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Abstract: Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held
together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking
and, host–guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature
endows supramolecular polymers with the ability to respond to external stimuli (temperature, light,
ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential,
enzyme activity), making them attractive candidates for a variety of biomedical applications. To
date, supramolecular research has largely evolved in the development of smart water-soluble self-
assemblies with the aim of mimicking the biological function of natural supramolecular systems.
Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and
trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers
ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction
of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances
achieved in the design of stimuli-responsive supramolecular systems used to control transport and
release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat
human diseases.

Keywords: stimuli responsiveness; supramolecular polymers; non-covalent interactions; nanomedicine;
stimuli-triggered delivery

1. Introduction

Supramolecular chemistry, also referred to as “chemistry beyond the molecule” [1,2],
studies the function and structure of supramolecular entities, i.e., supermolecules aris-
ing from the intermolecular binding between substrate species and macromolecular re-
ceptors [3]. In contrast to traditional chemistry, supramolecular science focuses on the
non-covalent and reversible interactions between molecules. Since Lehn, Pedersen, and
Cram were awarded the Nobel Prize in Chemistry (1987) “for their development and use of
molecules with structure-specific interactions of high selectivity”, supramolecular research
has steadily grown [4]. The combination of supramolecular chemistry and polymer science
has given rise to a promising class of nanomaterials named supramolecular polymers.
Unlike classical (covalent) polymers, supramolecular polymers are ordered self-assembled
nanostructures that are built by non-covalent bridging of monomeric units [5].

The diverse applications of supramolecular polymers ranges from electronics to
medicine [6]. The first use of supramolecular polymers in the marketplace was prob-
ably their application as coatings for heat-sensitive substrates. Due to their relatively
low melting points, supramolecular polymers resist the high temperatures required in
lithographic printing processes [7,8]. The differences in phase transition also allow the
application of supramolecular polymers in ink-jet printing [9,10]. Moreover, the dynamic
and responsive nature of supramolecular polymers endows them with excellent properties,
such as self-healing and stimuli-responsiveness, for their application as reversible adhesive
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materials [11,12]. Besides their use in fabrics, supramolecular polymers are also attractive
for cosmetics [13,14] and personal-care materials [15]. Supramolecular polymers also dis-
play electronic functionalities due to the planar orientation of the π-conjugated building
blocks that stabilizes the 1D crystal [16,17]. The self-assembly of π-π stacked polymers
yields well-defined nanostructures with efficient electrical properties such as good stability
and high field-effect mobility [18].

The vast majority of biological recognition events take place in water. Thus, one of
the major challenges in chemistry is to develop synthetic nature-based biomolecules that
assemble in aqueous environments [19]. The huge family of supramolecular materials
lies in the diversity of building blocks that assemble to form stable aggregates such as
nanofibers, micelles, vesicles, and other nanostructures that are held together by weak
interactions. The water-soluble and the non-covalent nature of supramolecular polymers,
and thus their reversible self-assembly equilibrium, makes them attractive candidates for
the design of biomaterials with medical applications. The use of supramolecular polymers
for intracellular protein delivery, bone regeneration scaffolds, and drug delivery, among
other biomedical therapies, lies on their versatility and the possibility of modulating their
physical and mechanical properties [20]. Strikingly, the application of supramolecular am-
phiphilic scaffolds in regenerative medicine reveals the promising biomedical applications
of these well-ordered systems [21–26].

The development of new strategies for the design, synthesis, and characterization
of supramolecular polymers enables their application as potential nanocarriers for the
delivery of drugs and diagnostic imaging contrast agents [20,27]. Nanomedicine is an
emerging research area that applies nanotechnology to medical science and focuses on
exploring key strategies for the diagnosis, treatment, and prevention of diseases at the
molecular level [28–30]. During the last decades, much of the biomedical sector has worked
on the development of new nanomaterials and their application to drug delivery, diagnosis,
and therapeutics [31]. The clinical applications of nanomedicine includes the use of biocom-
patible nanomaterials in anti-inflammatory therapies for the treatment of cardiovascular
disorders [32,33], in antiviral and antimicrobial drug delivery to fight infections [34,35],
and in the development of nanoformulations effective against neurodegenerative disor-
ders [36–39], among others.

Further advances in medicine and nanotechnology lead to the development of chal-
lenging approaches that aim to overcome the limits of traditional cancer therapeutics [40–44].
Nanomedicine-based techniques are used not only in clinical diagnosis for tumor detection,
but also in the formulation and release of drugs with anticancer activity. In contrast to
traditional chemotherapy strategies, the use of nanomaterials as drug delivery carriers
provides numerous advantages in medicine: enhanced selectivity, stability and water solu-
bility, extended half-life times, reduced side effects, and improved antitumor activity [45].
Polymers and nanoparticles play an increasingly important role in controlled release of
drugs [46–49].

In this review, we will describe the characteristics of supramolecular polymers that
make them attractive for biomedical use (Figure 1). We will discuss the most relevant
discoveries in the design of outstanding responsive self-assemblies and their promising
applications for the diagnosis and treatment of serious human diseases, especially cancer.
Furthermore, we will emphasize the future goals in the field of supramolecular chemistry
in relation to the design and synthesis of novel responsive nanodevices.



