-wavelength laser, this treatment effectively
inhibited tumor growth in an osteosarcoma mouse model.

Nowadays, biofilm systems are widely used because they are not cleared by the
immune system, exhibit noncytotoxicity and high bioavailability, and inherit the mer-
its of the source cells [64–66]. Various cell membranes (CMs) have been utilized in the
development of bioinspired drug delivery systems (DDSs) for the targeted therapy of
diseases [67,68]. Jingwei Zhang et al. [61] utilized a cell membrane (CM) derived from 143B
cells to target homogenous 143B cells. They surface modified silica nanoparticles (SLNs)
with CM and encapsulated indocyanine green (ICG), which is a PTA, to construct a plat-
form (CM/SLN/ICG). CM/SLN/ICG demonstrated the specific targeting of homogenous
143B cells in both in vitro and in vivo experiments. This resulted in superior anticancer
efficacy when compared to either SLN/ICG or free ICG. Yanlong Xu et al. [62] employed
BPQDs-DOX@OPM. Black phosphorus quantum dots (BPQDs), a PS known for its high
drug loading capacity, were used to load DOX. Subsequently, the researchers utilized a
surface-encapsulated platelet-osteosarcoma hybrid membrane (OPM) to encapsulate the
surface of BPQDs-DOX, thereby extending the DOX circulation time and enabling OS
isotype targeting. The combined therapy using BPQDs-DOX@OPM had several advantages
compared to single-agent chemotherapy including prolonged circulation time, targeted
drug delivery, enhanced antitumor activity, and a high level of biosafety.

4. PTT Combined Multiple Therapies

In current malignant tumor treatment protocols, combination therapy has emerged as
the predominant approach, with PTT representing a promising treatment modality that can
be integrated with various other therapeutic strategies to combat tumors effectively. Two
primary forms of combined therapy exist: firstly, PTT serves as an adjunct to complement
other treatment modalities such as post-tumor surgery PTT aimed at reducing tumor
recurrence rates [69,70]; secondly, altering the structure of the PTA or coupling it with
molecules possessing antitumor properties facilitates the development of materials capable
of not only executing PTT, but also synergizing with additional therapeutic methodologies
for tumor management. PTT predominantly operates via PTA mechanisms. Presently,
ongoing innovation in nanomaterials enables modifications to PTA structures, facilitating
their integration with chemical, immunological, and chemical kinetic treatment approaches
(Figure 5), thereby enhancing the overall therapeutic outcomes.
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4.1. PTT Combined with Chemotherapies

In the context of inhibiting tumor recurrence, chemotherapy represents the most
common clinical treatment approach. However, due to its nonspecific impact on normal
cells, it often leads to systemic complications and toxic side effects including nausea,
vomiting, alopecia, and compromised immunity [71].

The utilization of nanoparticles as drug carriers for transporting and releasing chemother-
apeutic agents has garnered extensive attention [40,72,73]. This approach mitigates the
complications and toxic side effects associated with systemic chemotherapy. Beyond the
advantages mentioned earlier, some nanomaterials combine with biological molecules or
residues to heighten the specificity of chemical drug complexes in targeted therapy, thus
enhancing the efficacy of nanomaterial-based treatments [35,73,74]. Combining phototherapy
with antitumor drugs using nanoparticles allows for the targeted and synergistic eradication
of cancer cells, addressing the limitations of single treatment modalities. This approach holds
significant promise for development and application. Nonetheless, this treatment strategy still
has inherent issues such as drug side effects, sustained release, and drug resistance, which can
impact its efficacy in tumor treatment [75–77].

Curcumin (CM) is a polyphenolic compound known for its antioxidative, anti-inflammatory,
and anticancer properties [78,79]. Because of its mild pharmacological effects, it is deemed
safe for human consumption [80]. It has been extensively studied in cancer treatment,
particularly in the context of osteosarcoma [81,82]. Its mechanisms of action primarily
involve inducing apoptosis, inhibiting proliferation and metastasis, increasing cytotoxicity,
and promoting cell cycle arrest. Specifically, curcumin can exert its destructive effects
on osteosarcoma cells by modulating the activity of various signaling pathways such as
HMOX1 [83], JAK-STAT [84], and Smad as well as regulating microRNA and gene expres-
sion [85]. These mechanisms confer curcumin with potential anticancer effects, offering
new directions and strategies for osteosarcoma treatment. X. Sun et al. synthesized CM-
CS nanoparticles [86] and CM-PDA/SF/n-HA nanofibers [87]. When MG-63 cells were
co-cultured with CM-PDA/SF/1%n-HA and exposed to NIR irradiation, the cell survival
rate dropped from 60% to 20%. The scaffold’s elevated temperature under NIR irradiation
directly hindered tumor cell growth and enhanced CM drug penetration, promoting ef-
fective drug release. Additionally, the incorporation of SF and n-HA improved scaffold
biocompatibility and bolstered its capacity to induce osteogenic differentiation and facili-
tate new bone formation. Bowen Tan et al. [88] took a different approach by embedding
CM and indocyanine green into a poly(lactic-co-glycolic acid) (PLGA) hydrogel to create
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an injectable formulation. In an in situ osteosarcoma model, the hydrogel +NIR group
demonstrated significant local tumor clearance. Furthermore, micro-computed tomogra-
phy (micro-CT) revealed a normal tibia morphology, while the non-NIR group exhibited
negligible antitumor effects. This highlighted the hydrogel’s ability to maintain stable local
CM concentrations, serving a dual role of photothermal synergy to inhibit tumors and
promote bone repair and new bone formation upon illumination.

Furthermore, certain materials can serve as carriers for chemotherapy drugs, enabling
both photothermal effects and precise drug delivery triggered by light exposure. Core-shell
nanostructures have been employed for this purpose, particularly in the delivery of the drug
doxorubicin hydrochloride (DOX) [89]. These nanostructures consist of a core comprising of
mesoporous silica, while the shell features a sandwich structure incorporating Hypocrellin
A (HA)/carbon dots (CDs) and a mesoporous silica layer. DOX is loaded into the mesopores
through a photo-unstable agent known as the o-nitrobenzyl derivative linker (NB linker).
The particle’s entire surface is modified with lactobionic acid (LA), which binds to LA
receptors that are highly expressed by tumor cells. This modification ensures targeted drug
delivery to tumor cells following intravenous injection. Upon exposure to 980 nm light,
DOX is released, while Hypocrellin A and the carbon dots contribute to phototherapy,
effectively inhibiting tumor cells under near-infrared (NIR) irradiation.

