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Abstract: Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-
DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker
linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM,
and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty
in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein
expression levels may offer additional insights into the mechanistic understanding of MGMT but,
currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for
MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection
aims to identify the most informative features to build accurate and interpretable prediction models.
This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and
the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter
methylation status and serum protein expression in patients with GBM. Our method provides
promising results, reducing dimensionality (by more than 95%) when employed on two large-scale
proteomic datasets (7k SomaScan® panel and CPTAC) for all our analyses. The computational
results indicate that the proposed approach provides 14 shared serum biomarkers that may be
helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given
further validation.

Keywords: glioblastoma; MGMT; proteomic; protein; feature selection; machine learning; pattern
recognition

1. Introduction

Glioblastoma (GBM), a highly aggressive primary brain tumor, presents a critical
challenge in clinical management due to its significant heterogeneity, poor prognosis,
and limited treatment options [1,2]. Management requires maximal surgical resection
followed by concurrent chemoirradiation (CRT) with radiation therapy (RT) and temozolo-
mide (TMZ), followed by the administration of adjuvant TMZ [1–4]. Identifying reliable
prognostic markers, such as MGMT promoter methylation status, and harnessing MGMT
protein expression levels are crucial for tailoring therapy and potentially improving patient
outcomes [5,6].
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MGMT (O6-methylguanine-DNA methyltransferase) [7], is a gene that repairs alky-
lating agent-induced DNA damage [8]. Patients with methylated MGMT promoters
(mMGMT) have been found to exhibit significantly higher treatment sensitivity and im-
proved survival [9,10], highlighting the importance of accurate status prediction for per-
sonalized treatment options [7,11]. Additionally, MGMT protein expression reflects the
functional activity of the repair pathway, providing complementary information for treat-
ment decisions [3]. The capture of MGMT status has variability in technique [12], but is
based on tissue specimens. The connection between MGMT status and MGMT protein
expression, which can be captured in serum, can be discordant, with no distinct threshold
identified for MGMT protein expression [13]. MGMT status is linked to the response to
TMZ, which is the standard of care administered concurrently with RT, and adjuvantly;
however, this mainstay approach still results in very poor outcomes, with a median survival
of 14 months [9]. The biological mechanisms that underlie treatment resistance to TMZ
are multifaceted and poorly understood [14]. The linkage of MGMT methylation status
and MGMT protein expression has the potential to offer a more comprehensive picture of
tumor biology, potentially leading to improved clinical outcomes and offering independent
prognostic value [5,6]. Therefore, the accurate prediction of molecules and pathways that
connect both aspects holds immense potential for personalizing treatment strategies. This
can be achieved by studying new approaches to systemic management, including agents
that act to potentially reverse or modify resistance by targeting GBM stem cells [15,16],
or modify response to RT [17] in an effort to link systemic management and RT to both
MGMT-dependent and MGMT-independent mechanisms.

Proteomics represents the study of large-scale analyses of protein expression [18] with
immense potential for uncovering novel GBM biomarkers with high accuracy and clini-
cal utility by providing complementary information to metabolic and genomic data [18].
Compared to tissue acquisition, analyzing proteins in serum or plasma offers a minimally
invasive approach [2,18]. By analyzing complex protein profiles, more profound insights
are possible through the identification and monitoring of key players in treatment response
and resistance mechanisms identified. Recent advancements in proteomics, whether they
employed mass spectrometry and tumor tissue or large-scale panels and serum biospeci-
mens, have uncovered crucial relationships between GBM tumor heterogeneity [19], the
proteome and the metabolome [20], the proteome and outcomes [21,22], and the observable
footprint of alterations in concurrent management in proteomic data [23]. There is currently
no serum biomarker in clinical use for GBM diagnosis or treatment monitoring. However,
serum proteomic markers of promising importance are emerging in the literature, and
several have applicability to GBM [24].

Utilizing feature selection methods and machine learning algorithms on proteomic
data offers additional opportunities to refine biomarker discovery and prediction mod-
els. By using diverse datasets and effective dimensionality reduction techniques, hidden
patterns can be extracted, and the prediction performance for MGMT status and protein ex-
pression can be improved. The feature selection process is a significant data pre-processing
step and a dimensionality reduction technique to eliminate redundant and irrelevant pre-
dictors in high-dimensional data [2,25,26]. This operation decreases the computational time,
reduces complexity, extracts hidden data patterns, makes the related analysis more effective,
and makes visualization easier [2,26,27]. Feature selection methods can be categorized into
filter (e.g., Minimum Redundancy Maximum Relevance (mRMR)), wrapper, and embedded
(e.g., Least Absolute Shrinkage and Selection Operator (LASSO)) methods, according to
evaluations of feature subsets [28–30]. Apart from the feature selection process, feature
weighting is also a crucial step in assigning suitable weights to the features for finding the
most effective possible final feature subset, after applying each fold of the cross-validation
operation task [26,31].

This study investigates the potential to employ a hybrid filter and embedded feature
selection (i.e., mRMR and LASSO) and the rank-based weighting method to predict serum
protein biomarkers associated with known molecular markers. To extract the most impact-
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ful signals from the high-dimensional serum proteomic data, we leverage a feature selection
and weighting technique, ultimately yielding a focused possible minimal number of infor-
mative selected features for our large-scale oncologic dataset. By providing more accurate
predictions of MGMT status and protein expression, this research can potentially improve
clinical outcomes in patients with GBM by offering more tailored treatment approaches.

The primary contributions of this study, categorized as technical and clinical aspects,
are summarized below.

1.1. Technical Aspects

This study stands out as the first to utilize the innovative and hybrid feature selection
and rank-based weighting methodology (i.e., MGMT ProFWise) for both MGMT promoter
methylation status classification and MGMT protein expression level regression tasks on
proteomic data.

To validate the MGMT ProFWise method and identify shared biomarker features
across diverse tasks and datasets, we apply it to two distinct proteomic datasets.

To compensate for the skewed class distribution in our dataset, we employed stratified
cross-validation during machine learning training, ensuring each fold accurately reflected
the overall class imbalance.

We also handle the identification of the names of the final feature subset after obtaining
possible different feature subsets of each cross-validation fold for the feature selection
process by employing a rank-based feature weighting procedure.

We explore the impact of the feature selection and rank-based weighting method on
the performance of diverse learning models.

We aim to identify the best machine learning model with the minimum number
of selected features providing the best performance (i.e., accuracy rate (ACC) or mean
squared error (MSE)) for the relevant classification and regression tasks on large-scale
proteomic datasets.

We give a general alteration analysis for the selected features of our local proteomic
dataset regarding MGMT status.

1.2. Clinical Aspects

This study offers encouraging findings to advance GBM serum proteome biom-
arker research.

We investigate the associations between the identified features, GBM, relevant sig-
naling pathways, and upstream regulatory proteins driving these pathways through
STRING applications.

We also analyze shared selected features between MGMT promoter methylation
classification and the MGMT protein expression feature selection processes towards ease of
transferability for bioinformatics researchers in this domain.