Int. J. Mol. Sci. 2024, 25, 4077 3 of 27
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 27 
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interactions. DNA, microtubules, actin filaments, or amyloid fibrils are representative examples of 
natural supramolecular polymers that have inspired the design of synthetic assemblies. Among the 
diverse applications of supramolecular polymers, this review focuses on their biomedical use. For 
their application in medicine, the strategic design of supramolecular polymers includes two main 
concepts: responsivity, and water-solubility. Responsive supramolecular-polymers can be used to 
control transport and delivery of therapeutic drugs or contrast agents for their use in treatment or 
diagnosis, respectively. 

2. Supramolecular Self-Assembly: From Single to Complex Well-Ordered Structures 
Molecular self-assembly is ubiquitous in nature and it covers a wide range of 

biological systems [50]. At the nanometer scale, there are various supramolecular systems 
with key biological functions (including amyloid fibrils, actin filaments, and 
microtubules) that are found in almost all living beings [51]. Supramolecular polymers are 
linear one-dimensional (1D) fiber-like assemblies that result from the spontaneous 
aggregation of monomeric units via non-covalent interactions [52]. Further reorganization 
of supramolecular polymers leads to high ordered structures such as supramolecular 
hydrogels, which are 3D scaffolds containing a network of nanofibers [53] (Figure 2). At 
this point, it is worth mentioning that 3D hydrogels are attracting special attention for 
their versatile biomedical applications related to their attractive properties such as their 
biocompatibility and controlled drug release [54,55].The engineering of supramolecular 
self-assemblies in aqueous media is guaranteed by the dual nature of amphiphiles [56,57]. 
Commonly, water-soluble supramolecular assemblies derive from amphiphilic 
monomers that are composed by covalently bonded hydrophobic and hydrophilic 
structural units [57]. The amphiphilic character of supramolecular building-blocks also 
mediates in the molecular self-assembly of one to three dimensional supramolecular 
polymers. 

The weak interactions that hold natural self-assemblies together (i.e., the base pairing 
of DNA double-helix or protein folding [58–62]) serve as a model for the design of 
synthetic self-assembled systems. As mentioned above, the reversible nature of 
supramolecular assemblies is based on the non-covalent association between the different 
molecular units. The various types of reversible interactions found in supramolecular 
assemblies include metal-ligand coordination, hydrogen bonding, π-π stacking, and host–

Figure 1. Supramolecular polymers are self-assembled systems held together by non-covalent
interactions. DNA, microtubules, actin filaments, or amyloid fibrils are representative examples of
natural supramolecular polymers that have inspired the design of synthetic assemblies. Among the
diverse applications of supramolecular polymers, this review focuses on their biomedical use. For
their application in medicine, the strategic design of supramolecular polymers includes two main
concepts: responsivity, and water-solubility. Responsive supramolecular-polymers can be used to
control transport and delivery of therapeutic drugs or contrast agents for their use in treatment or
diagnosis, respectively.

2. Supramolecular Self-Assembly: From Single to Complex Well-Ordered Structures

Molecular self-assembly is ubiquitous in nature and it covers a wide range of biological
systems [50]. At the nanometer scale, there are various supramolecular systems with key
biological functions (including amyloid fibrils, actin filaments, and microtubules) that are
found in almost all living beings [51]. Supramolecular polymers are linear one-dimensional
(1D) fiber-like assemblies that result from the spontaneous aggregation of monomeric units
via non-covalent interactions [52]. Further reorganization of supramolecular polymers
leads to high ordered structures such as supramolecular hydrogels, which are 3D scaffolds
containing a network of nanofibers [53] (Figure 2). At this point, it is worth mentioning
that 3D hydrogels are attracting special attention for their versatile biomedical applica-
tions related to their attractive properties such as their biocompatibility and controlled
drug release [54,55].The engineering of supramolecular self-assemblies in aqueous me-
dia is guaranteed by the dual nature of amphiphiles [56,57]. Commonly, water-soluble
supramolecular assemblies derive from amphiphilic monomers that are composed by
covalently bonded hydrophobic and hydrophilic structural units [57]. The amphiphilic
character of supramolecular building-blocks also mediates in the molecular self-assembly
of one to three dimensional supramolecular polymers.

The weak interactions that hold natural self-assemblies together (i.e., the base pairing
of DNA double-helix or protein folding [58–62]) serve as a model for the design of synthetic
self-assembled systems. As mentioned above, the reversible nature of supramolecular
assemblies is based on the non-covalent association between the different molecular units.
The various types of reversible interactions found in supramolecular assemblies include
metal-ligand coordination, hydrogen bonding, π-π stacking, and host–guest interactions
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(Figure 2) [63,64]. The reversible association of natural systems, such as actin filaments or
DNA, has inspired synthetic chemists to design synthetic self-assemblies [1,65].
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Figure 2. (a) Supramolecular polymers are fiber-like assemblies (left, figure adapted with permission
from reference [52] under the terms of the Creative Commons CC BY license, accessed on 20 March
2024) that can further aggregate into high-ordered systems like supramolecular hydrogels (right).
(b) The variety of supramolecular polymers arise from the diverse non-covalent interactions that
facilitate the self-assembly process: hydrogen-bonding, metal-ligand coordination, π-π stacking,
and host–guest interactions, an example of the self-assembly mediated with β-cyclodextrin is given
(structure and the tridimensional view of the complexing host, adapted with permission from
reference [66] under the terms of the Creative Commons CC BY license, accessed on 15 March 2024).

