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Abstract: Male infertility is a significant factor in approximately half of all infertility cases and is
marked by a decreased sperm count and motility. A decreased sperm count is caused by not only a
decreased production of sperm but also decreased numbers successfully passing through the male
reproductive tract. Smooth muscle movement may play an important role in sperm transport in
the male reproductive tract; thus, understanding the mechanism of this movement is necessary to
elucidate the cause of sperm transport disorder. Recent studies have highlighted the presence of
platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PICs) in various smooth
muscle organs. Although research is ongoing, PICs in the male reproductive tract may be involved in
the regulation of smooth muscle movement, as they are in other smooth muscle organs. This review
summarizes the findings to date on PICs in male reproductive organs. Further exploration of the
structural, functional, and molecular characteristics of PICs could provide valuable insights into the
pathogenesis of male infertility and potentially lead to new therapeutic approaches.
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1. Introduction

The issue of infertility in the developed world has reached a level where it is now
considered a social concern. Male infertility constitutes a significant portion, with 20–30%
of all infertility cases attributed to male factors [1]. These factors encompass hormonal
disorders, physical ailments, lifestyle considerations, psychological issues, sexual prob-
lems, chromosomal abnormalities, and single-gene defects [1–3]. The primary causes
of male infertility are a decreased sperm count and motility. A decline in sperm count
may indicate not only reduced sperm production but also impaired transport through the
male reproductive tract. Currently, there are no clinical or experimental measurements of
sperm transport failure, and only limited objective evidence regarding the mechanisms of
sperm transport has been documented. Consequently, many patients with unexplained
low sperm count (oligospermia) may experience some degree of transport failure rather
than spermatogenesis.

Sperm transport entails various factors, including sperm motility, smooth muscle
contractions of the male reproductive tract, and seminal fluid dynamics [4,5]. Spermatozoa
within the testes exhibit minimal motility upon ejaculation into the head of the epididymis
but acquire motility during transit to the tail of the epididymis [6–8], a phenomenon
termed sperm maturation. While mammalian sperm become motile post-ejaculation into
the female genital tract, those attaining motility after traversing the epididymis remain
inhibited within the male reproductive tract. Consequently, inactive sperm necessitate
transportation from the seminiferous tubules to the rete testis via the efferent duct and
epididymis to the vas deferens.

The mechanisms governing sperm transport in male reproductive organs have been
the subject of various theories, predominantly implicating smooth muscle movement [9–11].
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Understanding smooth muscle activity in the male genitalia is crucial for elucidating sperm
transport mechanisms, potentially paving the way for male infertility treatment or the
development of male contraceptives.

Smooth muscles within the male reproductive tract contract rhythmically to propel
sperm along the tract. Their intrinsic activity ensures sperm movement even without neural
input, underscoring the redundancy and resilience of the system [12]. While the autonomic
nervous system does not directly control rhythmic contractions for sperm propulsion, it
does modulate and coordinate these contractions alongside other critical functions through-
out the sexual response [13]. Traditionally, discussions on smooth muscle movement have
centered on the nerve–smooth muscle relationship. However, in smooth muscle organs
such as the gastrointestinal tract and bladder, interstitial cells may interact with nerves to
regulate smooth muscle contraction, with implications for various diseases [14–18]. This
review focuses on the interplay between stromal cells and smooth muscle movement in the
male reproductive tract, exploring the potential of interstitial cell research in this realm.

2. Interstitial Cells Involved in Smooth Muscle Movement

Functional studies of interstitial cells in the male reproductive organs often prioritize
Sertoli and Leydig cells, which are associated with spermatogenesis. However, few stud-
ies have elucidated the functional relationship between smooth muscle movement and
interstitial cells in the male reproductive tract [19].

Interstitial cells of Cajal (ICCs) and platelet-derived growth factor receptor α (PDGFRα)-
positive interstitial cells (PICs) are two types of interstitial cells involved in smooth muscle
movement, particularly in the gastrointestinal tract and bladder [20,21]. ICCs are renowned
for their role in generating pacemaker activity and neurotransmission in the gut, while PICs
have been implicated in bladder function and neuromodulation [18,22,23]. Both cell types
are electrically coupled to smooth muscle cells (SMCs), forming a functional syncytium
that regulates smooth muscle excitability [24].