The subsequent sections of this study are organized as follows: Section 2 describes the
results, including experiments, performance metrics, and comprehensive computational re-
sults. Section 3 presents the discussion of the results. Section 4 is comprised of the materials
and methods, including the dataset description and characteristics, and an overview of the
utilized feature selection and weighting methodology, and also explains the related feature
selection methods and supervised learning models for both classification and regression
tasks. Section 5 concludes this study and proposes potential avenues for future research.

2. Results

In this section, we describe the experimental processes and evaluation metrics utilized,
while also presenting the comprehensive computational results in the following subsections.

2.1. Experimental Process

To implement the proposed methods in this study, we employed Python’s scikit-
learn [32] library for machine learning tasks and the mRMR [33] package for a filter-based
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feature selection process. All experiments were conducted on a macOS Ventura MacBook
Pro (2.3 GHz 8-core Intel Core i9, 16 GB of 2667 MHz DDR4 RAM), manufactured by
Apple, sourced in NIH/NCI/ROB, Bethesda, MD, USA. To achieve optimal results, this
study employed five diverse predictive models, including Support Vector Machines (SVM),
Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forests (RF), and AdaBoost,
which were used in both feature selection and classification tasks. We adopted the default
parameter settings for each classifier involved in the study (i.e., SVM employed C = 1,
a radial basis function kernel, and automatic gamma scaling. KNN considered the five
nearest neighbors with the Minkowski distance metric and uniform weights. LR utilized an
L2 penalty with a C value of 1.0. RF constructed 100 trees using the Gini impurity criterion.
AdaBoost generated 50 estimators with the SAMME.R algorithm and a learning rate of 1.0).
To control for randomness and to guarantee repeatable results on the proteomic datasets,
we set the random state to zero for all five learning models.

To minimize potential bias stemming from the feature selection process due to the
different range of each feature value, we employed normalized and logarithmic two-base
transformations of feature values on proteomic data obtained from SomaLogic aptamer-
based SomaScanR assay technology [34] for our local proteomic dataset. Normalized
proteomic data values were also used during validation. Data preprocessing, including
feature normalization, can significantly affect the effectiveness of feature selection tech-
niques during the preprocessing stage for the prediction tasks. Features with high variance
can be misleading for the feature selection algorithms. The feature normalization process
helps mitigate this bias by focusing on the features that contribute meaningfully to the
classification/regression task. In this study, Somalogic data arrived normalized from the
company by default. However, as the normalized data had a high variance, we applied an
additional logarithmic two-base transformation to reduce bias and provide more relevant
feature selection. With respect to the CPTAC dataset, we adopted one of the most frequently
applied data preprocessing approaches (i.e., z-score normalization). We also applied strat-
ified five-fold cross-validation to guarantee that each fold had approximately the same
proportion of samples from each class as the whole dataset, mimicking the real-world distri-
bution and reducing bias towards the majority class for the feature selection and weighting
processes. With stratified cross-validation, we achieved a more robust validation of our
results with respect to real-world datasets [35]. For the feature selection operation, potential
biases and confounding factors may include selection bias (e.g., using the same data for the
feature selection and classification), class imbalance, or interactions/correlations between
features. To tackle these possible issues, we employed a stratified cross-validation technique
to reduce bias by ensuring each fold had a similar ratio of classes as the original data, giving
a more accurate view of the model’s generalization ability across all labels. This approach
provides a more reliable performance metric by ensuring the balanced spread of classes
across folds and reflecting the model’s performance on all classes. By ensuring each fold in
cross-validation reflects the true proportion of classes in the data, stratified cross-validation
guards against evaluation bias and prevents the model from being trained on an unrealistic
distribution of classes. This approach also prevents the skewed training of learning models.
Due to unknown MGMT status cases, our stratified five-fold cross-validation technique
corresponded to a five-fold cross-validation technique for only the local MGMT dataset for
the regression task. We also utilized the minimum redundancy and maximum relevance
feature selection method to mitigate feature correlation-related bias factors. We evaluated
all selected features according to the average performance values of the supervised learning
models after using the cross-validation technique. In the feature weighting stage, we also
tried all possible rank-based values for two feature selection methods applied, to obtain
the best outcome among relevant feature subsets. To determine the final selected feature
subset, all possible minimum weight values were tested to obtain the best feature subset
with the best prediction performance and the minimum number of selected features. In this
study, we adopted the same parameter settings implemented by Tasci et al. [2] for MGMT-
based feature selection. For the classification task, MGMT methylated and unmethylated
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statuses were identified as positive and negative classes, respectively. On the other hand,
MGMT protein expression level was predicted from the selected feature subsets for the
regression task.

2.2. Performance Metrics

To assess the effectiveness of the utilized hybrid filter and embedded feature selection
method for MGMT processes, we utilized two task-specific metrics: classification accuracy
for classification tasks and mean squared error for regression tasks.

For classification, ACC was calculated by dividing the sum of true positives and true
negatives by the total number of samples (including false positives and false negatives) [36],
as detailed in Equation (1),

ACC =
TP + TN

TP + TN + FP + FN
(1)

where TP, FP, TN, and FN denote the number of true positives, false positives, true negatives,
and false negatives, respectively.

For regression, MSE is a common performance metric used to assess the performance
of a predictor. It measures the average squared difference between the predicted values
and the actual values. In simpler terms, it gives information about how far off predicted
values are, on average, from the actual values. The related equation for MSE [37] is defined
in Equation (2),

MSE =
∑n

i=1(yi−λ(xi))
2

n
(2)

where yi is the actual target value for test instance xi, λ(xi) is the predicted target value for
test instance xi, and n is the number of test instances.

2.3. Computational Results

This subsection explores the effect of feature selection and weighting approaches on
the learning models’ performance. We organized this subsection to present MGMT status
and MGMT protein expression level-based computational results in detail for our local
proteomic and CPTAC [20] datasets separately.

2.3.1. Local Proteomic Dataset-Based Results
Impact of Feature Selection Methods on Classification Model Performance for MGMT Status

The mean performance results of five different machine learning models with or with-
out the effects of applying feature selection methods using stratified cross-validation
for MGMT known status classification on the local proteomic dataset are illustrated
in Table 1. Table 1 indicates that the mRMR method yields better accuracy values for
four machine learning models, except for the random forest model, after applying fea-
ture selection. # represents number. The mRMR method also produces higher perfor-
mance results than the LASSO FS method for all models. Before the FS process, generally,
the performance values are lower than after the FS operation, except for the random
forest model.

Table 1. The effects of feature selection methods in terms of accuracy rate (%) for 65 patients according
to the MGMT-based local proteomic dataset.