Inspired by the assembly of nucleobases, hydrogen bonds (HBs) are considered an
attractive type of interaction that holds supramolecular polymers together to form well-
defined aggregates [67]. For the design of supramolecular self-assemblies, it is necessary to
pay carefully attention to the number and strength of HBs, pre-organization (to ensure the
stability of hydrogen-bonded arrays), secondary electrostatic effect, and tautomerization.
The high directionality and the diversity of HBs allow to formulate a plethora of hydrogen-
bonded supramolecular polymers [63,67–69].

Moreover, metal–ligand coordination offers fascinating properties, such as tunable
binding strength and excellent redox and photophysical behavior, for the design of at-
tractive supramolecular materials. The potential application of metal–ligand complexes
lies in their ability to adapt to the application of external stimuli [70]. In supramolecular
chemistry, metal coordination has been extensively exploited for the design of different
networks, including metallo-supramolecular polymers [71,72], to obtain functional nanos-
tructured materials.

In chemistry, a common strategy in the design of water-soluble supramolecular poly-
mers involves the use of a hydrophobic core (Figure 3) followed by the introduction of
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hydrophobic amino acid residues. The use of aromatics as central nuclei allows the ver-
satile introduction of different functional groups, as well as the stability enhancement of
supramolecular self-assemblies via π-stacking interactions [73].
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Figure 3. Hydrophobic aromatic cores commonly used in the design of water-soluble supramolecular
polymers. (Top) Representative illustration of the columnar helical aggregates of SPs based on
benzene-1,3,5-tricarboxamide (BTA): three-fold hydrogen bonding (red) stabilize the supramolecular
assembling. (Bottom) Other well-known hydrophobic cores are: perylene-bismide (PBI), triarylamine
(TAA), and porphyrins.

In this context, the design of supramolecular polymers based on benzene-1,3,5-tricarbo
xamide (BTA) has been widely extended [74–76]. The structural features of BTA allow
the molecular design of C3-symmetrical discotic (circular) amphiphiles that experiment
spontaneous self-assembly in aqueous environments [77]. In the synthetic pathway, ter-
minal, covalently attached hydrophilic side chains enhance water-solubility of BTA-based
supramolecular helical fibers and reinforce their stability through HBs and π-π interac-
tions [78,79] (Figure 3). During the last few years, triarylamines (TAA) have also been
studied as attractive aromatic cores that can undergo supramolecular polymerization
to provide versatile platforms [80]. In 2021, Picini et al. [81] synthesized a TTA-based
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macrocycle that was able to self-assemble into an electroactive 3D nanotube. Moreover,
Oyspenko et al. published a “hot paper” in 2019 for their advances in the thermal control
over the self-assembly of TTA supramolecular helical organogels that further stack into
larger fibers [82]. More recently, Parida et al. [83] exploited the stabilizing interactions
occurring in the supramolecular assemblies of a family of perylene-based polymers. In this
context, perylene-bisimides (PBIs) had been previously reported to exhibit potent biological
applications since they form stable self-assemblies in aqueous media [84].

The exploration of different aromatic nuclei in the construction of bio-attractive
supramolecular polymers offers exciting avenues of research. For instance, porphyrin-based
derivatives, owing attractive photophysical properties, are employed as highly fluores-
cent photosensitizers in photodynamic therapy. Upon light irradiation these molecules
generate cytotoxic oxygen species, such as singlet oxygen (1O2), that can destroy tumor
cells [85]. Liu et al. [86] reported a porphyrin-based supramolecular system with efficient
use as a photosensitizer in the photodynamic therapy of bacterial invasion. In terms of
responsiveness, the introduction of photosensitive azobenzene groups in the structure of
porphyrin-based nanomaterials allowed Lu and co-workers [87] to obtain a multivalent
amphiphile that exhibit dynamic and switchable self-assembly and optical properties in
response to UV-Visible light irradiation.

Among the various weak interactions that hold supramolecular polymers together,
including triple hydrogen bonding of BTA-based assemblies, host-guest binding has at-
tracted recent interest [88]. The design of host-guest supramolecular polymers includes a
macrocyclic host that directly interacts with a specific guest moiety. Until the 1990s, guests
involved in molecular recognition events have been limited to small molecules and simple
ions. On the other hand, the use of cyclodextrins (CDs) (Figure 2) have gained attention
in supramolecular chemistry during last few decades due to their attractive biomedical
applications [89]. CDs are cyclic oligosaccharides composed of a hydrophilic outer layer,
which enables water solubility, and an inner apolar cavity, which provides the appropriate
matrix to properly encapsulate and carry hydrophobic drugs [90].

The combination of various non-covalent interactions constitute most orthogonal self-
assembly strategies to obtain complexes with high specificity and selectivity [91]. Although
the functionalization of hosts still remains a challenge, there are diverse macrocycles,
besides cyclodextrins, with excellent properties. In this sense, pillar[n]arenes constitute
a family of highlighting macrocycles that offer several advantages over other hosts [92].
These materials not only exhibit host-selective binding due to the symmetry and rigidity
of their structures, but can also undergo easy functionalization on one or two positions or
on all benzene rings, which confers them multi-responsiveness to different environmental
stimuli. In addition, pillar[n]arenes are readily soluble in organic solvents. For all these
reasons, pillar[n]arene-based supramolecular polymers have potential clinical applications,
and they display an important role in cancer therapy [93–96].