4.2. PTT Combined with Immunotherapy: PTT—Immunomodulation

The ability to evade immune system surveillance and passivate immunogenicity is
the primary reason for the occurrence and development of tumors [90]. In the process
of tumor elimination, the acute inflammatory response triggered by tumor-associated
antigens (TAAs) induces the activation of dendritic cells (DCs). Then, upon activation,
DCs present tumor antigens and activate tumor-specific CD8+ cytotoxic T lymphocytes
(CTLs) to kill tumor cells. Tumor cells that can reduce their immunogenicity through
immunoediting survive or produce certain negative regulators including PD-L1 on tumor
cells, interleukin-10 (IL-10), transforming growth factor β (TGF-β), regulatory T cells
(Tregs), and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment
(TME). Consequently, immune escape occurs [91–93].

Recently, immunotherapy in which the body’s immune system is trained to recognize
and fight against tumors has shown great potential for cancer treatment [94], especially
for aggressive and metastatic tumors. Cancer immunotherapy encompasses several ap-
proaches including tumor vaccines, immune checkpoint blockade (ICB), and chimeric
antigen receptor T cell (CAR-T) therapy.

However, cancer immunotherapy faces several limitations: (1) patients exhibit sig-
nificant individual differences in treatment responses; (2) the therapy can be costly and
may lead to cytokine storms [95]; (3) the low immunogenicity of tumor cells and the im-
munosuppressive tumor microenvironment can restrict treatment efficacy [96]; (4) tumor
vaccines targeting a single tumor antigen are less effective than those targeting multiple
tumor antigens and are rarely suitable as universal vaccines [97,98]; (5) only a small per-
centage of cancer patients (10–30%) benefit from current immune checkpoint inhibitor (ICI)
treatments, and long-term ICI use can lead to immune-related side effects [99,100].

Given these limitations, there is a pressing need to develop treatments that not only
effectively eliminate tumors, but also reduce the risks of metastasis and recurrence. Such
treatments should be less impacted by individual patient differences. One of the current
research frontiers addresses this need through the combination of PTT with immunother-
apy. As previously mentioned, PTAs are capable of converting light energy into heat
energy, resulting in a high photothermal conversion rate. This effect, when induced by
irradiation, leads to the denaturation of heat shock proteins within tumor cells, chromatin
alterations, and the inhibition of DNA synthesis and repair, ultimately culminating in
tumor cell death due to the elevated temperature. PTT also triggers the production of
tumor-specific cytotoxic T lymphocytes (CTLs) and significantly increases the expression
of costimulatory molecules (CD40, CD80, CD86) on dendritic cells (DCs), promoting the se-
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cretion of interleukin (IL)-12 and activating adaptive immunity [101–103]. Recent research
has further explored the mechanisms underpinning PTT’s inhibitory effect on tumor cells.
PTT enhances tumor immunogenicity by inducing immunogenic cell death (ICD) [104]
and recruiting endogenous cytotoxic T lymphocytes (CTLs) [105]. ICD can lead to the
release of damage-associated molecular patterns (DAMPs) and tumor-associated antigens
(TAAs), bolstering innate immunity. Additionally, nano-PTA is readily absorbed by DCs
following tumor cell destruction, facilitating antigen presentation by DCs and promoting
the specific immune targeting of tumor cells [106]. However, it is important to note that the
immunosuppressive tumor microenvironment (TME) can significantly impede ICD-driven
immunity. Consequently, immunotherapy triggered solely by PTT may prove insufficient.
This approach often falls short in achieving sustained, long-term tumor remission and
carries a heightened risk of tumor recurrence and metastasis [107].

In the investigation of PTT’s mechanism for combating osteosarcoma, there have been
reports indicating that PTT can additionally modulate the growth and invasive poten-
tial of osteosarcoma tumors by influencing macrophage polarization. Tumor-associated
macrophages (TAMs) are macrophages infiltrating into tumor tissues and are the most
abundant immune cells in the tumor microenvironment [108]. The proportion of TAMs
in osteosarcoma accounts for more than 50% of the immune cell content, and TAMs may
participate in the malignant progression of osteosarcoma [109]. TAMs have two subtypes
of macrophages: M1 (induced by lipopolysaccharide and interferon-γ) and M2 (induced by
interleukin-4 and interleukin-13) [110]. M1 macrophages (activated macrophages) have
antibacterial and antitumor effects, whereas M2 macrophages have the opposite effect
and contribute the most to the proportion of TAMs [111]. To explore whether PTT can
modulate TAMs to exert antitumor effects, in 2020, Xiangyu Deng et al. [112] developed
GO/PEG, a photothermal material that induces a heating effect in macrophages, by com-
bining graphene oxide (GO) with polyethylene glycol (PEG). RAW264.7 was cultured
with GO/PEG. GO/PEG could alleviate the interleukin-4-induced M2 polarization of
macrophages and modulate their antitumor capability with NIR. The supernatant was
cultured with HOS cells and injected into BALB/C nude mice. The migration and in-
vasion capabilities of HOS cells were weakened, leading to an antitumor effect in vivo.
The results suggest that the cell supernatants of macrophages treated with PTT can help
inhibit the growth and invasion ability of tumors in osteosarcoma. There are also scien-
tists reprogramming macrophages to improve the outcome of OS. The authors of [113]
developed a biodegradable material based on hydroxypropyl chitin (HPCH), tannic acid,
and ferric ions (HTA) in the form of an injectable and photothermal hydrogel, which was
designed to reprogram TAMs into classically activated macrophages (M1). HTA + NIR led
to photothermal tumor cell destruction in vitro and vivo. Therefore, targeting TAMs as a
complementary therapy is expected to improve the prognosis of osteosarcoma.

PTT has the potential to enhance tumor immunogenicity and disrupt the immunosup-
pressive nature of the tumor microenvironment, thereby augmenting the effectiveness of
standalone immunotherapy. Conversely, immunotherapy can establish long-lasting im-
mune memory, reducing the risk of tumor metastasis and recurrence. Combining PTT with
immunotherapy capitalizes on the strengths of both approaches while compensating for
their individual limitations. This novel approach is referred to as PTT-immunomodulation
and can be implemented through four primary binding methods: (1) nano-PTT combined
with antigens; (2) combining with immune adjuvants to create an in situ vaccine; (3) com-
bining with CAR-T therapy; (4) integrating with checkpoint inhibitors [107,114].