ML-ACC Before FS LASSO mRMR
SVM 58.461 55.384 64.615

LR 61.538 60.000 66.154
KNN 56.923 56.923 67.692

RF 69.231 52.308 60.000
AdaBoost 56.923 50.769 66.154
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Impact of Feature Weighting and Selection Methods on Classification Model Performance
for MGMT Status

When applying rank-based feature weighting and selection methods, we evaluated
all different rank-based weights (i.e., 1 and 2) for the LASSO and mRMR feature selection
methods, respectively. The computational results are given in Table 2 in detail, and k
represents the minimum number of weights, # indicates number. The best result in Table 2
was obtained with an accuracy rate value of 87.692%, by utilizing the logistic regression
model, 60 selected features, and the minimum number weight of two. Thanks to this
methodology, sixty features were selected from 7289 human proteomic markers, with
respect to the minimum number of features and the highest accuracy rate. Two proteomic
markers between 60 features (i.e., sequence ids) have the same ENTREZ gene symbol
abbreviations. The logistic regression model provided higher accuracy values than the
support vector machine, k-nearest neighbor, random forest, or AdaBoost classifiers for all
rank-based weighting values. Considering the results of Table 1 during the cross-validation
process, we obtained higher performance values when the mRMR FS method was assigned
more weight (i.e., significance level) than the LASSO FS method.

Table 2. The performance results of the rank-based feature weighting and selection method in terms
of accuracy rate (%) for 65 patients according to the MGMT known status-based local proteomic
dataset. Bold values highlight the best outcome for each method.

Local Proteomic Dataset
MGMT Known Status-Based FS

LASSO = 1 and mRMR = 2

k # of
Features SVM LR KNN RF AdaBoost

1 66 80.000 84.615 73.846 75.385 80.000
2 60 78.462 87.692 70.769 76.923 76.923
3 9 76.923 84.615 81.538 67.692 75.385
4 9 76.923 84.615 81.538 67.692 75.385
5 3 66.154 75.384 70.769 67.692 56.923
6 2 67.692 70.769 64.615 69.231 55.385
7 2 67.692 70.769 64.615 69.231 55.385
8 1 70.769 73.846 73.846 58.461 60.000

Local Proteomic Dataset
MGMT Known Status-Based FS

LASSO = 2 and mRMR = 1

k # of
Features SVM LR KNN RF AdaBoost

1 66 80.000 84.615 73.846 81.539 80.000
2 19 75.385 76.923 75.385 70.769 69.231
3 7 69.231 78.461 64.615 70.769 72.308
4 7 69.231 78.461 64.615 70.769 72.308
5 2 66.154 72.308 66.154 56.923 50.769
6 2 66.154 72.308 66.154 56.923 50.769
7 2 66.154 72.308 66.154 56.923 50.769
8 1 69.231 69.231 60.000 41.538 41.538
9 1 69.231 69.231 60.000 41.538 41.538

10 1 69.231 69.231 60.000 41.538 41.538
11 1 69.231 69.231 60.000 41.538 41.538

# represents number.
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The related quiver plot for each mean feature value is shown in Figure 1, illustrating
significant alterations that define the MGMT methylated and unmethylated statuses. Fea-
tures with higher alterations, including positive and negative values for MGMT known
statuses, are marked with blue circles, with the number adjacent to the molecule indicating
its rank in the results. The X-axis represents mean feature values for all patients with
MGMT unmethylated status. The Y-axis represents mean feature values for all patients
with MGMT methylated status. Numbers indicate rank in the analysis. Blue boxes and
blue circles indicate the proteins that are most different between one state and another. The
grey bar indicates the proteins with a difference between −0.3 and 0.3, between MGMT
methylated and unmethylated patients employing pre-CRT serum data transformed for
analysis. Heatmap and correlation matrices for the mean values of the selected features,
with respect to the MGMT status of our local proteomic dataset, are also provided in
Supplementary Figures S1 and S2.
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Figure 1. Features identified in the local dataset in association with MGMT status. Protein signals
whose level is statistically significant and different between methylated- and unmethylated-status
patients are outlined in blue boxes, with the most altered molecules marked with blue circles. Blue
arrows indicate the difference in protein levels between MGMT methylated and MGMT unmethylated
cases (up arrow = higher, down arrow = lower).

Impact of Feature Selection Methods on Regression Model Performance for MGMT Protein
Expression Level

The mean performance results for the two different commonly used regression models
are presented in Table 3. These are shown with or without the effects of applying feature
selection methods using stratified cross-validation for MGMT, all (i.e., known and unknown
methylation) protein expression level regression tasks for 109 patients in terms of mean
squared error. The mRMR method yields better (i.e., lower) MSE results for support vector
regression (SVR) and random forest (RF) regressors than the LASSO FS method, after
applying feature selection. The mRMR method produces lower error values than the results
without feature selection. The best result was obtained with the MSE value of 0.274, by
employing the mRMR FS method and the RF regressor model.
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Table 3. The effects of feature selection methods in terms of mean squared error (MSE) for 109 patients
according to MGMT all expression level-based proteomic dataset.

ML-MSE Before LASSO mRMR

SVR 0.301 0.306 0.281

RF 0.292 0.286 0.274

Impact of Feature Weighting and Selection Methods on Regression Model Performance for
MGMT Status

We computed the effects of rank-based feature weighting and selection method for
109 patients, according to the MGMT all protein expression level-based local proteomic
dataset (see Table 4). For all rank-based weights, the related comprehensive computational
results are given in Table 4, and k represents the minimum number of weights, # indicates
number. The best result was provided with the MSE value of 0.173 and the selected
minimum number of features as 19. The regression model was employed as SVR, by
assigning weights to the LASSO and mRMR FS methods of 2 and 1, respectively. We also
obtained the same and the best MSE value with the SVR model and the selected number
of features as 30, by assigning weights to the LASSO and mRMR FS methods of 1 and 2,
respectively. We set the number of selected features for optimization (i.e., dimensionality
reduction) to 19.

Table 4. The performance results of the rank-based feature weighting and selection method in terms
of mean squared error for 109 patients according to the MGMT all protein expression level-based
local proteomic dataset. Bold values highlight the best outcome.

Local Proteomic Dataset

MGMT All Status Protein Expression Level-Based FS

LASSO = 1 and mRMR = 2 LASSO = 2 and mRMR = 1

k # of Features SVR RF k # of Features SVR RF

1 170 0.201 0.224 1 170 0.201 0.217

2 99 0.174 0.222 2 144 0.209 0.230

3 45 0.177 0.211 3 70 0.181 0.210

4 30 0.173 0.212 4 66 0.179 0.209

5 16 0.204 0.202 5 37 0.175 0.204

6 9 0.228 0.218 6 34 0.179 0.217

7 6 0.228 0.208 7 20 0.177 0.210

8 6 0.228 0.208 8 19 0.173 0.222

9 3 0.281 0.204 9 9 0.234 0.244

10 3 0.281 0.204 10 9 0.234 0.244

11 1 0.282 0.374 11 1 0.282 0.374

12 1 0.282 0.374

13 1 0.282 0.374

2.3.2. CPTAC proteomic Dataset-Based Results
Impact of Feature Selection Methods on Classification Model Performance for
MGMT Status

The mean performance results of five different prediction models with or without the
effects of applying feature selection methods using stratified cross-validation for MGMT
known status classification on the CPTAC proteomic dataset are shown in Table 5. The
mRMR and LASSO FS methods provide generally similar results for five different classifi-
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cation models, and the results before and after applying feature selection vary depending
on the FS methods and learning models used.