ICCs, discovered by the Spanish neuroanatomist Santiago Ramón y Cajal, are present
around the intermuscular plexus and in the circular muscle layer of the gastrointestinal
tract [25]. They have been identified in various parts of the gastrointestinal tract, including
the esophagus, stomach, cecum, and small intestine [26,27]. ICCs are thought to act
as pacemakers in intestinal peristalsis. ICCs act as electrical pacemakers and generate
waves known as slow waves, exhibiting periodic potential fluctuations [28,29]. These
slow waves determine the rhythm of spontaneous contractions in the digestive tract. Slow
waves originate from ICCs and propagate through gap junctions to surrounding ICCs and
smooth muscle cells [30,31]. These slow waves cause an increase in membrane potential,
leading to the influx of calcium ions and subsequent muscle cell contraction [32]. The
propagation of slow waves depends on IP3 receptors and mitochondrial Ca2+ uptake [33].
ICCs, functioning as pacemakers, possess unique ionic conductances that trigger slow wave
activity [34,35]. The synaptic-like contacts between nerve terminals and intramuscular ICCs
facilitate the rapid diffusion of transmitters, further influencing the propagation of slow
waves [31]. Thus, slow waves from ICCs ultimately control the contraction and relaxation
cycles of smooth muscles in the gastrointestinal tract.

ICCs express c-kit; therefore, immunohistochemistry using an anti-KIT antibody is
an effective and widely used method to identify them [27,36]. It was previously thought
that ICCs also exist in various smooth muscle organs, other than the gastrointestinal tract.
However, many reports of ICCs other than those of the gastrointestinal tract have not been
double-stained with tryptase, and it is now possible that most of these reports were mast
cells in tissues expressing c-kit [37]. Therefore, PICs are believed to be the main type of
interstitial cells involved in the regulation of smooth muscle movement in smooth muscle
organs other than the gastrointestinal tract [37,38].
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3. Immunohistological Features of PICs

The PDGFR is a type III receptor tyrosine kinase expressed in various organs, includ-
ing the GI tract [39]. It consists of two subtypes, PDGFRα and PDGFRβ, and has four
ligands (PDGF-A, -B, -C, and -D) [40,41]. In the developmental stage of mammals, PDGF–
PDGFR signals are crucial for organogenesis, including alveogenesis, hair morphogenesis,
spermatogenesis, oligodendrogenesis, palate genesis, angiogenesis, and glomerulogene-
sis [39,42]. In mature organs, PDGFRα is known to be distributed in several interstitial-type
cells such as cardiac fibroblasts, alveolar fibroblasts, dermal fibroblasts, hepatic stellate
cells, and renal mesangial cells [39].

As mentioned above, PDGFRα is not specific to PICs and is also expressed on other
types of fibroblasts. Therefore, PICs cannot be identified using PDGFRα alone. PICs also
express CD34 and vimentin in addition to PDGFRα [43–45]. Additionally, Dennis et al.
reported that mouse bladder PICs express multiple canonical fibroblast markers, including
Col1a2, CD34, LY6A, and PDGFRα, along with the ubiquitous fibroblast genes Col15a1
and Pi16. These results suggest that PICs are a type of fibroblast [38]. In addition, as will
be described later, PICs express small-conductance Ca(2+)-activated K(+) channel 3 (SK3),
which is classified as member of a family of calcium-activated potassium channels based
on functional characteristics [46,47].

Furthermore, the expression of these markers varies depending on tissue and local-
ization. For example, interstitial cells in the upper lamina propria of the human bladder
are positive for vimentin, α-smooth muscle actin, caveolin-1 and 2, PDGFRα, and non-
phosphorylated and phosphorylated connexin 43 [45]. In contrast, interstitial cells in the
lower lamina propria are positive for vimentin, CD34, and unphosphorylated connexin 43
but negative for α-smooth muscle actin, caveolin-1 and 2, PDGFRα, and phosphorylated
connexin 43 [45]. Therefore, heterogeneous immunohistochemical characteristics across
animal species and tissues make PIC identification with molecular markers difficult.

