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The WHO’s global strategy for malaria targets a reduction of at least 90% of both
incidence and mortality rates for 2030 [1]. However, in 2022, 249 million malaria cases and
608,000 deaths were reported, mostly on the African continent [2]. Vector control through
insecticide-treated nets and indoor residual spraying are clearly not sufficient to eradicate
the disease. Challenges that must be addressed include Anopheles mosquitoes’ resistance to
insecticides, the effect of global warming on vector distribution, local reluctance to apply
vector control strategies, and Plasmodium antimalarial drug resistance. Therefore, it is
necessary to better understand Anopheles’ biology, to improve diagnostic methods, and
to target the pathogenic mechanisms leading to severe malaria cases in order to at least
decrease the lethal burden of the infection.

Mutations of key parasite genes have allowed the emergence of Plasmodium resistance
to antimalarial drugs [3,4]. Moreover, migrations of asymptomatic carriers are responsible
for the reintroduction of parasites, including drug-resistant mutants, in countries that had
previously eliminated malaria [5]. Understanding the relationships between host migration
and Plasmodium dissemination is important in order to better define global approaches to
eliminate the parasite, an issue that is addressed in terms of birds in this Special Issue by
Huang et al. [6].

A key strategy for successfully decreasing Plasmodium transmission and providing the
best treatment is to detect infected individuals as soon as possible [7,8]. To achieve this,
Frickmann et al. discuss metagenomic sequencing as an alternative diagnosis approach,
especially in non-endemic settings [9], and Calderaro et al. review the methods of malaria
diagnosis in non-endemic areas [10].

The clinical presentations of malaria range from asymptomatic to severe illness lead-
ing to death from anaemia or neurologic disease. The balance between pro- and anti-
inflammatory cytokine responses plays a critical role in the outcome of Plasmodium in-
fection [11]. Here, the production of TGF-b and of IL-9 in patients with distinct malaria
clinical presentations is analysed by Ndoricyimpaye et al. [12], and the involvement of
the IL-33/ST2 pathway in cerebral malaria is reviewed by Glineur et al. [13]. Moreover,
neutrophils might also play a role in the development of cerebral malaria, as analysed in a
mouse model by Freire-Antunes at al. [14].

Successful clearance of Plasmodium and recovery from clinical malaria are dependent
on the orchestration of a complex variety of cellular and molecular immune responses.
Although key effector mediators include natural killer cells, helper and cytolytic T lym-
phocytes, and antibody-producing B lymphocytes, the importance of other cells, especially
from the innate immune system has recently been shown [15]. IFN-γ is one of the major
molecules responsible for appropriate immune responses. Here, Buendia-Gonzalez et al. re-
port on a dehydroepiandrosterone-induced sexual dimorphism in these immune responses
that may account for differences in the clinical outcome of men and women infected with
Plasmodium [16].
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Vaccine development should also strongly contribute to the fight against malaria. The
most advanced vaccine so far is the RTS,S, targeting the P. falciparum circumsporozoide
protein, which has already been distributed on a large scale in three African countries [17,18].
However, several other vaccines are currently under development [19]. In this issue, da
Silva Matos et al. analyse the potential of RMC-1, a multistage chimeric protein, to become
a candidate vaccine against P. vivax [20].

Through modulation of the host immune microenvironment, Plasmodium may also
modulate the course of concomitant diseases that were not initially triggered by the parasite.
For instance, Plasmodium infection has been associated with a lower prevalence of atopy and
allergy-related disease [21], has been shown to affect cancer growth in diverse ways [22,23],
and may also facilitate HIV-1 replication through activation of CD4+ T cells [24]. In this
Issue, Soe et al. report on the exacerbating effect of mouse Plasmodium infection on a
concomitant endotoxin shock [25].

Together therefore, the articles in this Special Issue introduce a new understanding
of the epidemiology of Plasmodium infection, the diagnosis methods, the pathogenic con-
sequences of diverse anti-Plasmodium immune responses, and the indirect pathogenic
mechanisms triggered by the infection.
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