Table 5. The effects of feature selection methods in terms of accuracy rate (%) for 90 patients according
to the MGMT-based proteomic CPTAC dataset.

ML-ACC Before FS LASSO mRMR

SVM 62.223 57.778 56.667

LR 51.111 57.778 53.333

KNN 56.667 58.889 60.000

RF 65.556 60.000 56.667

AdaBoost 53.333 60.000 57.778

Impact of Feature Weighting and Selection Methods on Classification Model Performance
for MGMT Status

After applying rank-based feature weighting and selection methodology for the vali-
dation dataset, we assessed all possible different rank-based weights (i.e., 1 and 2) for the
LASSO and mRMR feature selection methods, respectively, (see Table 6), with k denoting
the minimum number of weights, and # indicating number. The best result in Table 6
was obtained with an accuracy rate value of 90%, by utilizing the support vector machine
model, 114 selected features, and the minimum number weight of 2, by assigning weights
to the LASSO and mRMR FS methods of 2 and 1, respectively.

Table 6. The performance results of the rank-based feature weighting and selection method in terms
of accuracy rate (%) for 90 patients according to the MGMT known status-based proteomic CPTAC
dataset. Bold values highlight the best outcome.

CPTAC Proteomic Dataset

MGMT Known Status-Based FS

LASSO = 1 and mRMR = 2

k # of
Features SVM LR KNN RF AdaBoost

1 138 88.889 88.889 82.222 78.889 68.889

2 67 84.444 85.556 82.222 75.556 71.111

3 36 86.666 80.000 80.000 74.444 71.111

4 13 81.111 76.667 78.889 76.667 72.222

5 10 78.889 80.000 75.556 72.222 73.333

6 8 75.556 81.111 80.000 76.667 77.778

7 4 74.444 78.889 73.333 71.111 71.111

8 2 73.333 74.445 71.111 66.667 63.333

9 2 73.333 74.445 71.111 66.667 63.333

10 2 73.333 74.445 71.111 66.667 63.333

11 1 72.222 68.889 62.222 44.444 50.000

12 1 72.222 68.889 62.222 44.444 50.000

13 1 72.222 68.889 62.222 44.444 50.000

14 1 72.222 68.889 62.222 44.444 50.000
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Table 6. Cont.

CPTAC Proteomic Dataset

MGMT Known Status-Based FS

LASSO = 2 and mRMR = 1

k # of
Features SVM LR KNN RF AdaBoost

1 138 88.889 88.889 82.222 80.000 68.889

2 114 90.000 88.889 80.000 78.889 71.111

3 43 87.778 87.778 81.111 75.556 73.333

4 21 86.667 85.555 81.111 77.778 81.111

5 13 78.889 76.667 78.889 77.778 71.111

6 10 75.555 82.222 77.778 73.333 74.444

7 7 80.000 78.889 82.222 81.111 74.445

8 6 82.222 83.333 82.222 74.444 66.667

9 4 80.000 76.667 76.667 74.444 68.889

10 2 73.333 74.445 71.111 66.667 63.333

11 2 73.333 74.445 71.111 66.667 63.333

12 1 72.222 68.889 62.222 44.444 50.000

13 1 72.222 68.889 62.222 44.444 50.000

14 1 72.222 68.889 62.222 44.444 50.000

Impact of Feature Selection Methods on Regression Model Performance for MGMT Protein
Expression Level

The mean performance results of two different regression models with or without
the effects of applying feature selection methods using stratified cross-validation for the
MGMT protein expression level regression tasks of 90 patients in the CPTAC proteomic
dataset, in terms of mean squared error, are presented in Table 7. The lowest MSE had a
value of 0.772, which was obtained using the LASSO method and support vector regression
(SVR) model, performing better than the mRMR FS method after applying feature selection.
SVR also produced better performance values than not applying FS methods.

Table 7. The effects of feature selection methods in terms of mean squared error for 90 patients
according to the MGMT protein expression level-based CPTAC dataset.

ML-MSE Before FS LASSO mRMR

SVR 0.827 0.772 0.813

RF 0.867 0.908 0.886

Impact of Feature Weighting and Selection Methods on Regression Model Performance for
MGMT Protein Expression Level

After using our feature weighting and selection scheme, we also observed the compre-
hensive effects of the rank-based weighting policy for 90 patients according to the MGMT
protein expression level-based CPTAC proteomic dataset in Table 8. For all rank-based
weights, k shows the minimum number of weights, # indicates number. The best result
was provided with the MSE value of 0.406 and the selected minimum number of features
as 56. The employed regression model was SVR, and the assigned weights to the LASSO
and mRMR FS methods were 2 and 1, respectively. This rank-based weighting scheme also
supported the significance level effect of the LASSO FS method, seen in Table 7. The SVR
model yielded better MSE values for all rank-based weights than the RF regression model.
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Table 8. The performance results of the rank-based feature and selection method in terms of mean
squared error for 90 patients according to the MGMT known status protein expression level-based
CPTAC proteomic dataset. Bold values highlight the best outcome.

CPTAC Proteomic Dataset
MGMT Known Status Protein Expression Level-Based FS

LASSO = 1 and mRMR = 2 LASSO = 2 and mRMR = 1
k # of Features SVR RF k # of Features SVR RF
1 196 0.442 0.639 1 196 0.442 0.631
2 78 0.436 0.592 2 175 0.434 0.617
3 39 0.432 0.561 3 56 0.406 0.592
4 16 0.527 0.568 4 41 0.431 0.559
5 11 0.572 0.545 5 22 0.480 0.576
6 9 0.547 0.579 6 17 0.526 0.565
7 7 0.559 0.618 7 8 0.599 0.589
8 5 0.602 0.636 8 7 0.592 0.606
9 5 0.602 0.636 9 7 0.592 0.606
10 3 0.734 0.829 10 3 0.778 0.886
11 2 0.751 0.793 11 3 0.778 0.886
12 2 0.751 0.793 12 1 0.936 1.250

We also obtained experimental results in detail, according to the MGMT known protein
expression level-based local proteomic dataset (Supplementary Tables S2 and S3) and present
all selected features with respect to Entrez Gene Symbols in Supplementary Table S1.

3. Discussion

MGMT promoter methylation remains the cardinal molecular feature associated with
survival in GBM, rendering it both a prognostic and predictive biomarker [9,10]. The
improvement in outcomes observed in MGMT promoter methylated patients has been
attributed to its role as a repair enzyme and its activity in relationship to the administration
of TMZ, specifically for GBM [13]. However, its action in direct DNA repair, which
constitutes less than 10% of the damage inflicted by TMZ [14,38], as well as its relevance
to the presence of RT alone [39] and to other malignancies, and in the prevention of
cancer development [40] suggest a broader role of the MGMT promoter. Further, the
outcome is linked to several facets, including methylation patterns of CpGs associated with
prognosis [41].