The effectiveness of photodynamic immunotherapy has been demonstrated in in-
hibiting both in situ tumors and metastatic tumors using localized light in conjunction
with immunotherapy. This approach offers noninvasive and targeted tumor metastasis
inhibition as well as systemic treatment in 4T1 cells and B16F10 cells [115]. Osteosarcoma is
characterized by its high metastatic potential, which poses a significant challenge in terms
of tumor recurrence and progression [116]. Despite ongoing research, immunotherapy
remains the most promising treatment strategy for improving the currently stagnant 5-year
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survival rate of patients [117]. PTT, in conjunction with immunotherapy, offers a potential
solution to enhance the effectiveness of current immunotherapies. Nanophotosensitizers,
when activated for PTT, can trigger the maturation of dendritic cells (DCs) through specific
pathways. This process not only augments the innate immunity within tumors, but also
enhances the immunotherapeutic effects of the immune checkpoint blockade (ICB) or
immune adjuvants when combined with nano-PTT. The research focus now centers on
elucidating the mechanisms by which PTT inhibits osteosarcoma, optimizing the synergy
between nano-PTA and immune drugs, and developing effective strategies for targeting
bone tumor cells following systemic administration. These investigations hold promise for
advancing osteosarcoma treatment.

The intricate tumor microenvironment of osteosarcoma presents a challenging land-
scape, and the precise mechanisms underlying PTT are still the subject of exploration.
Limited research has ventured into leveraging the multifunctional capabilities of nano-PTA
such as its potential as a carrier and targeting agent in combination with immunother-
apy. Currently, the most prevalent approach involves modifying nano-PTA with various
functional molecules to elicit the transformation of osteosarcoma into “hot” tumors or to
stimulate dendritic cell (DC) maturation. This combination therapy aims to enhance the
immune response against osteosarcoma cells while inhibiting their growth. Further investi-
gations in this direction hold promise for advancing our understanding and treatment of
osteosarcoma.

Guan Ping He [118] and colleagues developed AuNDs@aPD-1, with AuNDs as the
PTA and the programmed receptor 1 antibody (aPD-1) as the immune checkpoint inhibitor
(ICI). By combining passive targeting through the enhanced permeability and retention
(EPR) effect with active targeting using aPD-1, they aimed to increase the accumulation of
these agents in tumor cells while reducing systemic side effects related to ICIs. The study
involved creating an orthotopic osteosarcoma (OS) model in the proximal tibia and an
axillary OS metastasis model in mice. Intravenous systemic administration was carried out,
and near-infrared (NIR) treatment was applied solely to the tibial tumor. Subsequently,
an axillary OS model was established again to assess long-term tumor memory function.
The results support the notion that the strategic combination of PTAs and ICIs enhances
the synergistic antitumor effect, effectively suppressing primary, distant, and metastatic
tumors, extending survival, and preventing tumor recurrence. It was observed that PTT
induced immunogenic cell death (ICD), releasing damage-associated molecular patterns
(DAMPs) and tumor-associated antigens (TAAs), with mt-DNA in DAMPs sensed by cyclic
GMP-AMP synthase (cGAS). This activated the cGAS-STING pathway, a crucial route
linked to DC maturation [119,120]. However, single PTT had limitations in inducing innate
and specific immunity. Kaiyuan Liu et al. [121] proposed the design of a material that could
not only enhance the immunogenicity triggered by PTT, but also elevate tumor-specific
immunity. They created a nanoplatform using titanium carbide MXene loaded with Mn2+

and ovalbumin (OVA). OVA derived from tumor cells enhanced adaptive immunity, while
the combination of titanium carbide MXene and Mn2+ synergistically activated innate
immunity through processes involving immunogenic cell death (ICD) and mitochondrial
DNA (mt-DNA). The results indicate that this nanoplatform effectively facilitated the
presentation of tumor antigens and significantly promoted the maturation of dendritic cells
(DCs). This enhancement resulted in the improved infiltration of cytotoxic T lymphocytes
into both primary and distant tumors.

4.3. PTT Combined with Chemodynamic Therapy—Photothermal-Chemodynamic

Chemodynamic therapy (CDT) is an emerging nanocatalyst-based therapeutic strategy
for tumor-specific therapy [122]. CDT is considered to be a powerful type of reactive oxygen
species (ROS)-based antitumor therapy [123]. CDT primarily relies on the Fenton reaction
or Fenton-like reactions. In these processes, hydrogen peroxide (H2O2) present in the acidic
tumor microenvironment undergoes catalysis by nanometal ions. This catalytic reaction
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generates a substantial amount of toxic reactive oxygen species (ROS), effectively targeting
and destroying malignant cells [124,125].

As a novel tumor treatment, CDT has undergone thorough investigation. However,
there are still some challenges with respect to its application in vivo. An insufficient Fenton
reaction yields a limited amount of reactive oxygen species (ROS), which proves inade-
quate in effectively inhibiting tumor cells [122,126]. Elevating the temperature can promote
Fenton or Fenton-like reactions, thereby releasing more ROS and augmenting the antitumor
efficacy of catalytic therapy (CDT) [127]. PTT also elevates the local tumor temperature
for inhibiting tumor cells. Consequently, combining PTT with CDT is a viable strategy
by which to create a synergistic antitumor effect. Hence, there is a pressing demand for
the development of multifunctional nanomaterials possessing both photothermal (PT)
and chemodynamic properties for enhanced PTT-integrated catalytic therapy (CDT). This
is called the photothermal-chemodynamic approach and holds promise for advancing
the field of combination cancer therapies, with the aim to achieve highly effective treat-
ment modalities.

The limited studies on multifunctional metal nanoparticles combining PTT with cat-
alytic therapy (CDT) in osteosarcoma are attributed to the challenges in constructing an
osteosarcoma tumor model. Moreover, the majority of the existing research has predomi-
nantly employed 4T1 tumor cells. In the realm of metal-based nano-ions, their loading onto
a PTA for a synergistic PTT/CDT effect is a widely explored avenue. Notably, materials
such as polydopamine (PDA), porous carbons, metal–organic frameworks, and transition
metal carbide (MXene) feature prominently in these studies [128]. PDA nanomaterials
have been widely explored as carriers to enhance the drug inhibition of tumor cells under
near-infrared (NIR) irradiation [129]. In an innovative study by Qian Chen et al. [130], PDA
was combined with tannic acid-Fe3+ (TA-Fe) to create PDA@TA-Fe nanoparticles. TA-Fe
exhibits an enhanced permeability and retention (EPR) effect in tumor cells, further boosted
by the NIR-induced production of cytotoxic hydroxyl radicals via the Fenton reaction.
Together, these elements synergistically inhibit 4T1 tumor cells. Furthermore, enhancing
PTT and catalytic therapy (CDT) can be achieved by loading nanocellular-based carriers
with highly catalytic enzymes possessing PTT properties. In a study by Yanling Liang
et al. [131], hybrid bimetallic RhRu/Ti3C2Tx nanozymes with high catalytic efficiency were
anchored onto 2D Ti3C2Tx nanosheets. This innovative approach effectively combines the
benefits of PTT and CDT.