4. Morphological Features of PICs

Electron microscopy observations of PICs reveal a distinct morphology characterized
by a well-developed and rough endoplasmic reticulum, often featuring extended cisternae,
Golgi apparatus, and mitochondria primarily located in the perinuclear region. Notably,
these cells lack caveolae and basement membranes [48]. However, the qualitative nature
of their morphological features, as observed via transmission electron microscopy (TEM),
presents challenges in quantitative morphological characterization due to heterogeneity
influenced by the local microenvironment [49].

To address this limitation, recent morphological studies have employed three-dimensional
(3D) reconstruction techniques such as serial block-face scanning electron microscopy (SBF/
SEM) and focused ion beam scanning electron microscopy (FIB/SEM) [50–52]. Mantani et al.
utilized SBF/SEM to demonstrate that type III fibroblast-like cells, analogous to PICs in
the lamina propria of the rat ileum, exhibit thin, mesh-like cell bodies and thinly branched
cell processes immediately beneath the epithelium [49]. Similarly, Takeya et al., employing
FIB/SEM, illustrated that PICs in guinea pig seminal vesicles possess sheet-like cell bodies
with thicknesses ranging from 0.1 to 0.5 µm, along with sheet-like broad cell processes that
overlap selectively [53]. Furthermore, Neuhans et al., utilizing both SBF/SEM and FIB/SEM,
reported that PICs in the lamina propria of the human bladder exhibit sheet-like cell bodies
and elongated cell processes, as revealed through 3D reconstruction [54]. A consistent mor-
phological feature across these studies is the presence of very thin, mesh- or sheet-like cell
bodies, contrasting with the spindle-like structures observed in conventional TEM-based 2D
morphological analyses.

5. Functional Features of PICs

Neural regulation of smooth muscle movement in the gastrointestinal tract, an organ
where functional studies of PICs have been conducted, involves both excitatory and in-
hibitory mechanisms. Excitatory mechanisms are primarily initiated by excitatory motor
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neurons releasing neurotransmitters like acetylcholine and substance P to enhance SMC
excitability [55–57]. These neurotransmitters bind to muscarinic type 3 receptors and neu-
rokinin 1 receptors expressed by ICCs [58,59]. Gq-coupled plasma membrane receptors
activate phospholipase C (PLC), leading to the production of IP3 and diacylglycerol, which
in turn trigger Ca2+ release and activate protein kinase C [60]. Diacylglycerol further
amplifies this process by enhancing IP3 production through positive feedback on PLC
activity [61]. The IP3-induced Ca2+ release is mediated by IP3 receptors (IP3Rs) in the
endoplasmic reticulum (ER) [62]. The intense release of Ca2+ activates anoctamin 1 channels
in the plasma membrane, coupled with IP3Rs [63], resulting in a depolarizing response
that conducts to SMCs via gap junctions, ultimately leading to smooth muscle contraction.

In contrast, inhibitory mechanisms are mediated by inhibitory motor neurons through
the release of neurotransmitters such as NO, ATP, β-nicotinamide adenine dinucleotide (β-
NAD), and other purines [64–66]. ATP or β-NAD released from purinergic nerve terminals
initially binds to P2Y1 receptors on PICs [47], which couple to G-protein Gq/11, activating
PLC to increase intracellular IP3 [67]. IP3 stimulates Ca2+ release from intracellular calcium
pools, activating SK3 channels and PICs, thereby causing cell hyperpolarization [47,68].
This results in the hyperpolarization of SMCs via gap junctions, leading to smooth muscle
relaxation. Deep sequencing of gene transcripts in the small bowel and colonic PICs,
purified by fluorescence-activated cell sorting (FACS), has revealed that these cells also
express various receptors for additional neurotransmitters, hormones, and inflammatory
mediators [69]. Growing evidence suggests that PICs act as a brake on gastrointestinal
motility, integrating inhibitory inputs from intrinsic and extrinsic nerves, hormones, and
inflammatory mediators [70]. Not only in the gastrointestinal smooth muscle but also in
the detrusor smooth muscle, purines activate SK currents primarily via P2Y1 receptors in
PICs [46,68].