In this study, we employed MGMT promoter status, serum MGMT expression mea-
surements from a large-scale proteomic panel, and ML feature engineering to identify
serum signals that capture the relationship between MGMT promoter status and MGMT
protein expression. To our knowledge, this is the only study that has attempted this linkage
through employing serum MGMT protein expression. Our hypothesis is that, with growing
serum data availability and the interpretable use of ML and feature engineering, serum
signals can be effectively harnessed in specific disease entities such as glioma.

We showcase several technical innovations employed for the purpose of linking
MGMT status and MGMT protein expression to molecules measured in the serum of
patients, post-surgical resection but prior to upfront management with CRT. The technical
approaches presented here carry broad transferability to other molecular domains and
have wide dimensionality for large-scale data. In our previous work, we identified features
associated with the administration of CRT [2]. More features were shared between MGMT
status and CRT administration than by MGMT protein expression and CRT administration
in this study (Figure 2, Supplementary Table S1).
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The proteins identified have relevance to GBM. PLA2G12B, a phospholipase A2 vari-
ant, is of interest, given recent evidence for the role of phospholipases in cancer and
documented high expression levels in glioma, as well as its emergence as an oncogene
associated with glioma progression [20,42]. ABO, histo-blood group ABO system trans-
ferase, poses an interesting link between MGMT status and blood group. The blood group
has been examined in connection with several conditions, including GBM, but there is
currently no conclusive evidence [43]. The most shared features (10) (Figure 2) between
the MGMT analysis and the CRT analysis in the local dataset have reported relevance to
GBM: ADGRF2 (overexpressed in glioma, regulating proliferation and migration) [44],
AHSG (serum level predicts survival in GBM) [45], CRP [46], ME2 (promotes proneural
mesenchymal transition) [47], MMP1 (expression upregulated in GBM and associated with
decreased survival) [48], Sigle9 (immune evasion, reduced survival) [49], and others which
are not yet fully defined: FCGR3A, LAT, and PRTN3 [20]. We have previously identified
these signals as associated with CRT [2] and MGMT expression, and associated with lower
survival [21].

Serum MGMT expression and CPTAC notably overlapped with respect to CTSA
(upregulated in glioma and associated with immune infiltration) [50], MTFHD1 (one-carbon
metabolism association in GBM) [51], and CD320 (implicated in a cobalmin-mediated
metabolism) [52]. The shared features are linked in STRING (Figure 3) with MGMT protein
expression, in nodes that are connected to glucose, folate, and a one-carbon metabolism, as
well as stress response, radio, and chemoresistance in GBM [53]. MGMT protein expression,
however, only emerged as a shared feature between CPTAC and our previous study
through examining features associated with CRT in the local dataset [2]. This may reflect
the inconsistent or low capture of MGMT protein expression levels in serum. While mean
MGMT protein expression was higher in unmethylated patients vs. methylated patients,
overall MGMT expression levels carried significant overlap between MGMT methylated
and unmethylated patients in both the local dataset and in CPTAC (Figure 4), which
was similar to previously reported trends in the literature [20]. This study, however, is
encouraging, since MGMT protein expression in serum can be linked to MGMT protein
expression in tissue via mechanistic connections wherein each method of measurement
(MGMT promoter status, MGMT protein expression) more optimally captures a specific
mechanistic aspect vs. another. This study also importantly illustrated that features
associated with the administration of CRT for GBM are also associated with MGMT status.
This can potentially extend our understanding of how MGMT promoter methylation
may be exerting wide-ranging effects to result in improved outcomes in patients with
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MGMT methylated disease. Large-scale proteomic panels are actively evolving to include
larger repertoires of proteins; thus, as datasets grow and validation of findings improves,
ranges can be generated for various GBM clinical feature sets, and markers displayed in
Figure 2B can be potentially employed to predict MGMT status. Currently, MGMT status is
determined based on tissue sample obtained at the time of surgical resection, the analysis
of which can be cost prohibitive and delay results which are often not available at the time
of initial consult (2–3 weeks post resection). Serum markers can be measured with results
returned within hours, as is currently the case with markers such as CRP, which is one of
the markers identified in the current analysis. For treatment, monitoring panels can be
finetuned further to home in on patterns that reflect the likelihood of response or treatment
failure, rendering the patient a candidate for clinical trial management. For example,
serum markers that phenotypically reflect tumor behavior that mirrors the unmethylated
patients in Figure 1 could be considered more optimal candidates for treatment with
agents other than TMZ [15,54]. Limitations of this study include the large period over
which patients were diagnosed and treated, and the difficulty in comparing protein signal
originating in serum to protein signal measured in tissue. MGMT status was established
through different methods in this study vs. in CPTAC data [20]. Future directions of our
research include the validation and clinical translation of serum biomarkers into clinical
trials. Validation is subject to comparative analyses with serum and plasma proteomic
datasets, several of which are currently evolving [34]. Clinical translations are contingent
on the implementation of serum markers in GBM trials. While over 30 trials are ongoing
that aim to leverage biomarkers for the diagnosis or management of GBM [55], most
involve tissue as the biospecimen of origin. A shift to liquid biopsies is needed; however, a
template for the real-time measurement of novel serum markers needs to be established for
analysis to occur in the clinic to direct management in real-time, and this is the subject of
future directions.
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4. Material and Methods

In this section, we explain the patient characteristics and give the main information in
our local dataset and validation dataset. Then, in the following subsections, we describe our
methodology and present a general overview of employed terms, methods, and prediction
models, accordingly.

4.1. Datasets

We employed two proteomic datasets to select features with respect to classification
and regression tasks for this study. The first proteomic dataset is our local dataset comprised
of 109 patients diagnosed with pathology-proven glioblastoma (GBM) between 2005 and
2023. All patients underwent upfront CRT. Serum samples were collected on the study
before initiation of CRT (average 6.7 days, range (0 to 24)) and after completion of CRT
(average 0.33 days, range (−1 to 31)) [21,56]. The average time between pre- and post-
sample acquisition averaged 48 days (ranging from 22 to 83 days) [56]. After collection,
the serum samples were frozen at −80 ◦C for an average duration of 3951 days (with a
range of 239 to 7072 days) [56]. Subsequently, the samples were thawed and screened using
the aptamer-based SomaScan® [34] proteomic assay. This assay employs a multiplexed,
aptamer-based approach to measure the relative concentrations of 7596 protein targets
(including 7289 human proteins) for changes in expression [2], using approximately 150 µL
of serum. The patient characteristics for our local proteomic dataset are illustrated in
Table 9. The dataset-storing operations were provided by the NIDAP environment [57].