4.4. PTT Combined with Magnetic Hyperthermia—Magnetic Photothermal Therapy (MPHT)

Magnetic hyperthermia (MH) represents a noninvasive, localized hyperthermia ther-
apy method by applying a high-frequency alternating magnetic field (AMF) to magnetic
nanoparticles (MNPs), resulting in localized heat generation (42–45 ◦C) that heats the tumor
tissue and induces the thermosensitive death of cancer cells. It is a novel method of local-
ized hyperthermia therapy that is noninvasive. MNPs are commonly synthesized using
pure metals like iron (Fe), cobalt (Co), nickel (Ni), and certain rare earth metals, or through
blending metals with polymers. However, due to the instability and toxicity of pure metals
in the human body, metal oxides are often selected as MNPs [132]. The primary advantage
of this method lies in its use of localized hyperthermia, leveraging the higher sensitivity
of tumor cells to temperature compared to normal cells, thereby minimizing its impact
on healthy tissues. Additionally, we can manipulate MNPs by artificially controlling the
AMF. These MNPs utilize temperature to suppress tumor cells, but recent studies have also
suggested that magnetic fields can stimulate osteoblast proliferation and differentiation,
promote BMP expression, and accelerate new bone formation [133,134].

In clinical applications, the main critical factor of MH is the thermal conversion
efficiency of MNPs described by the specific absorption rate (SAR) [135]. However, in the
research with respect to MH, it has been observed that certain MNPs exhibit an uneven
distribution within tumors, leading to areas with excessively high or low temperatures,
causing uneven tumor suppression [136]. Researchers can modify the chemical structure
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(surface coatings, targeting agents) and general physical properties (size, shape) of MNPs
to adjust the SAR, thereby improving the thermal conversion efficiency of MNPs and
augmenting their anticancer effects. Tong et al. found, through a refined dynamic hysteresis
model, that the thermal efficiency of magnetic iron oxide nanoparticles (MIONs) increased
with particle size [137]. Coatings such as PEG and GO reduce toxicity and nanoparticle
aggregation, significantly enhancing their SAR [138]. Targeting agent (peptides, ligands,
lipids, aptamers) conjugation can increase accumulation in target tumor cells and improve
the tumor cell suppression efficiency [139]. Yu et al. incorporated glucose oxidase (GOx),
MgCO3, and Fe3O4 into a PLGA hydrogel to synthesize a triple-functional magnetic
gel (Fe3O4/GOx/MgCO3@PLGA) [140]. Under an AMF, this gel induces MH therapy,
where GOx is released to inhibit ATP production, thereby reducing HSP expression. This
synergistically inhibits the growth of osteosarcoma cells while releasing magnesium ions to
promote bone regeneration at defect sites.

However, the temperature generated by MH remains relatively low and research has
shown an upregulation of heat shock protein (HSP) expression during MH, increasing the
intrinsic heat resistance of tumor cells [141,142]. Therefore, the effectiveness of standalone
MH is ultimately limited. Researchers have proposed combining MH with other therapies
to enhance its anticancer capabilities or achieve multifunctional objectives. MH can be
combined with chemotherapy [143,144], immunotherapy [145], and radiotherapy [146],
while PTT can also be considered a form of thermal therapy. Recent advancements in
biomedical material research have revealed that certain MNPs also possess the property of
converting light energy into heat. This combination approach is referred to as magnetic
photothermal therapy (MPHT).

MPHT has been extensively studied, prompted by the limited tissue penetration of
PTT and the shallower depth constraints of MH. Upon combining PTT with MH, NIR
irradiation after the application of AMF can increase the thermal conversion efficiency of
MNPs, thus, augmenting the suppression of tumor cells. This combination has the potential
to mutually alleviate the limitations of each method and achieve the synergistic suppression
of tumor growth. In a study conducted by Das et al., Fe3O4 nanoparticles were structured
in a flower-like arrangement surrounding Ag cores. Upon simultaneous exposure to an
external magnetic field and laser irradiation, the SAR of the nanoflowers significantly
increased by at least an order of magnitude, with decreased demand for magnetic field
and laser intensity in comparison to individual stimuli [147]. Similarly, Alberto Curcio and
colleagues synthesized spiky IONF@CuS nanohybrids, employing magnetite (γ-Fe2O3)
and CuS as PTAs. Their findings demonstrate that the heating capacity of PTT exceeded
that of MH at equivalent concentrations, suggesting cumulative effects of both heating
modalities. In vitro and in vivo experiments conducted on PC3 cells validated that the
combined application of MH and PTT synergistically eradicated tumors and demonstrated
superior efficacy compared to MH monotherapy [148]. Açelya Yilmazer et al. illustrated the
synergistic anticancer effects of MH and PTT and observed elevated levels of calreticulin
expression, extracellular ATP, HMGB1, dendritic cell and natural killer cell aggregation,
and ferroptosis following MPHT, implying connections with ICD and ferroptosis [149].

In addition to the amalgamation of PTT and MH, they can also be integrated with
chemotherapy to exert triple-functional effects. The utilization of magnetic nanoparticles
as drug carriers for combined MH and chemotherapy has been documented. Whether
nanoparticles possessing both PTT and MH capabilities as drug carriers can achieve triple
functionality remains under investigation. Martínez-Banderas and colleagues employed
nanowires with an iron core and iron oxide shell as carriers for doxorubicin (DOX) [150].
Treatment with DOX under simultaneous exposure to AFM and NIR radiation led to a
91% reduction in cell viability. Additionally, there was a 30% increase in cytotoxicity under
NIR alone and a 15% increase under AFM alone, indicating greater toxicity compared to
DOX release alone. Furthermore, the internalization of nanowires facilitated selective DOX
release within the nucleus, potentially mitigating DOX’s adverse effects.
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PTT can also be integrated with MNPs to concurrently promote bone regeneration and
inhibit tumor cells. Considering the challenges encountered by patients with bone tumors
in postoperative bone defect repair and residual tumor elimination, PTT can serve as a tool
for eliminating residual tumors. As previously mentioned, MNPs possess the capability
to promote osteogenic differentiation, thereby warranting further investigation. Jia-Wei
Lu and colleagues modified a scaffold composed of bioglass (BG) and chitosan (CS) with
SrFe12O19 magnetic nanoparticles [151]. SrFe12O19 exhibited outstanding magnetism and
served as a photothermal agent (PTA) for PTT. The researchers showed that the magnetic
field produced by the modified scaffold not only accelerated the proliferation of human
bone marrow-derived mesenchymal stem cells (hBMSCs), but also markedly upregulated
the expression levels of osteogenesis-related genes (OCN, COL1, Runx2, ALP). Upon
exposure to near-infrared laser irradiation (808 nm, 4.6 W·cm−2) for 2 min, the scaffold
quickly reached 43 ◦C, demonstrating its PTT effect. The modified scaffold demonstrated
remarkable properties for bone regeneration and exceptional functionality for MPHT.