3. Responsivity in Supramolecular Polymers

Due to their non-covalent nature, one of the most interesting properties of supramolec-
ular polymers is their ability to assemble and disassemble in response to stimuli. This
switchable behavior resembles the dynamic nature of the microtubule cytoskeleton, which
can adapt to changes that may occur in the cell [97]. Supramolecular polymers that undergo
changes in response to stimuli are unique materials that combine the dynamic properties
of polymers, including long chains and directionality, with the ability to reversibly adjust
their conformations as they are assembled through weak interactions [63].

To date, one of the greatest challenges in nanomedicine lies in the development of
responsive supramolecular assemblies for controlled delivery. Numerous reviews [98–102]
have reported the importance of using smart nanocarriers with stimuli-responsiveness
for achieving selective release of therapeutic drugs or contrast agents. Controlled drug
delivery enhances drug efficacy and avoids adverse (cytotoxic) effects in normal cells, since
the loaded drugs are not released until they reach the injured site.
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The various stimuli that can trigger reversible supramolecular self-assembly are clas-
sified as internal and external [103,104]. Some pathologies may alter the surrounding
environment of injured tissues and induce dramatic changes in the physiological conditions
of pH, redox, or enzyme expression (internal stimuli). On the other hand, light, ultrasound,
and electric/magnetic field are classified as external stimuli. Furthermore, temperature
is a versatile stimulus that can be applied externally (e.g., thermal annealing [105]) or act
internally, as thermal variations occur in inflamed and tumor sites [106].

3.1. Temperature-Responsiveness

One of the most accessible properties of polymers is their responsiveness to tem-
perature changes [103]. The ability to respond to thermal stimuli causes conformational
changes in the polymer chains [107]. In water, temperature-responsive polymers undergo a
thermally induced transition from the entirely dissolved coil to the globular aggregated
form (Figure 4). The morphology of the assembled nanostructures depends significantly
on the degree of hydrophilicity of a given block, as it can be altered with temperature [108].
The introduction of multiple H-bonding in the polymer structure is an effective strategy to
tune the thermal-response and the morphology of amphiphilic copolymers [109].
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Figure 4. Thermally induced coil-to-globule transition, arising from the temperature dependence
of the hydrophilic and hydrophobic interactions between the polymer (colored in purple) and
water molecules (represented in blue shades) of the solvent (figure reprinted with permission from
reference [107] under the terms of a License Agreement, order license ID 1454499-1, between the
authors and Copyright Clearance Center (CCC), accessed on 26 February 2024).

3.2. Responsiveness to Internal Stimuli
3.2.1. pH-Responsiveness

Supramolecular self-assembly can be regulated with protonation and deprotonation
of pH-sensitive building blocks (i.e., histidine and lysine) [110–112]. This pH dependence
is related to the electrostatic repulsion between two or more positively charged amino acid
residues that are close together in space. Thus, the self-assembly of responsive supramolecu-
lar polymers can be controlled by modulating the pH of the surrounding medium [113,114].

3.2.2. Redox-Responsiveness

There are other strategies in the design of stimuli-responsive assemblies, such as that
related to redox responsiveness. Glutathione (ι-γ-glutamyl-ι-cysteinylglycine, GSH) is one
of the most relevant agents of the cellular antioxidant defense [115]. The redox equilibrium
between the thiol group (-SH) of GSH-cystein that is oxidized to form gluthathione disulfide
(GSSG) governs the antioxidant function of glutathione. The introduction of disulfide bonds
in the design of amphiphilic copolymers provides the redox-responsiveness.
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3.2.3. Enzyme-Responsiveness

Among the stimuli-response related to temperature, pH, and redox balance, the re-
sponsiveness to enzymatic activity has also relevant interest. Specially in cancer, enzymes
have attracted attention as vital markers in the therapeutic research [104]. Due to the
specificity and selectivity of enzymes for unique substrates, enzyme-responsive assemblies
can be design with the aim to detect phatological abnormalities. Specially, the fabrication
of systems with responsiveness to proteases has special interest, since these enzymes are
commonly overexpressed in cancer and other inflammation-related disorders [116–118].
This is the case of matrix metalloproteinases (MMPs) [119,120] and Cathepsin B. For in-
stance, GPLGIAGQ (Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln) is an octapeptide that exhibits a
high response to MMP2 and serves as inspiration to develop lipid-polymers sensitive
to MMP2 activity [121]. On the other hand, the tetrapeptide sequence Gly-Phe-Leu-Gly
(GFLG) is one of the most common motifs used in the design of polymeric systems with
enzyme-responsiveness to Cathepsin B [122–124].

3.3. Responsiveness to External Stimuli
3.3.1. Light-Responsiveness

The introduction of photo-responsive moieties in the synthetic pathway is a common
approach used in the design of supramolecular amphiphiles sensitive to light [125–128].
Although there is a wide variety of photo-responsive molecules including stilbenes [129],
diarylethenes [130] and spiropyrans [131], the use of azobenzenes has been widely em-
phasized during the last decade [79,132–141]. The N=N double bond of azo-compounds
undergoes reversible photoisomerization from the stable trans isomer (E) to cis form (Z)
under UV-light irradiation (Figure 5). The equilibrium returns to the initial configuration
after irradiation with blue light or by thermal equilibration [142].
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Figure 5. Azobenzene photoisomerization (left) and electronic absorption spectra of trans and cis
isomers (right) that are, respectively, induced using irradiation with visible or UV light (reprinted with
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between the authors and Copyright Clearance Center (CCC), accessed on 27 February 2024).