For the validation task, we utilized the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) [20] proteomic dataset to select proteomic markers as well. Our first aim was to
identify the relevant and significant biomarker sets regarding MGMT status or expression
level from the large-scale proteomic dataset. To carry this out, we employed our local
MGMT-based proteomic dataset. Given the paucity of MGMT-based proteomic datasets,
we also utilized CPTAC as a parallel proteomic dataset to validate our results and identify
the shared biomarkers while methodologically approaching the similar tasks. The local
proteomic dataset was the result of biospecimens collected on trial at our institution. The
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CPTAC proteomic dataset was selected for parallel analysis for the following reasons: (1) it
is currently the single most accessible proteomic dataset that is also linked to The Cancer
Imaging archive; (2) it has MGMT status as an available feature; (3) it is the proteomic
dataset most popular in publications in this space. These facets were central to its selection,
as future directions include the linkage to imaging features for our group. Thus, the
selection of a set that was already linked to imaging data was central. We were equally keen
to select a comparison set that could, through linkage to serum data, most expeditiously
advance, evolving research given ease of accessibility and widespread use in the literature
to eventually transfer findings. MGMT protein expression corresponding to MGMT status
for our local dataset and the CPTAC dataset based on RFU and normalized data is shown
in Figure 4. While our local dataset contains protein measurement values in serum with
RFU data, the CPTAC dataset indicates the protein measurement in tissue with normalized
data values for MGMT known statuses (i.e., methylated and unmethylated). The main
characteristics of the feature selection process on both these two datasets are also illustrated
in Tables 10 and 11.

Table 9. Patient characteristics table for our local proteomic dataset.

Characteristics N = 109 %
Sex

Male 74 68%
Female 35 32%

Cortical/Periventricular
Cortical 66 61%

Periventricular 43 39%
VPA
Yes 31 28%
No 78 72%

MGMT Status
methylated 27 24.77%

unmethylated 38 34.86%
unknown 44 40.37%

Age
<35 3 3%

36–45 11 10%
46–55 32 29%
56–65 44 40%
66–75 18 17%
75+ 1 1%

Type of Surgery
Biopsy only 9 8%

STR 62 57%
GTR 37 34%

Unknown 1 1%
Steroid administration

No record 14 12%
Before RT only 12 11%
During RT only 47 43%

Before and during RT 12 11%
No administration 25 23%
Days from surgery

No record 3 3%
<20 13 12%

20–29 52 48%
30–39 30 27%
40–59 8 7%

60+ days 3 3%
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Table 10. MGMT known status-based proteomic feature selection datasets employed for the classifi-
cation tasks.

Dataset Local CPTAC

The Number of Patients 65 90

The Number of MGMT
Methylated Cases 27 38

The Number of MGMT
Unmethylated Cases 38 52

The Number of
Total Features 7289 8838

Cross-Validation Type 5-Fold Stratified CV

Feature Selection Methods mRMR, LASSO for Classification

Feature Weighting Rule Rank-Based

Classifier Models SVM, LR, KNN, RF, AdaBoost

Performance Metric ACC

Table 11. MGMT expression level-based proteomic feature selection datasets employed for the
regression tasks.

Dataset
Local

MGMT Known
Status

Local
MGMT All Status

CPTAC
MGMT Known

Status

The Number
of Patients 65 109 90

The Number of
Total Features 7288 7288 8837

Cross-Validation
Type 5-Fold Stratified CV

Feature Selection
Methods mRMR, LASSO with Regression

Feature Weighting
Rule Rank-Based

Regression Models SVR, RF

Performance Metric MSE

4.2. Methodology

In this section, we provide a general overview of the proposed scheme, describe
the utilized feature selection and weighting methodology, and briefly explain the related
classification and regression models.

4.2.1. Proposed Scheme

We adopted a hybrid method for the MGMT-based feature selection process, com-
bining ranking-based feature weighting and filter and embedding-based feature selection
methods [2,26] in this study. The mRMR and LASSO methods are among the most com-
monly used and important algorithms for the feature selection process in the most highly
cited papers in the literature [58,59]. In this study, we utilized the advantages (i.e., power)
of both different types of feature selection methods (i.e., filter and embedded) by combining
two different algorithms via a rank-based weighting methodology. We also adopted five
effective and popular machine learning classification models [60], including SVM, LR,
KNN, RF, and AdaBoost, to assess the performance of our feature selection methodology.
This two-phase feature selection approach involves:
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Feature selection: We employed hybrid LASSO and mRMR techniques to identify
relevant features from the datasets based on their importance level and redundancy.

Feature weighting: We tried different rank-based weights to assign values to each
selected feature set for both feature selection methods, reflecting their significance for
classification or regression tasks [2,26].

The details of this hybrid approach, including the algorithmic diagram and specific
processes, are presented in Figure 5.
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The feature selection starts with feeding all proteomic markers into a feature selection
process using stratified cross-validation to reflect the class imbalance of the dataset. For each
data fold, the features selected by both feature selection methods are recorded, and their
counts are increased based on their assigned weights from the ranking procedure [2,12].
Next, the feature list with the lowest overall weight is evaluated for all possible weight
values. Finally, the final set of features is selected by evaluating all weight combinations
and identifying those that achieve the best performance value. In this research, we also
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tried different rank-based weights to achieve the best performance score for the related
dataset and operation. A detailed explanation of this approach can be obtained from
Tasci et al. [2,26].

4.2.2. Feature Selection Methods

Feature selection, also known as variable or attribute selection, automatically identi-
fies and selects the most relevant attributes from the dataset by reducing dimensionality,
providing faster and more cost-effective operations, better model interpretation, and/or
improving prediction performance [2,25,26,30]. The selected features can contribute sig-
nificantly to the performance of the predictive model used. Feature selection methods are
generally grouped into three categories: filter, wrapper, and embedded methods, based on
the evaluation criteria of the feature subset. While filter feature selection methods evaluate
features independently of the model (e.g., mRMR), wrapper methods assess subsets of
features by training and evaluating models iteratively. Embedded methods combine the
feature selection process within the model training process (e.g., LASSO) [2,26]. In this
study, we adopted both hybrid filter and embedded feature selection methods, as used by
Tasci et al. [2,26].

mRMR

The mRMR method, known as Minimum Redundancy Maximum Relevance (mRMR),
is a filter-type feature selection algorithm used in the context of pattern recognition and
machine learning. This method aims to provide a balance between selecting features that
are highly correlated with the target or class label (i.e., maximum relevance) and avoiding
redundancy (i.e., low correlation) between selected features [61].

The mRMR FS method assumes that we have a set of m features in total. Each feature,
called Xi (i ∈ {1,2,3, . . ., m}), has an importance score based on the mRMR method. This
score is calculated using Equation (3) [2,62,63],

fmRMR(Xi)= I(Y, Xi)−
1
|S|∑Xs∈S I(Xs, Xi) (3)

where Y is the target class variable, S is the selected features set, |S| is the number of
features, Xs ∈ S is one feature out of feature set S, and Xi shows a feature currently not
chosen: Xi ∈ S.

At each step, the mRMR FS method picks the most informative feature and adds it to
the chosen set. This “informative” selection means the feature is both relevant to the target
variable and different from the ones already chosen.