4.5. PTT Combined with PDT

The combination of PTT and PDT, both being types of phototherapy, relies on light
irradiation to exert their antitumor effects. However, using either method alone has
limitations. PTT combined with PDT is deemed more effective compared to their singular
use. PDT has been shown to enhance the sensitivity of tumor cells to temperature, thereby
augmenting the efficacy of PTT [152]. Additionally, PTT can increase intra-tumoral blood
flow and enhance the oxygen environment within the tumor, facilitating PDT-induced
ROS production for tumor cell destruction and function, thus reducing the dosage of
photosensitizers and related side effects [153,154].

In the context of bone tumor treatment, the combination of PTT and PDT has been
relatively less explored, primarily due to the disparate parameters such as wavelength
and frequency required for their excitation. While PTT primarily relies on NIR light,
PDT utilizes ultraviolet or visible light sources. Thus, further exploration is warranted to
determine how to optimize the efficiency of both methods.

In the pursuit of substances with dual functionality, it has been shown that some
noble metal nanoenzymes exhibit catalase-like activity (CAT), facilitating the catalysis of
hydrogen peroxide to generate singlet oxygen under NIR irradiation, thereby enabling
PDT. Conversely, metal oxides can serve as PTAs under NIR, inducing PTT effects [155,156].
Despite this, the catalytic capacity of single metal oxide enzymes remains limited. In
the context of bone tumor treatment research, Yanling Liang and colleagues successfully
enhanced the catalytic activity of nanoenzymes by loading RhRu bimetallic hybrid nanoen-
zymes onto 2D Ti3C2Tx nanosheets, yielding RhRu/Ti3C2Tx. In vitro studies and nude
mice with subcutaneous osteosarcoma models demonstrated the advantages of combined
CDT/PDT/PTT therapy under NIR (808 nm) irradiation [131]. Additionally, bismuth
(Bi)-based nanomedicines exhibit dual functionality in PTT and PDT. Jing Cheng et al.
synthesized AgBiS2 nanoparticles, achieving a high photothermal conversion efficiency
of 36.51% under NIR, significantly increasing ROS production. Moreover, the presence
of silver (Ag) and bismuth (Bi) allows this material to function as a contrast agent for CT
imaging and possess certain antibacterial properties, thereby preventing Staphylococcus
aureus infections.

Recent research has shown that lanthanide ion-doped upconversion nanoparticles
(UCNPs) can convert near-infrared light required for PTT into high-energy visible or ul-
traviolet light to activate PDT [157]. Zhaoyou Chu et al. constructed core–shell structured
UCNPs@AgBiS2 by combining UCNPs with AgBiS2 [158]. By doping different concentra-
tions of Nd ions, the photothermal conversion efficiency was increased from 14.7% to 45%.
The research also demonstrated that the production of ROS under 808 nm near-infrared
light was significantly higher than that of pure AgBiS2. The mechanism behind this may in-
volve continuous Nd3+ → Yb3+ → activator energy transfer, activating AgBiS2 to generate
ROS through energy transfer. Xueyuan Guo et al. assembled two polymers with UCNPs
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to form UCNP-CPs. Among them, PPVBT-COOH exhibited excellent PDT effects, while
PDTPBT-COOH showed excellent PTT effects. Only UCNPs-CPs demonstrated the ability
to generate ROS under 980 nm near-infrared light, further emphasizing the importance of
UCNPs in converting light sources for combined PDT and PTT [159].

5. Novel Calcium Phosphate Scaffolds—Bifunctional Scaffolds for Photothermal
Therapy and Bone Regeneration

At present, the standard surgical procedure used to achieve limb salvage correction
in bone tumors is surgical resection and bone defect reconstruction. The risks and causes
of recurrence after tumor resection have been described above; the reconstruction of bone
is of paramount importance for the patient’s quality of life and remains a prominent
focus post-surgery. Bone is mainly composed of three parts: cells, fibers, and matrix. The
major component of the bone matrix is collagen, which provides tensile strength. The
mineral composition of bone mainly comprises calcium and phosphorus, which provide
compressive strength [160]. So far, the clinical methods used for repair include autogenous
bone grafting, allogeneic bone grafting, bone transport, membrane-induced osteogenesis,
and artificial material reconstruction [161–163]. However, all have some advantages and
disadvantages. Of these methods, autologous bone grafts have excellent biocompatibility,
natural osseointegration, and osteoinductivity. However, the amount of autologous grafting
requires alternative approaches for critical bone defects, which result in high costs and risks
of disease transmission and immune rejection [163–166]. For malignant bone tumor surgery,
bone grafting alone cannot meet the clinical needs due to large bone defects and poor patient
tolerance. Therefore, there is a need to develop biocompatible, high mechanical strength but
non-immunogenic bone repair substitute materials, namely biomaterials. The bone tissue
engineering (BTE) procedure holds great promise for addressing this issue, and scaffold
biomaterials are critical to its success. In 1969, Hench [167] developed bioactive glass
and proposed that biological activity means that the transplanted material and biological
tissue contact can be chemically combined. After the graft fills the gap and is fixed, bone
mesenchymal stem cells (BMSCs) and other required cells, nutrients, and molecules are
transported to the scaffold. They adhere to the scaffold, promoting cell growth and the
formation of blood vessels, ultimately stimulating new bone formation [168].

As research with respect to BTE has progressed, it has been established that BTE
promotes osteogenesis by creating optimal biomimetic environments that enhance the
regeneration and growth of normal tissues and cells. This is achieved by combining stem
cells, scaffolds, and growth factors (GFs) [169]. Firstly, BTE scaffolds must possess the
appropriate pore size and porosity to support cell adhesion and facilitate nutrient exchange.
Moreover, mechanical and degradation properties essential for osteogenesis play a pivotal
role in the formation of new bone [170].