3.3.2. Ultrasound-Responsiveness

Besides its major limitation is their low drug-loaded content [143], ultrasound-responsive
nanocarriers are highly investigated for its application in diagnostic imaging [144,145]
and cancer treatment [146,147] due to its capability to enhance drugs permeability into
cells [148,149], and thus increased delivery efficiency, in a minimally invasive manner [150].
Thermal and mechanical biological effects induced with ultrasound lead to biomedical
applications related to the release of the loaded drug from the responsive nanocarrier [151].
Mechanical effects are directly related to cavitation, that is, ultrasound-induced oscillation
and collapse of the cavities or bubbles arising from ultrasound sonoporation. On the other
hand, thermal effects are due to the absorption of ultrasound energy by biological tissues.
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The temperature of the self-assembly polymerization and the solvents are two key factors
that regulate the thermodynamic equilibrium (between metastable or stable states) that is
directly related to the ultrasound responsiveness [152].

3.3.3. Electrical-Responsiveness

Electro-responsive systems made of conducting polymers are particularly interesting.
In contrast to light, ultrasound, or magnetic signals, electric stimuli are easy to generate
and control [153]. A common strategy in the design of electro-responsive delivery systems
is based on the introduction of intrinsically molecules able to undergo a redox reaction
in the presence of an external electric field. In this sense, conducting polymers, such as
poly(pyrrole) [154,155], can be used to complex negatively-charged drugs that are further
released by the reduction of the conducting polymer [156]. In addition, the introduction of
conducting polymers in the design of electro-responsive films also allows us to incorporate
charged drugs during the formation of such films that can be used as coatings for neural
applications [157]. The application of electric voltages enhances control drug delivery from
electrical-responsive systems.

3.3.4. Magnetic-Responsiveness

To date, the introduction of magnetic targeting in the polymer science has considerably
evolved. Harries et al. demonstrated that the use of hydrophilic block copolymers serves
as a coat for stabilizing magnetic nanoparticles and enables their dispersion in biological
fluids [158]. Despite the outstanding bioapplications of magnetic-responsive nanoparticles,
the development of nanomagnetic organometalic copolymers have gained attention during
the last decade [159]. In the design of magnetic polymers, it highlights the formulation of
organic π-conjugated polymer magnets that exhibit interesting magnetic properties at low
temperatures (below 10 K).

In addition, diverse methodologies have been developed to properly incorporate
inorganic elements into self-assembled block copolymers [160–162]. For instance, cobalt-
containing polymeric thin films, resulting from solvent annealing-induced self-assembly,
display interesting ferromagnetic properties [163]. In fact, the incorporation of cobalt into
self-assembled polymeric nanostructures facilitates magnetic targeting [164] and renders
them potential candidates for magnetic imaging theranostic [165].

4. Biomedical Applications of Responsive Supramolecular Polymers

The marvelous ability of supramolecular polymers to assemble/disassemble in re-
sponse to external stimuli makes them potential candidates for biomedical applications.
Supramolecular chemistry has emerged as a novel technology that offers numerous advan-
tages in the context of diagnosis and treatment of cancer [166]. The exploitation of new
drug delivery strategies based on supramolecular chemistry is one of the most challenging
goals in chemotherapy [45,167].

In addition, the reversible and highly directional non-covalent interactions of supramolec-
ular polymers make them attractive candidates for their use in regenerative medicine to
support, guide, and stimulate regeneration of dysfunctional or even lost tissues [27]. The
design of synthetic polymers that mimic the dynamic behavior of natural fibers has re-
cently attracted considerable interest [168,169]. The eukaryotic cytoskeleton is composed
of key supramolecular biopolymers, including actin filaments and microtubules, that
are important for cell structure and function [51]. In particular, cellular microtubules
are dynamic tubulin-based assemblies involved in the regulation of cell differentiation
processes [170,171]. In the early 21st century, pioneering applications of bioactive peptide-
based supramolecular nanofibers in regenerative medicine involve their potential use for
tissue engineering of nerves [172], growth of blood vessels [173], and neural cell differentia-
tion [174].

The use of stimuli-responsive nanosystems offers numerous advantages, including the
versatility of shapes and structures that can be exploited for the design of novel molecules
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capable of evading the defense barriers they face when administered into the human
body. The exploration of such smart nanosystems includes diagnosis sensors able to detect
physical variables when used as imaging probes. In therapy, their application ranges from
nanodevices for transport and release of therapeutic agents to smart surfaces for cell growth
or tissue engineering [175].

4.1. Stimuli-Responsiveness in the Biological Environment

Especially in the fields of treatment and diagnosis, the impact of responsive supramolec-
ular nanocarriers designed for stimuli triggered delivery is growing.