6. Smooth Muscle Movement in Seminiferous Tubules

Spermatozoa lack active motility within the seminiferous tubules and are thus pas-
sively transported via testicular fluid from these tubules to the caput of the epididymis
through the rete testis and efferent ductules. Although previous studies have noted bulk
movement of luminal content [71,72], quantitative data on sperm transport within the sem-
iniferous tubules are lacking. Earlier findings have suggested that contractile tubule move-
ments are mediated by smooth-muscle-like testicular peritubular myoid cells (TPCs) [73,74].
Fleck et al. demonstrated that TPC contractions induce directional sperm movement within
mouse seminiferous tubules both in vitro and in vivo [9].

TPCs encompass the seminiferous tubules in the mammalian testis. They exhibit
contractile function and express cytoskeletal markers typical of smooth muscle, such as
alpha-isoactin and smooth muscle myosin [75,76]. ATP [9], vasopressin [77], oxytocin [78],
prostaglandins [79], and endothelin [80] have been identified as signaling factors that act on
TPCs. ATP secretion from both Sertoli cells and germ cells occurs in a stimulus-dependent
manner [81]. This secreted ATP activates TPCs through P2X and P2Y receptors, leading
to seminiferous tubule contraction. However, the detailed mechanism underlying tubule
contraction remains largely unknown.

7. PICs in Seminiferous Tubules

Morphological evidence supporting the presence of PICs surrounding the seminif-
erous tubules has been documented in humans [82], mice [83], rats [84], and Chinese
soft-shelled turtles [85]. Immunohistochemistry and double immunofluorescence anal-
yses revealed the co-expression of CD34, while testing negative for vimentin, α-SMA,
c-kit, and CD31 [82,84,85]. PICs were observed outside the layer of TPCs surrounding
the seminiferous tubules, characterized by a cytoplasm and a small cell body containing
mitochondria around the nucleus. Adjacent PICs exhibited physical contact and formed
a network connecting the TPCs, Leydig cells, and blood vessels [82,84,85]. Additionally,
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secretory vesicles were noted between PICs [82,84,85], suggesting the potential for direct
cell conjugation, vesicle release, and paracrine and/or autocrine signaling.

As previously mentioned, while morphological studies on testicular PICs have been
recently reported, functional studies remain absent. It remains unclear whether these
cells express P2X and P2Y receptors; however, given the possibility of seminiferous tubule
contraction via purinergic signaling [9,81], it is highly probable that PICs do indeed express
P2X and P2Y receptors and play a role in seminiferous tubule contraction. Moreover, they
may interact with Leydig and myoid cells, as well as blood vessels, potentially facilitating
the transport of substances such as testosterone, crucial for spermatogenesis, to and from
the seminiferous tubules.

8. Smooth Muscle Movement in Epididymal Ducts

Reabsorption of luminal fluid resulting from epithelial secretions and movements of
ciliated cells may contribute to the transport of spermatozoa, but transportation mainly
relies on the contractile activity of the SMC layer surrounding the epididymal epithe-
lium [10,86,87]. However, actual sperm transport as a result of SMC contractility has only
occasionally been reported.

The epididymal duct is characterized by spontaneous rhythmic contractions which de-
crease in frequency but increase in amplitude from head to tail, as shown in vivo [88–90] and
in vitro [91–93]. There is also a report that the distal portion of the tail, which stores sperm
until ejaculation, only sporadically contracts but does not spontaneously contract [94,95].
Additionally, adrenergic nerves are present in the caudal region, and it is believed that
smooth muscle movement is mainly controlled by nerve input [10,96].

Spontaneous contractions in the epididymis are myogenic, suggesting the presence
of pacemaking cells such as the ICC. Mewe et al. reported that cells isolated from bovine
epididymal tracts exhibit three morphologically distinct contractile cell types: typical
smooth muscle cells in the tail, myofibroblast-like cells along the ducts, and atypical
myocytes with filaments. These cell types also demonstrated distinct biophysical properties.
Atypical myocytes with filaments are speculated to provide electrical coupling between
myofibroblasts, which is essential for the generation of regular myogenic activity [97].

Regarding the control of smooth muscle movement, it has been reported that not only
neural input but also hormones, such as testosterone [98,99] and estrogen [100], as well
as the influence of epithelial [101], sperm, and luminal factors [97], play a role. Cyclic
guanosine monophosphate (cGMP) signaling plays a crucial role in the relaxation of SMCs
in the epididymis [101]. This relaxation is mediated by the activation of cGMP-dependent
protein kinase I and the subsequent inhibition of myosin light chain phosphorylation [102,103].