LASSO

LASSO, an abbreviation for Least Absolute Shrinkage and Selection Operator, is an
embedded feature selection method used for machine learning and regression analysis.
LASSO introduces a penalty term in the model training process to encourage sparse
solutions, effectively shrinking the coefficients of irrelevant or less important features
towards zero. By controlling the strength of the penalty term, LASSO performs both feature
selection and regularization, promoting automatic feature subset selection. LASSO’s ability
to handle high-dimensional datasets makes it particularly useful in scenarios where the
number of features exceeds the number of samples. With LASSO, the selected features
tend to exhibit stronger predictive power and enhanced interpretability, allowing for
more efficient and accurate modeling. The details of the LASSO feature selection can be
found in [64]. Assume X = [x1, . . ., xp] to be the feature matrix, and that the data are
standardized [64]. The coefficients of a linear model estimated by LASSO are provided by
Equation (4) [64]:

β̂ = argmin
β

∥∥∥y − ∑p
j=1 xjβj

∥∥∥2
+ λ∑p

j=1

∣∣β j
∣∣ (4)
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The LASSO regularization parameter, denoted by λ, plays a crucial role in the LASSO
method. Meanwhile, β̂ represents an unbiased prediction of the degrees of freedom
associated with LASSO. Leveraging this insight, we can create an adaptive model selection
criterion to efficiently choose the optimal LASSO features [2,25,64].

4.2.3. Feature Weighting Process

In the feature weighting stage, the significance of each selected feature in distinguish-
ing pattern classes is typically denoted by a weight value. This weight can be either added
to or multiplied by the feature values as 1 or 2, depending on the performance level of the
feature selection methods (i.e., LASSO and mRMR) employed. In this study, we adopted
a rank-based feature weighting approach. Specifically, we ranked two feature selection
methods—LASSO and mRMR—based on their performance in terms of accuracy rate or
mean squared error for the classification and regression tasks, respectively. The more
effective FS method received a higher weight compared to no feature selection results. For
each fold, we assigned a weight value of 2 or 1 to the selected features, depending on
the relevant feature selection method, contributing to the total weight list for LASSO and
mRMR. We also tried all different rank combinations for each feature selection method to
achieve the best possible outcome and provide a contribution for the prediction tasks on
the proteomic datasets for this study.

4.3. Classification and Regression

The classification process is a fundamental task in machine learning that involves as-
signing predefined labels or categories to input data points based on their features. The goal
of classification is to build a predictive model that can accurately classify new instances into
their appropriate classes. Classification algorithms learn patterns and relationships from
labeled training data, enabling them to make predictions on unlabeled data. Commonly
used classification algorithms include k-nearest neighbors, logistic regression, support
vector machine, random forests, and AdaBoost. We briefly describe these learning models
in Supplementary File S2.

The regression process is a type of prediction for continuous values (i.e., to estimate
a dependent variable) based on the values of independent variables. There are some
common regression algorithms in the literature, such as support vector machines and
random forest regression models. The main difference between these processes is to predict
discrete (i.e., categorization or classification) or continuous values (i.e., regression) based on
the predictors.

4.3.1. Support Vector Machine

Support vector machines (SVMs) are popular supervised machine learning algorithms
for classification and regression tasks. SVMs aim to find an optimal hyperplane that
separates different classes in the input feature space, maximizing the margin between the
classes [65,66]. SVMs can handle both linearly separable and non-linearly separable data by
using various kernel functions, such as linear, polynomial, radial basis function (RBF), or
sigmoid functions [66–68]. SVMs are effective in handling high-dimensional data and are
known for their ability to generalize well to unseen data, reducing the risk of overfitting.

4.3.2. Logistic Regression

Logistic regression is a popular classification algorithm used to model the relationship
between input features and a binary or categorical target variable, providing probabilistic
predictions for each class [69]. The logistic regression model applies the logistic function
(also known as the sigmoid function) to map the linear combination of input features to a
probability value, which is then used to make class predictions [70]. Logistic regression
is a linear model that estimates the coefficients of the input features through maximum
likelihood estimation, optimizing the log-likelihood function [71]. It is a well-established
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and interpretable algorithm that can handle both binary and multi-class classification
problems by using techniques like one-vs-rest or softmax regression [72].

4.3.3. K-Nearest Neighbors

The k-nearest neighbors (KNN) classifier is a popular instance-based machine learning
algorithm that classifies new data points based on their similarity to the k-nearest neighbors
in the training dataset [73]. KNN has been widely used in various domains, such as
pattern and image recognition, text classification, and recommendation systems, due to its
simplicity and effectiveness [74].

4.3.4. Random Forest

The random forest model is an ensemble learning method that combines multiple deci-
sion trees to make predictions. Each tree in the random forest is trained on a random subset
of the training data and features, resulting in a diverse set of models that work together
to improve prediction performance and handle complex datasets [75]. The computational
efficiency and ease of parallelization make it a highly efficient and versatile classification or
regression model, which is also particularly resilient to outliers and overfitting [2,76].

4.3.5. AdaBoost

The AdaBoost (Adaptive Boosting) classifier is a powerful ensemble learning algorithm
that combines weak classifiers to create a strong classifier. It iteratively adjusts the weights
of training samples based on their classification performance, allowing subsequent weak
classifiers to focus on challenging instances and improve overall prediction accuracy [77].
Its ability to handle complex datasets and improve weak learners’ performance has made it
a popular choice in practical applications [78].

5. Conclusions and Future Work

This research presents MGMT ProFWise, a novel method to select and weigh features
associated with MGMT promoter methylation status and MGMT protein expression, em-
ploying both a local serum-based and a public tissue-based proteomic dataset. MGMT
ProFWise combines two established methods (LASSO and mRMR) to identify the most
informative features. In other words, several technical innovative approaches are com-
bined in this study to connect promoter status to protein expression and validate findings
with publicly available data (CPTAC). From a clinical standpoint, several molecules were
identified that are relevant to GBM biology and reveal mechanistic connections that con-
nect MGMT status and expression to metabolic pathways, including glucose and folate
metabolism. These findings merit further exploration with metabolomic analysis and
validation in larger datasets. The serum biomarkers emerging in this analysis may be
helpful for diagnostic, prognostic, or predictive operations for GBM-related processes.
Future directions of this study include the addition of metabolomic and imaging features
to enhance the identification of non-invasive biomarkers for GBM.
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5. Szylberg, M.; Sokal, P.; Śledzińska, P.; Bebyn, M.; Krajewski, S.; Szylberg, Ł.; Furtak, J. MGMT promoter methylation as a
prognostic factor in primary glioblastoma: A single-institution observational study. Biomedicines 2022, 10, 2030. [CrossRef]
[PubMed]

6. Schmitt, A.M.; Pavel, M.; Rudolph, T.; Dawson, H.; Blank, A.; Komminoth, P.; Vassella, E.; Perren, A. Prognostic and predictive
roles of MGMT protein expression and promoter methylation in sporadic pancreatic neuroendocrine neoplasms. Neuroendocrinol-
ogy 2014, 100, 35–44. [CrossRef] [PubMed]