4.1.1. Response to Internal Stimuli

In recent years, the development of redox-responsive supramolecular polymers has
gained special interest, possibly due to the fact that the redox equilibrium can be altered
in the presence of severe pathologies [176]. In nature, cellular homeostasis is regulated by
the action of key reactive species, such as Glutathione (GSH), that maintain the physio-
logic redox balance. GSH is a highly exploited tumor marker, as elevated concentrations
have been reported in tumor tissues compared to healthy tissues [177,178]. In 2018, Yu
et al. [179] were pioneers in the development of a theranostic supramolecular polymer
using β-cyclodextrin (β-CD) as a host segment linked to an anticancer drug (camptothecin)
with a disulfide bond. In this work, they reported that drug release could be triggered by
the elevated concentration of GSH inside tumor cells (Figure 6). The redox-responsiveness
of this cleavable linker allow not only to maintain the anticancer efficacy toward the tumor
site, but also to reduce the side effects on healthy cells.
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Figure 6. A novel supramolecular therapeutic polymer constructed from host–guest complexation
between β-cyclodextrin (β-CD) and camptothecin (CPT) orthogonally self-assembles into supramolec-
ular theranostic nanoparticles with anticancer functions. The glutathione (GSH) responsive capability
of the nanoassemblies endow rapidly dissociation after cell internalization (reprinted with permission
from reference [179] under the terms of institutional subscription to American Chemical Society,
accessed on 27 Februrary 2024).

Moreover, redox-responsive supramolecular polymers containing ferrocenyl moieties
is gaining increasing interest for controlled release [180]. In 2016, Zuo et al. [181] formulated
a dual-redox-sensitive β-CD-ferrocene supramolecular amphiphilic polymer that self-
assembles into supramolecular micelles and vesicles in aqueous solution. This system is
able to trigger anticancer drug delivery in response to the elevated concentration of reactive
oxygen species and GSH found in tumor cells. In 2020, Yin-Ku et al. [182] demonstrated
the controlled release of doxorubicin (an effective chemotherapeutic drug [183]) that was
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entrapped in β-CD-ferrocene supramolecular micelles. In this case, both UV irradiation and
redox response to hydrogen peroxide induce the dissociation of the micellar self-assembly
and inhibit the proliferation of HeLa cells.

Other multiple anomalies occurring in tumor microenvironment serve as internal
stimuli for controlled delivery. This is the case of temperature rise [184], that allows for
the effective transport and triggered release of therapeutic agents through the use of
thermal-responsive nanocarriers [185]. In this field, the work developed by Kataoka, K.
and coworkers [186] proved the use of an amphiphilic poly(oxazoline) as a molecular
thermal switch to promote gen transfection efficiency. In this work, the thermoswitchable
poly(oxazoline) was introduced between the hydprohilic shell of polyplex micelles and
a cationic polypeptide segment. The resultant hydrophobic palisade protects the pDNA
from nucleases and polyions that promotes effective nucleic acid delivery.

Also in cancer, unlike the physiological pH conditions of normal tissues (pH 7.4), the
extracellular microenvironment of tumor tissues shows a slightly acidic pH (~6.5) [187].
This fact allows us to design pH-responsive nanoassemblies that can be used as drug
targets for cancer therapy [188]. Furthermore, recent works [189,190] have demonstrated
the potential applications of pH responsiveness for effective intracellular delivery of mes-
sengerRNA (mRNA). Although in the field of supramolecular polymers, the delivery of
mRNA remains a challenge, there are few works [191,192] dedicated to improve the formu-
lation of stimuli-responsive assembled micelles (that are highly evaluated for their use in
human clinical studies [193,194]) to improve their stability for efficient gene transfection.
In addition, the activity of enzymes associated with cancer [195] or inflammation-associated
disorders [196] can be altered in such human pathologies. Although the development of
enzyme-responsive supramolecular polymers remains a challenge, the use of supramolecu-
lar drug delivery systems that respond to the altered activity of matrix metalloproteases
(MMPs) would be a promising approach to treat inflammatory-related illnesses, including
cancer or rheumatoid arthritis disease [197]. Besides MMPs, lysosomal cathepsin B has
been an enzymatic target of great interest in therapeutic trials. In cancer, this intracellular
protease exhibits high levels of expression, which often induce secretion of Cathepsin B
from cancer cells at the invasive edges of tumors [198,199].

During the exhaustive search for recent research on the design of supramolecular
polymers that only respond to temperature, pH, or enzymes, work related to biomedical
applications is lacking. However, the design of supramolecular polymers that respond
to multiple stimuli is gaining particular interest in the last few years. For this reason,
recent discoveries of supramolecular polymers that respond to thermal, pH, and enzymatic
stimuli are collected in the following Section dedicated specifically to multi-responsiveness.

4.1.2. Response to External Stimuli

Besides the environmental changes occurring in the human body in the presence of
diverse pathologies, the external application of energy sources is also outstanding. As
mentioned above, during the last few years, the design of multi-responsive supramolecular
polymers is gaining interest. The introduction of structural motifs that respond to external
stimuli, such as light, ultrasound, and electric/magnetic field, is commonly combined with
the use of other diverse stimuli-responsive blocks to construct multi-responsive systems.
However, in this Section, we would like to emphasize some relevant aspects that must be
evaluated when external stimuli are applied in the clinic.

Light has been widely used as external stimuli to control supramolecular assembly in
aqueous environments [128,200–204]. Photosensitive supramolecular assemblies can be
used as nanotargets for drug delivery via activation with UV-Visible (<700 nm) or near-
infrared (700–1000 nm) light depending on the characteristics of the release location and
mostly depending on the photoswitch [205]. The use of light as minimally invasive stimuli
provides high spatiotemporal resolution [206]. The incorporation of photo-responsive
scaffolds in the design of supramolecular polymers as delivery systems allow us to control
the assembly/disassembly of these nanostructures upon light irradiation. UV (ultraviolet)
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and visible light depths are restricted to hundreds of microns, whereas tissue penetration
of NIR (near infrared) is greatest, up to a few centimeters, since water in tissues absorbs IR
light [207–210]. For these reasons, NIR light is most appropriated for clinical applications
and, moreover, it is less harmful to cells than other light sources.