The involvement of purine signaling in the epididymis is also significant, with P2X1
and P2X2 receptors identified in the SMC layer, suggesting a role in regulating epididymal
contractility and sperm ejection [104]. Additionally, the activation of P1 and P2 purinergic
receptors by ATP and adenosine is proposed to play a role in luminal acidification, a crucial
process for sperm maturation and storage [105].

9. PICs in Epididymis

We have identified PICs in the epididymis of mice (Figure 1) [106]. They are classified into
two subtypes, each possessing distinct immunohistochemical properties. The first subtype,
located just beneath the epithelium, was CD34(−) and was observed from the corpus to the
cauda but not in the initial segment (IS). The second subtype, CD34(+), was observed in the
interstitial space, including the muscle layers of all segments. Furthermore, the density of
CD34(+) PICs increased from the IS to the tail to match the thickness of the smooth muscle
layer. Nerve fibers in the epididymis closely associated with CD34(+) PICs, which were
observed both within and outside the smooth muscle layer. Therefore, CD34(+) PICs are
presumed to interact with nerves, while CD34(−) PICs beneath the epididymal epithelium
may be involved in transmitting information from the epithelium to the smooth muscle.
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Figure 1. Schematic model of PIC subtypes present in the interstitial space of the murine epididymis.
In the initial segment, 1–2 layers of CD34(+) PICs are present. In the other segments, the number of
CD34(+) PIC layers increases toward the cauda. In the cauda, CD34(+) PICs are present between
smooth muscle bundles. CD34(−) PICs are present beneath the epithelium in the other segments
but not in the initial segment. PIC; PDGFRα-positive interstitial cell. Reprinted from [106] with
permission of Elsevier, GmbH (Amsterdam, The Netherlands).

TEM analysis revealed that the PICs in the murine epididymis lacked a basement
membrane, exhibited a small amount of perinuclear cytoplasm, and displayed elongated
cell processes (Figure 2) [106]. These ultrastructural characteristics closely resembled those
of PICs previously described in other organs. However, no apparent differences were
observed in the two-dimensional ultrastructure of the two PIC subtypes distinguishable by
immunohistochemical features. Future research employing three-dimensional observations
may uncover morphological disparities between these PIC subtypes.
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Figure 2. Ultrastructural images of PICs in the epididymal duct. (a) A PIC beneath the epithelium;
(b) A PIC in the smooth muscular layer. IC, PDGFRα-positive interstitial cells; E, epithelium; SMC,
smooth muscle cells. Reprinted from [106] with permission of Elsevier, GmbH. Scale bars: 10 µm (a),
500 nm (b).

Connexin 43 was expressed in PICs spanning from the corpus to the cauda. Electron
microscopy unveiled an electron-dense region proximal to the PICs, indicative of a gap
junction (Figure 3) [106]. This observation suggests the potential existence of electrical inter-
connections among PICs within the epididymis through these gap junctions. Furthermore,
their adjacency to nerves and smooth muscle implies a possible role in mediating smooth
muscle contraction through physical interaction within the epididymis.
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Figure 3. Representative images of the initial segment (a), corpus (b), and cauda (c) with double
immunostaining for PDGFRα (green) and connexin 43 (red) [106]. (a–c) Nuclei were counterstained
in blue with 4′,6-diamidino-2-phenylindole (DAPI). Co-localization PDGFRα and connexin 43 (white
arrows of (b,c)). (d) Ultrastructural findings of PICs in the cauda. A close proximity area between
cellular processes of PICs. High magnification of the black line square area of (d) (inset of (d)). An
electron-dense region proximal to the PICs, indicative of a gap junction (black arrows, inset of (d)).
IC, PDGFRα-positive interstitial cell; E, epithelium. Reprinted from [106] with permission of Elsevier,
GmbH. Scale bars: 20µm (a–c), 2 µm (c).
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CD34(−) PICs situated directly beneath the epithelium were closely associated with
basal cells and macrophages (Figure 4) [106]. Macrophages localized near the epididy-
mal duct are hypothesized to play dual roles: maintaining the integrity of the epithelial
barrier and facilitating peripheral tolerance to auto-antigenic spermatozoa during matura-
tion [107,108]. Simultaneously, they may also engage in immune surveillance, combating
and monitoring pathogens that pose constant threats to the reproductive tract. Additionally,
basal cells within the epididymis have been identified as luminal sensors regulating the
activities of principal and clear cells, while also exhibiting scavenger functions [109,110].
Consequently, CD34(−) PICs may participate in various epididymal functions beyond
sperm transport, including immunoregulation or epithelial activities.
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Figure 4. Representative images of the initial segment (a), corpus (b), and cauda (c) with double
immunostaining for PDGFRα (green) and ionized calcium-binding adaptor molecule 1 (Iba-1; red).
Nuclei were counterstained in blue with 4′,6-diamidino-2-phenylindole (DAPI). Representative
images of the initial segment (d), corpus (e), and cauda (f) with double immunostaining for PDGFRα
(green) and cytokeratin 5 (CK5; red) [106]. (a–f) Insets in (a–f): Higher magnification of the white
square areas in (a–f). Reprinted from [106] with permission of Elsevier, GmbH. Scale bars: 20µm.