Scaffolds in BTE are typically classified into two categories: inorganic bioceramics
and organic polymers. Both categories hold the potential for achieving optimal osteogene-
sis [166]. The materials used include polymers (natural or synthetic), ceramics (calcium-
phosphate, bioglasses, or glass-ceramics), metals, and their composites. However, each
material comes with its own set of advantages and disadvantages. Biological ceramics
and organic polymers exhibit excellent biological compatibility, while metals demonstrate
superior mechanical strength.

The research focus of BTE for large bone defects post bone tumor surgery include the
following: (1) building scaffolds with desirable shape, structural, physical, chemical, and
biological features for enhanced biological performance and for regenerating complex bone
tissues [171]; (2) in situ elimination of residual tumor cells to mitigate postoperative tumor
recurrence. Notably, recent studies have highlighted the integration of PTA into biological
scaffolds to effectively target tumor cells and facilitate new bone formation (Figure 6).
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Nano-hydroxyapatite(n-HA) and tricalcium phosphate (TCP) are widely studied
biomaterials in the field of bioceramics. The composition of these scaffold material closely
resembles the inorganic makeup of bone. As the scaffold degrades, it can modulate the
regenerative microenvironment to accommodate bone tissue growth. Simultaneously, the
mechanical properties of the graft diminish gradually, with the body’s biological stress
shifting from the graft to the newly forming bone tissue. This process effectively prevents
stress shielding and fosters tissue regeneration [172].

5.1. Tricalcium Phosphate (TCP)

TCP, Ca3(PO4)2, is a commonly used absorbable bioactive ceramic material with a
Ca/P ratio of 1.5. Based on its crystal structure, it can be classified into high-temperature
α-TCP and low-temperature β-TCP. α-TCP is formed either by heating low-temperature
crystalline β-TCP or through the hot crystallization of an amorphous precursor with the
appropriate composition above the phase transition temperature [173]. Despite sharing the
same chemical composition, α-TCP and β-TCP differ significantly in terms of structure,
density, and solubility. Consequently, their applications in the field of bone repair materials
are distinct. β-TCP exhibits excellent bone conductivity, bone induction capabilities, and
degradability, making it conducive to the growth of new bone around implanted TCP
scaffolds [174,175]. Conversely, α-TCP is more soluble and can rapidly hydrolyze into
calcium-deficient hydroxyapatite. This property makes α-TCP a valuable component in the
preparation of self-setting bone conduction cement and biodegradable bioceramic materials
for bone repair [173]. Studies have demonstrated the high osteoinductive potential of
β-TCP [176], making it an appealing choice for bone graft applications.

Carbon-based PTAs are commonly combined with tricalcium phosphate (TCP) in com-
posite materials including graphene oxide (GO), carbon aerogel (CA), etc. This composite
material serves a dual function, acting as both a PTA for antitumor effects and TCP to
promote osteogenesis. Additionally, the composite material can enhance the osteogenesis
effect of TCP through near-infrared (NIR) radiation.

GO belongs to the graphene family and features various functional groups on its two-
dimensional surface including carboxyl groups, hydroxyl groups, epoxy functional groups,
and more. GO possesses a significant specific surface area and an abundance of surface
defects, making it suitable for the loading of inorganic nanoparticles. These nanoparticles
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can be attached to the GO surface through in situ growth or post-modification. In 2016, Jin-
feng Liao et al. [177] employed immersion drying to apply a coating of GO onto the surface
of 3D-printed β-TCP scaffolds. The study confirmed that the scaffold had the capacity to
stimulate new bone formation and effectively eradicate human osteosarcoma cells when
exposed to near-infrared light (808 nm, NIR, 0.36 W/cm2, 50 ◦C, 10 min). These findings
were established through in vitro co-culture experiments with bone marrow mesenchymal
stem cells (BMSCs) as well as in vivo tests utilizing a nude mouse osteosarcoma model and
a mouse skull defect model. The successful creation of this dual-function scaffold marked
the beginning of numerous potential dual-function scaffolds. Researchers have conclusively
demonstrated that PTA not only exhibits a photothermal effect, but also synergistically
promotes bone regeneration when incorporated into composite scaffolds such as carbon
aerogels (CAs) [178]. CAs are another carbon-based material known for their distinctive
features including a large specific surface area, ultra-low density, and high porosity. In
one study, through the infiltration drying method, a CA was successfully integrated onto
a β-TCP scaffold, creating a CA coating. During co-culture with BMSCs, it was observed
that cells could migrate and adhere to the pores of the TCP-CA scaffold, consequently
stimulating bone cell regeneration. In a nude mouse bone defect model, it was evident
that bone regeneration was significantly more pronounced when compared to the use of a
TCP scaffold alone. This experiment highlights the potential for synergistic effects when
combining PTA and bioactive scaffolds, capitalizing on their respective advantages.

When TCP is combined with a multifunctional PTA, it assumes the dual functions of
promoting osteogenesis and inhibiting tumor cells through various mechanisms. Typically,
this multifunctional PTA comprises a complex of various bioactive ions. These active ions
can be released under NIR radiation to exert biological activity, promoting angiogenesis,
fostering new bone formation, or inducing a PTT effect. The aim of this approach is to
achieve a synergistic bifunctional effect through multiple mechanisms.

In a study conducted by Chao Xu et al. [179], Fepse3 nanosheets were successfully
integrated into α-TCP. This integration serves a dual purpose: the eradication of tumor
cells and the promotion of bone regeneration. On the one hand, Fepse3 acts as a semi-
conductor PS, demonstrating a photothermal effect when exposed to near-infrared light.
Additionally, it is a degradable material capable of breaking down and releasing selenium
(Se). For bone regeneration, α-TCP naturally degrades into calcium (Ca) and phosphorus
(P), while the degradation of Fepse3 also results in the release of iron (Fe) and phospho-
rus (P). Consequently, the scaffold releases essential bioactive ions such as Fe, Ca, and P.
This release, in turn, activates the expression of CD31, von Willebrand factor (vWF), and
vascular endothelial growth factor (VEGF), facilitating vascularized bone regeneration
and ultimately improving the scaffold’s ability to promote bone defect repair. LaB6 is a
chemical compound comprising La and B elements and is a type of metal-based PTA that
demonstrates excellent near-infrared photothermal efficiency [180]. Additionally, La3+ has
the potential to address bone resorption disorders such as osteoporosis, while boron (B), an
essential micronutrient for the human body, can promote wound healing and stimulate the
release of osteoinductive growth factors [181]. Wentao Dang et al. [182] utilized PDLLA as a
medium in which to synthesize TCP-PDLLA-LB scaffolds by incorporating LaB6 onto TCP
scaffolds. This innovative approach not only bolstered the mechanical strength of TCP, but
also allowed for the controlled modulation of its photothermal properties through adjust-
ment of the LB content. This was demonstrated in both in vivo and in vitro experiments,
where the scaffolds exhibited tumor inhibition capabilities. Furthermore, it was confirmed
that NIR light promoted new bone formation, regardless of the presence or absence of LB.