Due to the advantages of ultrasound (millimeter precision [211], minimally inva-
sive [212], intrinsic tissue penetration [104]), it has a potential stimuli for both therapeutic
and diagnostic tools. Ultrasound-mediated delivery can be controlled with cavitation or
thermal changes [213]. In the first case, cell-membrane permeability increases via sonopora-
tion process which consists of the alteration of microbubbles (that can either stably oscillate
or grow and violently collapse [214]) by the application of ultrasound frequencies [215].
On the contrary, ultrasound oscillations can be transferred to thermal energy, causing
cell hyperthermia, which enhances the permeability of the cell [216]. The frequency of
ultrasound (between kHz and MHz) depends on both the tissue and the organism, as well
as on whether it is used for therapeutic or diagnostic purposes [214,217]. In fact, among the
diverse uses of ultrasound treatments, it highlights their application for in vivo imaging
and physiotherapy [218,219].

Magnetism is considered one of the best non-invasive external stimuli due to the facile
tissue penetration [220] and the real-time response [106]. The application of an external
magnetic field is widely used for medical imaging (magnetic resonance imaging, MRI). In
the design of magnetic polymers, and it highlights the formulation of organic π-conjugated
polymer magnets that exhibit interesting magnetic properties at low temperatures (below
10 K). In addition, diverse methodologies have been developed to properly incorporate in-
organic elements into self-assembled copolymers [160–162]. For instance, cobalt-containing
polymeric thin films, resulting from solvent annealing-induced self-assembly, display inter-
esting ferromagnetic properties [163]. In fact, the incorporation of cobalt into self-assembled
polymeric nanostructures facilitates the magnetic targeting [164] and renders them potential
candidates for magnetic imaging theranostic [165].

Although the clinical application of electric-responsive supramolecular polymers is
not yet achieved [104], external electric fields could also be potential stimulus to trigger
drug release. However, the application of external stimuli is limited, since it can cause
tissue injury and death [221]. In addition, electrical penetration depth is limited by human
body barriers, such as skin, that attenuate the external electric field [222,223]. For these
reasons, the irradiation parameters (voltage intensity and irradiation time) must be carefully
selected [224].

One of the most important goals in the use of sensitive supramolecular systems in vivo
is the formulation of self-assembled systems that respond to non-invasive or minimally
invasive external stimuli. In 1978, Yatvin et al. reported for the first time the therapeutic
effectiveness of a drug delivery system (DDS) for selective release on mild local hyperther-
mia [225]. However, traditional DDSs may display challenges related to side cytotoxic side
effects. In this sense, responsive supramolecular self-assemblies are considered potential
nanocarrier systems for effective delivery of drugs to overcome conventional DDSs limitations.

4.2. Multi-Responsiveness in the Biological Environment

During the last decades, various studies have focused on the development of new
strategies to introduce stimuli-responsive motifs in the design of polymeric amphiphiles.
These systems exhibit key structural features suitable for self-assembly in aqueous me-
dia, just as aforementioned. However, the use of smart supramolecular systems that
respond to a single stimulus may be insufficient to achieve the desired control of the
polymerization-depolymerization process [226,227]. The advantage of supramolecular
multi-stimuli responsive carriers lies in the selective disassembly, and thus the controlled
drug release, enhanced by the ability to respond to two or more stimuli [228].

Multi-responsiveness of supramolecular polymers offers novel strategies in the design
of smart systems for bioapplications. To improve their selectivity in complex cellular
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environments, multi-responsive materials could be assembled/disassembled only when
two different stimuli are applied simultaneously [140].

Although the design of multi-responsive supramolecular polymers (MRSPs) remains a
challenge, several studies have been published in recent years. In this Section, some relevant
examples in this area are listed below, following a chronological order of publication.

In 2016, Chen et al. [229] designed two supramolecular polymers that self-assemble
into nanofibers and are sensitive to changes in ionic strength, pH, and temperature. The design
of these novel polymers includes benzo-21-crown-7 (B21C7) host units that reversibly
complexate with secondary ammonium salt via host-guest interactions. The reversible
association of these MRSPs (Figure 7) was triggered by stimuli-response to potassium
cation (K+), chloride anion (Cl−), pH (triethylamine/trifluoroacetic acid), and temperature
(293–323 K).

In the exploration of new methodologies for the design of responsive supramolecular
polymers, the use of cyclodextrin hosts is also promising. The complexation between CDs
and guest stimuli-responsive molecules is an outstanding approach in the covalent formu-
lation of supramolecular complexes [230]. Several studies have pointed out that CD-based
host-guest derivatives composed of sensitive guests, such as azobenzene-containing poly-
mers, could aggregate into supramolecular assemblies that undergo structural variations in
response to one, two, or more stimuli [231]. Notably, in 2017, Li and co-workers developed
a triple-stimuli-responsive amphiphile that exhibits dynamic β-cyclodextrin/azobenzene
complexation and was able to self-assemble/disassemble into spherical micelles in response
to UV light, temperature, and redox potential (Figure 7) [232].