10. Smooth Muscle Movement in the Vas Deferens

Sperm within the vas deferens are primarily transported through smooth muscle
contraction. While numerous studies have investigated smooth muscle movement in
the vas deferens compared to the seminiferous tubules and epididymis, relatively fewer
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studies have been conducted on the latter. The smooth muscle of the vas deferens is
primarily regulated by autonomic nerves, with adrenergic nerves being the predominant
group of nerve fibers supplying the vas deferens in mammals [111–114]. Research across
various species has identified two distinct components of neurogenic contraction in the
vas deferens. The first component involves rapid phasic contractions triggered by ATP
acting on P2X receptors, while the second component entails slower tonic contractions
induced by noradrenaline and is independent of membrane depolarization [115–118]. These
findings are corroborated by studies demonstrating the role of ATP and noradrenaline as co-
transmitters in the vas deferens [116,118]. The initiation of these contractions is correlated
with the rate and degree of depolarization, with phasic contraction being more sensitive to a
reduction in extracellular calcium [119]. The selective blockade of ATP, noradrenaline, and
electrically evoked contractions by nifedipine further underscores the involvement of ATP
in contractile responses [120]. In the human vas deferens, Amobi et al. demonstrated that
the stimulation of P2X1 purinoceptors elicited an excitatory effect leading to longitudinal
muscle contraction [121], subsequently activating 4-aminopyridine-sensitive (KV) and
iberiotoxin-sensitive (BKCa) K+ channels [122].

ATP acting on P2X1 receptors stimulates an influx of Ca2+ to produce excitatory junc-
tional potentials (EJPs) that summate to depolarize the membrane sufficiently to activate
VOCs [123]. The entry of Ca2+ then activates ryanodine receptors (RYRs) to release Ca2+

from the internal store. The initial release occurs proximal to the plasma membrane and sub-
sequently propagates intracellularly through the regenerative release of Ca2+ by the RYRs
and/or via inositol 1,4,5-trisphosphate (InsP3) receptors, manifesting as an intracellular
Ca2+ wave [124]. The Ca2+ near the membrane activates large-conductance Ca2+-sensitive
K+ (BK) channels and the resulting spontaneous transient outward currents hyperpolarize
the membrane and help to terminate the activation process [125,126]. Noradrenaline (NA)
acts by stimulating α1-adrenoreceptors to produce InsP3, which then releases Ca2+ that
may induce an intracellular Ca2+ wave similar to that triggered by the ATP-dependent
entry of external Ca2+. In addition, the α1-adrenoreceptors also activate the smooth mus-
cle Rho/Rho kinase signaling pathway that serves to increase the Ca2+ sensitivity of the
contractile machinery [127].

In vivo, there is also evidence suggesting that P2X1 receptors mediate postzygotic
excitatory responses to ATP in the vas deferens and play a role in male reproductive
function. Vas deferens tissue from P2X1 receptor-deficient (P2X1 receptor −/−) mice
failed to respond to exogenously applied ATP or α,β-meATP, and these tissues lacked
spontaneous and evoked EJPs [128]. This genetic deletion resulted in a 90% reduction in
male fertility, attributed to a decreased spermatozoa count in ejaculated semen.