7. Yu, W.; Zhang, L.; Wei, Q.; Shao, A. O6-methylguanine-DNA methyltransferase (MGMT): Challenges and new opportunities in
Glioma chemotherapy. Front. Oncol. 2020, 9, 1547. [CrossRef]

https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors
https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors
https://doi.org/10.3390/cancers15102672
https://www.ncbi.nlm.nih.gov/pubmed/37345009
https://www.ncbi.nlm.nih.gov/pubmed/28239999
https://doi.org/10.1259/bjr/83796755
https://www.ncbi.nlm.nih.gov/pubmed/22215883
https://doi.org/10.3390/biomedicines10082030
https://www.ncbi.nlm.nih.gov/pubmed/36009577
https://doi.org/10.1159/000365514
https://www.ncbi.nlm.nih.gov/pubmed/25012122
https://doi.org/10.3389/fonc.2019.01547


Int. J. Mol. Sci. 2024, 25, 4082 22 of 24

8. Esteller, M.; Garcia-Foncillas, J.; Andion, E.; Goodman, S.N.; Hidalgo, O.F.; Vanaclocha, V.; Herman, J.G. Inactivation of the
DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 2000, 343, 1350–1354.
[CrossRef] [PubMed]

9. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.;
Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352,
987–996. [CrossRef]

10. Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; De Tribolet, N.; Weller, M.; Stupp, R. MGMT gene silencing and benefit from
temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [CrossRef]

11. Łysiak, M.; Das, J.; Malmström, A.; Söderkvist, P. Methylation associated with long-or short-term survival in glioblastoma patients
from the Nordic phase 3 trial. Front. Genet. 2022, 13, 934519. [CrossRef]

12. Quillien, V.; Lavenu, A.; Karayan-Tapon, L.; Carpentier, C.; Labussière, M.; Lesimple, T.; Figarella-Branger, D. Compara-
tive assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-
sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of
100 glioblastoma patients. Cancer 2012, 118, 4201–4211. [PubMed]

13. Butler, M.; Pongor, L.; Su, Y.-T.; Xi, L.; Raffeld, M.; Quezado, M.; Trepel, J.; Aldape, K.; Pommier, Y.; Wu, J. MGMT Status as a
Clinical Biomarker in Glioblastoma. Trends Cancer 2020, 6, 380–391. [CrossRef] [PubMed]

14. Rao, V.; Kumar, G.; Vibhavari, R.J.A.; Nandakumar, K.; Thorat, N.D.; Chamallamudi, M.R.; Kumar, N. Temozolomide Resistance:
A Multifarious Review on Mechanisms beyond O-6-Methylguanine-DNA Methyltransferase. CNS Neurol. Disord. Drug Targets
2023, 22, 817–831. [CrossRef] [PubMed]

15. Carmignani, M.; Volpe, A.R.; Aldea, M.; Soritau, O.; Irimie, A.; Florian, I.S.; Valle, G. Glioblastoma stem cells: A new target for
metformin and arsenic trioxide. J. Biol. Regul. Homeost Agents 2014, 28, 1–15. [PubMed]

16. Alves, A.L.V.; Gomes, I.N.F.; Carloni, A.C.; Rosa, M.N.; da Silva, L.S.; Evangelista, A.F.; Reis, R.M.; Silva, V.A.O. Role of
glioblastoma stem cells in cancer therapeutic resistance: A perspective on antineoplastic agents from natural sources and chemical
derivatives. Stem Cell Res. Ther. 2021, 12, 206. [CrossRef] [PubMed]

17. Verdugo, E.; Puerto, I.; Medina, M. An update on the molecular biology of glioblastoma, with clinical implications and progress
in its treatment. Cancer Commun. 2022, 42, 1083–1111. [CrossRef] [PubMed]

18. Kalinina, J.; Peng, J.; Ritchie, J.C.; Van Meir, E.G. Proteomics of gliomas: Initial biomarker discovery and evolution of technology.
Neuro-Oncol. 2011, 13, 926–942. [CrossRef] [PubMed]

19. Lam, K.H.B.; Leon, A.J.; Hui, W.; Lee, S.C.-E.; Batruch, I.; Faust, K.; Klekner, A.; Hutóczki, G.; Koritzinsky, M.; Richer, M.; et al.
Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity. Nat. Commun.
2022, 13, 116. [CrossRef] [PubMed]

20. Wang, L.-B.; Karpova, A.; Gritsenko, M.A.; Kyle, J.E.; Cao, S.; Li, Y.; Rykunov, D.; Colaprico, A.; Rothstein, J.; Hong, R.; et al.
Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 2021, 39, 509–528.e20. [CrossRef]

21. Krauze, A.V.; Sierk, M.; Nguyen, T.; Chen, Q.; Yan, C.; Hu, Y.; Camphausen, K. Glioblastoma survival is associated with distinct
proteomic alteration signatures post chemoirradiation in a large-scale proteomic panel. Front. Oncol. 2023, 13, 1127645. [CrossRef]

22. Yanovich-Arad, G.; Ofek, P.; Yeini, E.; Mardamshina, M.; Danilevsky, A.; Shomron, N.; Grossman, R.; Satchi-Fainaro, R.; Geiger, T.
Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep. 2021, 34, 108787. [CrossRef] [PubMed]

23. Krauze, A.V.; Zhao, Y.; Li, M.C.; Shih, J.; Jiang, W.; Tasci, E.; Camphausen, K. Revisiting Concurrent Radiation Therapy,
Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma-Proteomic Alteration and
Comparison Analysis with the Standard-of-Care Chemoirradiation. Biomolecules 2023, 13, 1499. [CrossRef] [PubMed]

24. Linhares, P.; Carvalho, B.; Vaz, R.; Costa, B.M. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? Int. J.
Mol. Sci. 2020, 21, 5809. [CrossRef] [PubMed]

25. Tasci, E.; Zhuge, Y.; Kaur, H.; Camphausen, K.; Krauze, A.V. Hierarchical Voting-Based Feature Selection and Ensemble Learning
Model Scheme for Glioma Grading with Clinical and Molecular Characteristics. Int. J. Mol. Sci. 2022, 23, 14155. [CrossRef]
[PubMed]

26. Tasci, E.; Jagasia, S.; Zhuge, Y.; Camphausen, K.; Krauze, A.V. GradWise: A novel application of a rank-based weighted hybrid
filter and embedded feature selection method for glioma grading with clinical and molecular characteristics. Cancers 2023,
15, 4628. [CrossRef] [PubMed]

27. Tasci, E.; Ugur, A. A novel pattern recognition framework based on ensemble of handcrafted features on images. Multimed. Tools
Appl. 2022, 81, 30195–30218. [CrossRef]

28. Tasci, E.; Zhuge, Y.; Camphausen, K.; Krauze, A.V. Bias and Class Imbalance in Oncologic Data—Towards Inclusive and
Transferrable AI in Large Scale Oncology Datasets. Cancers 2022, 14, 2897. [CrossRef] [PubMed]

29. Krauze, A.V.; Zhuge, Y.; Zhao, R.; Tasci, E.; Camphausen, K. AI-Driven Image Analysis in Central Nervous System Tumors-
Traditional Machine Learning, Deep Learning and Hybrid Models. J. Biotechnol. Biomed. 2022, 5, 1.

30. Gokalp, O.; Tasci, E.; Ugur, A. A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment
classification. Expert Syst. Appl. 2020, 146, 113176. [CrossRef]
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