TCP-related bifunctionality can also be attained through the binding of PTA to small
molecules that promote osteogenesis. For instance, bone morphogenetic protein-2 (BMP-2)
is known to stimulate the osteogenic differentiation of mesenchymal stem cells (MSCs) [183],
Similarly, insulin-like growth factor I (IGF-1) is widely recognized as an osteogenic inducer
due to its ability to enhance the osteogenic activity of bone morphogenetic protein-6 (BMP-
6), particularly playing a pivotal role in bone healing within bone defects [184]. Liangjie Lu
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et al. [185] successfully fabricated an MPBI@β-TCP scaffold that involved the integration
of bone growth factors BMP-2 and IGF-1 into a β-TCP scaffold coated with MoS2 using
the curing agent polydopamine (PDA). MoS2 served as the PTA to induce a photothermal
effect. Through in vitro co-cultures with MSCs and an established mouse femoral defect
model experiment, it was observed that the osteogenic potential of MSCs was significantly
stronger compared to other control groups. Moreover, the MPBI@β-TCP scaffold exhibited
favorable anti-inflammatory and pro-angiogenic effects. Simultaneously, in a tumor-bearing
mouse model, the tumor cell eradication rate reached an impressive 80.68% when exposed
to near-infrared light (808 nm, 1 w/cm−2, 10 min) irradiation.

TCP-related bifunctional scaffolds can also serve as drug carriers for precision drug
therapy. In 2020, Hongshi Ma et al. [186] successfully developed Cu-containing mesoporous
silica nanosphere-modified β-tricalcium phosphate (Cu-MSN-TCP) scaffolds as copper (Cu)
belongs to the category of PTAs and can induce a photothermal effect. Furthermore, Cu ions
can promote angiogenesis and cooperate with β-tricalcium phosphate (TCP) in fostering
bone regeneration. Mesoporous silica nanospheres (MSNs) serve as carriers for drugs
and growth factors. Although the authors did not specifically investigate drug delivery
using MSNs, these carriers were effectively integrated into the bifunctional scaffolds. In
2021, Dang, W. et al. [187] proposed an alternative approach. They utilized poly(D, L-
lactide) (PDLLA) as a medium and combined DOX (doxorubicin) and TN (tanshinone)
within the scaffold through a soaking and drying method. TN not only synergizes with
TCP to promote bone regeneration, but also acts as a PTA. Moreover, by adjusting the
drug concentration during immersion, the DOX content within the scaffold can be flexibly
controlled, enabling precise PTT and localized controlled-release chemotherapy. This
approach has demonstrated a pronounced synergistic effect in tumor cell destruction.

5.2. Nano-Hydroxyapatite (n-HA)

Hydroxyapatite (HA), with the chemical formula Ca10(PO4)6(OH)2, serves as the
predominant inorganic component of human bone. Since its initial use as a graft material
in 1971, HA has garnered significant attention in research due to its commendable bio-
compatibility [188]. Notably, HA implants can directly integrate with bone at the junction
interface without forming fibrous interfaces. HA exhibits osteoinductivity and has no
immunogenicity. However, pure HA has limitations including restricted load-bearing
capacity, prolonged degradation time, high fragility, and a limited ability to recruit cells and
stimulate angiogenesis [189,190]. To address these limitations, researchers have explored
the potential of nano-hydroxyapatite (n-HA) as an improvement over pure HA. Compared
to pure HA, n-HA exhibits enhanced mechanical properties, improved material density,
and increased fracture toughness [191]. It also has superior biocompatibility, promotes
osteogenesis more effectively, and can inhibit tumor cell growth [192].

Currently, none of the implants utilized in clinical practice possess tumor prevention
and treatment capabilities. Consequently, biomaterials are frequently engineered as carriers
for tumor treatment drugs. One notable advantage is the potential for surface modification
of the carrier material with targeting groups, enabling precise drug delivery to the tumor
site. When n-HA is employed as a carrier for PTAs, it introduces a novel, targeted, and
noninvasive approach to inhibit tumor cells while concurrently promoting new bone
formation.

Hence, the combination of n-HA and PTA has a dual function. Transition metal
carbides and nitrides (MXenes) are a novel class of 2D inorganic nanomaterials that possess
ultrafine structures and versatile functionalities. Guannan Zhang et al. [193] developed a
three-dimensional porous n-HA/g-C3N4/MXene scaffold and showed that n-HA could
further enhance the synergistic antitumor function of photodynamic and photothermal
therapies. Additionally, the scaffolds were capable of eradicating osteosarcoma cells in
just 10 min at a mild temperature of 45 ◦C. In addition, this multifunctional scaffold
enhanced osteogenic activity with NIR. A 3D-printed PEEK/graphene nanocomposite
scaffold was coated with a hydroxyapatite layer containing antibiotics and/or anticancer
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drugs. The graphene nanosheets within the scaffold acted as efficient PTAs. In vitro, the
bioactive hydroxyapatite coating substantially increased stem cell proliferation. In vivo, it
promoted the formation of new bone tissue. Furthermore, the inclusion of antibiotics and
anticancer drugs enabled the elimination of drug-resistant bacteria and the destruction of
osteosarcoma cancer cells. Notably, the treatment’s efficacy could be further augmented
through on-demand laser-induced heating [194].

Chitosan (CS), a natural polycationic linear polysaccharide derived from lignin deacety-
lation, has been applied in various tissue engineering biomaterials due to its numerous
advantages including biocompatibility, biodegradability, antibacterial properties, hemosta-
sis, and adhesive qualities [195–197]. However, when used in scaffolds by itself, CS
exhibits poor mechanical strength and undergoes rapid degradation [198]. To address these
limitations, CS is often combined with nano-hydroxyapatite (n-HA) to create CS/n-HA
composites, which have been extensively researched. Compared to CS alone, CS/n-HA
composites offer improved mechanical properties, maintain favorable porosity and bio-
compatibility, enhance the differentiation and mineralization of mesenchymal stem cells
by upregulating osteogenic genes, and demonstrate superior bone regeneration potential
in vivo. Additionally, they have a beneficial synergistic effect with antibacterial proper-
ties [196,199]. However, CS/n-HA lacks a good inhibitory effect on tumor growth, and
it could be improved by combining CS/n-HA with PTAs to construct multifunctional
composites.