11. PICs in Vas Deferens

In the murine vas deferens, PICs are widely distributed across the lamina propria,
smooth muscle, and serosal layers [129]. They have been categorized into two types,
similar to those found in the epididymis: PDGFRα(+) CD34(−) PICs located just below the
epithelium and PDGFRα(+) CD34(+) PICs observed within the interstitial space containing
the muscle layer. PDGFRα(+) CD34(−) PICs exhibit a gradual increase in number from
the testis side of the vas deferens, characterized by its thin smooth muscle layer, toward
the urethra side, which features a thicker smooth muscle layer. The escalated distribution
of PICs in both the epididymis and vas deferens, relative to the thickness of the smooth
muscle layer, suggests their involvement in smooth muscle movement.

The cell bodies of PICs appear relatively small, with sparse cytoplasm containing some
mitochondria observed around the nuclei (Figure 5a–f). Notably, a basement membrane
is absent, while several elongated cell processes are evident, facilitating proximity among
PICs (Figure 5a–c). Additionally, a few caveolae are discernible in the cytoplasm (inset of
Figure 5d). Connexin 43 expression is notable in PICs, with gap-junction-like structures
observed via electron microscopy (Figure 6f,g). Morphologically, PICs within the vas
deferens exhibit electrical connections with each other and are closely situated near nerves
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and smooth muscles (Figure 6c,e). Furthermore, PICs within the lamina propria are in close
proximity not only to nerves and smooth muscle but also to the epithelium (Figure 6a,d),
blood vessels (Figure 6d), and macrophages (Figure 6b).
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Figure 5. Ultrastructural findings in PICs of murine vas deferens. (a) PICs in the lamina propria of the
vas deferens. (b) Cell processes of PICs in the lamina propria. Exosome-like structure between cell
processes of PICs (red arrowhead). (c) PICs in the smooth muscle layer of the vas deferens. (d) Cell
processes of PICs in the smooth muscle layer. High magnification of the solid black line square area
(inset at the lower left corner of (d)). (e) PICs in the serosal layer of the vas deferens. (f) Cell processes
of ICs in the serosal layer. PICs’ cell bodies are relatively small, with sparse cytoplasm containing
several mitochondria surrounding the nucleus (white arrows). PICs were in close proximity to each
other (black arrows). Caveolae in the cytoplasm of PICs in all the layers (black arrowheads). IC,
PDGFRα-positive interstitial cells; SMC, smooth muscle cells; MC, mesothelial cells. Images shown
are taken from a paper [129]. Scale bars: 2 µm (a–e); 500 nm ((f), inset at the lower left corner of (d)).

A 3D reconstruction of PICs in the vas deferens, performed using FIB/SEM, revealed
that PICs possess sheet-like structures rather than spindle-like structures, consistent with
previous three-dimensional analyses of PICs in other organs (Figure 7a,b) [130,131]. In
other words, the findings observed by TEM suggest a cross-section of a sheet-like cell
body of PICs. Furthermore, the 3D reconstruction of PICs using FIB/SEM highlighted
morphological differences between PICs in the lamina propria and those in the smooth
muscle layer.
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Figure 6. Ultrastructural findings showing the relationship between PICs and surrounding cells in
murine vas deferens. (a) The cell processes of the ICs were in close proximity to the epithelium (black
arrows). (b) A cell process of the IC was in close proximity to a macrophage (black arrows). A cell
process of the IC wraps nerves and is in close proximity to the cell process of the other IC (black
arrows). (c) Exosome-like structure near the cell process of the IC (red arrowhead). (d) The ICs in
the lamina propria were in close proximity to surrounding tissues. The IC in the lamina propria was
in close proximity to the epithelial cell (black arrow), a vascular endothelial cell (black arrowhead),
and a nerve (white arrow). (e) The IC in the smooth muscle layer was in close proximity to the
surrounding tissues. The IC in the smooth muscle layer was in close proximity to a smooth muscle
cell (black arrow) and a nerve (black arrowhead). Exosome-like structure near the cell processes of
the IC (red arrowhead). (f,g) TEM images of contact areas between ICs. Higher magnification of the
solid black line square area (inset at the lower left corner of (f,g)). Electron-dense lines exist in the
contact area between ICs (black arrows). ICs, interstitial cells; E, epithelium; N, nerves; Bv, blood
vessels; M, macrophages. Images shown are taken from a paper [129]. Scale bars: 2 µm (a–g); 500 µm
(inset at the lower left corner of (f,g)).