Liang Ma et al. [200] loaded GO and n-HA onto CS to create an n-HA/GO/CS scaf-
fold. Their findings confirmed that this scaffold not only exhibited tumor-inhibiting and
bone-promoting effects, but also demonstrated superior wound healing and hemostatic
properties when exposed to NIR light. These effects were verified through a Kunming
mouse skin defect model and blood coagulation experiments. The n-HA/GO/CS scaffold
capitalized on the advantages of each component and addressed the limitations of indi-
vidual components. HA/polydopamine (PDA)/carboxymethyl chitosan (CMCS) yields
similar results, as each component synergistically enhances bone promotion and inhibits
tumor growth. PDA, an organic PTA, is particularly noteworthy for its high photothermal
efficiency [201]. CMCS, a chitosan derivative with improved water solubility, further en-
hances the scaffold’s properties. Mengyu Yao et al. [202] constructed a HA/PDA/CMCS
scaffold, confirming its superior photothermal efficacy in bone tumor inhibition and en-
hanced osteogenic capabilities compared to a control group lacking PDA or NIR exposure.
A mechanical property analysis and scaffold morphology assessment revealed that PDA
significantly improved the rheological properties of the slurry, and increased the mechanical
strength, surface potential, and water absorption properties of the composite scaffold.

Nanotechnology offers a promising solution in which to address infection-related is-
sues in implanted scaffolds, and incorporating photothermal properties can further enhance
their antibacterial capabilities [199,203]. In 2018, Lu et al. [204] introduced zero-dimensional
CDs into a chitosan/nano-hydroxyapatite (CS/n-HA) scaffold, forming CS/n-HA/CD. CD
synthesis is cost-effective and associated with relatively low biological toxicity, making it
a valuable promoter of mesenchymal stem cell osteogenesis. However, its application in
three-dimensional bone scaffolds has been limited [205]. Notably, CS/n-HA scaffolds can
convert light energy into heat energy, effectively enabling PTT. These scaffolds have exhib-
ited excellent photothermal efficiency, with the central temperature reaching up to 51.4 ◦C,
even under NIR light exposure in tumor-bearing mice. Furthermore, CD-doped scaffolds
can promote the adhesion of rat bone marrow-derived mesenchymal stem cells (rBMSCs)
through focal adhesion and actin cytoskeleton pathways. In antibacterial experiments, this
scaffold has demonstrated robust antibacterial properties under NIR irradiation, aligning
with results from Choon Peng Teng et al., who utilized NIR-absorbing gold nanocrosses for
the effective photothermal ablation of multidrug-resistant bacteria [206]. The underlying
mechanism may involve the high temperature eliminating a portion of the bacterial biofilm.
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6. Conclusions and Outlook

This article has provided a review of recent research progress in the application of
PTT for the treatment of bone tumors. While PTT has been explored in various ways and
has yielded promising experimental results, the majority of PTT research has centered
on the design and development of PTAs. However, the translation of PTT into clinical
applications is still a work in progress, with several shortcomings that require improvement.
Furthermore, common challenges persist across various application methods, necessitating
solutions.

The first issue pertains to light penetration in PTT. Currently, most PTA applications
require a wavelength of 808 nm, which falls within the NIR-I window (NIR-I, 650–950 nm).
However, this window has inherent limitations including limited laser light penetration
(approximately 1–2 cm) and a maximum permissible exposure of 0.33 W cm−2. In contrast,
the NIR-II window (1000–1700 nm) is more attractive for biomedical applications due to its
capacity for deeper tissue penetration (beyond 2 cm) and significantly higher maximum
permissible exposure (1 W cm−2) [207–209]. In osteosarcoma treatment, NIR-II PTAs have
been reported such as Wesselsite (SrCuSi4O10) nanosheets (SC NSs), FePSe3, and titanium
dioxide nanorods (TiO2 NRs) [179,210,211]. These materials can be linked with active small
molecules like hyaluronic acid (HA) and bone morphogenetic protein-2 (BMP-2). When
exposed to near-infrared II light, they enable the extensive hyperthermia-induced ablation
of deep-seated osteosarcoma and enhance vascularized bone regeneration in vivo. This
exploration of NIR-II excitation wavelengths for PTAs offers a promising solution to the
challenge of tissue penetration of the light source.

The second challenge involves determining the optimal light timing and frequency
in PTT treatment. In in vivo PTA experiments, near-infrared light irradiation has shown
potential in inhibiting the growth of bone tumor cells. However, the questions of when
to administer light, how frequently, and for what duration remain unresolved. Current
reports often base these determinations on ideal conditions for specific PTA materials. The
diversity of PTA materials and the variability of illumination conditions complicate their
clinical translation and application.

Finally, concerns exist around the biological toxicity and long-term metabolic safety of
PTT. Toxicity remains a primary concern with nanomaterials due to their minuscule size,
which allows them to breach physiological barriers and pose potential health risks [212].
Nanomaterials can generate free radicals that damage cell membranes, organelles, and
DNA [213]. Some PTA materials, like certain carbon-based substances, are inherently toxic.
Surface modification for reducing toxicity is a contemporary solution, but the long-term
metabolic fate of these materials cannot be overlooked.

PTT-based targeted therapy: Presently, many nanomaterial targeting mechanisms rely
on the EPR effect. However, the clinical relevance and effectiveness of EPR-based targeting
remain inconclusive, necessitating further investigation [214]. Determining how to achieve
precise drug delivery remains the central focus of targeted therapy.

PTT-based immunotherapy: The immune mechanisms of PTT in bone tumors remain
unclear, and there is limited research on combining PTT with immunotherapy in the
context of bone tumors. Furthermore, immunotherapy is costly, and patient responses vary
significantly. Investigating how the high-temperature environment post-light exposure
affects immune cells and the tumor microenvironment presents a major research challenge.

Finally, all of the studies discussed in this review are at the preclinical stage. We
must continue to explore the potential of synergistic therapies through a multidisciplinary,
multipathway approach. It is anticipated that future clinical investigations in PTT will
yield results that open new possibilities for personalized cancer treatment.
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