PICs in the smooth muscle layer had two types of 3D sheet-like structures: flat and
curled (Figure 8a). Various spatial relationships have been observed between PICs, neurons
(Figure 8b–d), and smooth muscle cells (Figure 8e–g), which form a complex 3D. In addition,
many extracellular vesicle-like structures were observed around PICs. Since the sheet-like
structure increases cell surface area and is a very effective structure for the delivery of
extracellular vesicles and for physical interactions and exchange of humoral factors by such
vesicles, PICs may be involved in neuromuscular signal transduction (Figure 8h).
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Figure 7. High-magnification images within the murine vas deferens for which a series of sequential
images were acquired using FIB/SEM: (a) smooth muscle layer; (b) lamina propria. The object
surfaces are color-coded: PDGFRα-positive interstitial cells, light green; nuclei, blue; smooth muscle
cell, coral; epithelium, grey; vessels, red; nerves, yellow. The same images following deconvolution
and 3D reconstruction using the Avizo software (version 9.1.1) are available at https://www.fei.com/
software/avizo3d/ (last accessed date: 2 March 2024). Reprinted from [130,131] with permission of
Elsevier, GmbH.
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Figure 8. 3D reconstructed image of PICs in the smooth muscle layer and 3D reconstruction of the
interfaces between surrounding tissue and PICs. (a) Stereoscopic 3D reconstructed image of the
flattened, sheet-like PICs. (b) Stereoscopic 3D reconstructed image of the curled, sheet-like PICs.
(c–e) 3D reconstruction of the interfaces between smooth muscle cells and PICs (white squares).
(f–h) 3D reconstruction of the interfaces between nerves and PICs (white squares). (h) 3D reconstruc-
tion of a PIC and the exosome-like structures around it. Object surfaces are color-coded: PICs, light
green (a–h), transparent green (i); nuclei, blue; smooth muscle cell, coral; nerves, yellow; exosome-like
structures, grey. The same images following deconvolution and 3D reconstruction using the Avizo
software (version 9.1.1) are available at https://www.fei.com/software/avizo3d/ (last accessed date:
2 March 2024). Reprinted from [130] with permission of Elsevier, GmbH.

The PICs in the lamina propria exhibited a flat, sheet-like structure with cytoplasm and
multiple cellular processes (Figure 9a). Additionally, two types of 3D structures comprising
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cell processes were observed: a rod-shaped structure (Figure 9b) and an accordion-fold-
like one (Figure 9c). PICs were positioned parallel to the epithelium (Figure 9d) and
were interconnected through gap junctions or adherens junctions (Figure 9e–g). Notably,
PICs in the lamina propria were folded akin to a screen between the epithelial basement
membrane and the smooth muscle, suggesting their potential involvement in regulating
smooth muscle movement by the epithelium.
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Figure 9. 3D reconstructed image of PICs in the lamina propria and 3D reconstruction of the interfaces
between PICs [131]. (a) 3D reconstructed image of a flattened, sheet-like PIC with multiple cellular
processes. (b) Higher magnification of the flattened, sheet PIC processes. (c) Higher magnification of
the elongated, rod-shaped PIC processes. (d) Higher magnification of the white square area in the
inset showing the 3D reconstruction of interfaces between PICs (black arrows). (e–g) 2D digital slices
including the areas indicated by black arrowheads in (d) extracted from the sequential images. High
electron density was observed in the areas indicated by black arrows in (d) (black arrows in (e–g)).
Images shown are taken from a paper [131].

12. Conclusions

To date, numerous morphological studies on interstitial cells have been reported.
These studies represent the initial step in elucidating their functional roles, given that
the characteristic morphology of these cells may influence smooth muscle movement.
The morphological investigations of PICs in male reproductive organs offer intriguing
possibilities, indicating that PICs might participate in sperm transport mechanisms within
the male reproductive tract. Further functional research on PICs in the male reproductive
tract holds the potential for a breakthrough in ejaculatory disorders, for which effective
therapeutic strategies have not yet been established.
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