In 2018, Zhou et al. [233] formulated a polymeric structure from β-cyclodextrin-poly(N-
isopropylacrylamide) (β-CD-PNIPAM) and benzimidazole-terminated poly(ε-caprolactone)
that self-assemble into supramolecular micelles (Figure 8). This reversible host–guest
interaction enables the use of these smart nanocarriers with efficient release of anticancer
drugs, and indeed high anti-cancer activity, at acidic pH values at 37 ◦C (temperature and
pH triggered assembly).

In our research group, Fuentes et al. reported, in 2020, the synthesis of a MRSP
that displays supramolecular polymerization into aqueous nanofibers triggered by four
different stimuli [140]. In this work, it is demonstrated that it is possible to modulate the
self-assembly of a discotic amphiphile toward the responsiveness to light, pH, ionic strength,
and temperature (Figure 9). The multi-responsiveness of this system allows us to modulate
the self-assembly equilibrium of supramolecular nanofibers in water.

More recently, in 2021, Kawano et al. [234] designed a multiple-stimuli-responsive
copolymer containing sensitive motifs with responsiveness to temperature and pH varia-
tions (Figure 8). The formulation of this MRSP was comprised of a poly(N-isopropylacrylamideco-
acrylic) acid that was structurally modified with aminoethyl acrylamide-β-CD pendant
groups as thermo- and pH-responsive motifs. Depending on the pH, the protonation of the
charged surface (carboxylic acid, secondary amino group, and amide segment) of this MRSP
promotes the formation of cationic or anionic species that regulates the intermolecular
aggregation. In addition, they reported that the cloud point (Tcp) of poly (NIPAM-AA-
β-CD) changes upon pH variation. They demonstrated that turbidity becomes higher by
heating at increasing pH values (from 2.0 to 5.8). In this work, they also reach the molecular
recognition of a lipophilic dye by the copolymer amphiphile. One of the most promising
applications of poly (NIPAM-AA-β-CD) is, then, its use for lipophilic pharmaceutical drug
encapsulation and further release by modulating pH.

The application of responsive supramolecular polymers for ultrasound imaging still
remains a challenge due to the high intensity required for effective ultrasound responsive-
ness [213]. However, Wei et al. [235] have recently reported a strategy to design a dual-
responsive polymersome with triggered self-assembly by response to ultrasound and pH.
They combined poly(ethylene oxide) as a corona-forming block with poly(methoxyethyl
methacrylate) as the ultrasound-responsive motif. This system provided promising results
for doxorubicin drug release in both in vivo and in vitro experiments.
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Figure 7. In this figure, two outstanding examples of three-responsive supramolecular polymers are
highlighted. (a) Supramolecular self-assembly of heteroditopic macromonomers 1 and 2 (containing
a shorter and a longer poly(ε-caprolactone) chain, respectively) is triggered by ionic strength, pH,
and temperature variations (reprinted with permission from reference [229] under the terms of a
License Agreement, order license ID 1454696-1, between the authors and Copyright Clearance
Center (CCC), accessed on 27 February 2024) (b) The reversible supramolecular self-assembly of
a multi-stimuli-sensitive supramolecular polymer (constructed by the host-guest complexation
between β-cyclodextrin and azobencene) can be controlled by light, temperature, and redox changes
(reprinted with permission from reference [232] under the terms and conditions provided by Elsevier
and Copyright Clearance Center in agreement between the authors and Elsevier, license number
5737010923228, accessed on 27 February 2024).
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Figure 8. Two representative examples of recent supramolecular polymers sensitive to temperature
and pH variations. (a) A pseudo-block copolymer (synthetized by coupling a thermos-responsive star
polymer with a β-cyclodextrin core) self-assembles in water into dual responsive supramolecular
micelles that respond to both temperature and pH (regarding the responsiveness of the host-guest
complexation) variations (reprinted with permission from reference [233] under the terms and
conditions provided by Elsevier and Copyright Clearance Center in agreement between the authors
and Elsevier, license number 5736980493743, accessed on 27 February 2024). (b) Multi-stimuli
responsive copolymer (left), poly(NIPAM-AA-β-CD), and its thermo- and pH-responsive behavior
(right) (reprinted with permission from reference [234] under the terms of institutional subscription
to American Chemical Society, accessed on 27 February 2024).
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Figure 9. Schematic representation of a novel multi-responsive supramolecular polymer. Modular
synthesis allowed to incorporate moieties that drive multiple equilibria due to their ability to respond
to light (non-natural azobenzene amino acid, L-phenylalanine-4’-azobenzene, represented in orange),
temperature (octa(ethylene glycol) amino acid, highlighted in blue) and pH/ionic strength (C-terminal
lysine, colored in green) stimuli (reprinted with permission from reference [140] under the terms of
the Standard ACS AuthorChoice/Editors’ Choice usage agreement, accessed on 25 August 2023).

5. Future Perspectives

Polymers are ubiquitous in all living beings, and they play an essential role in cell
growth and function. In nature, the weak but highly cooperative interactions that hold
functional biopolymers together endow them with the unique property of undergoing
reversible changes in response to external stimuli. In order to understand the external
control mechanisms of biopolymers, many efforts have been focused on attempting to
mimic this behavior in synthetic systems. At the end of the last century, the concept of
‘smart polymers’ emerged in attempts to understand the responsiveness of biopolymers by
mimicking this behavior in synthetic systems. The potential applications of smart polymers
in biotechnology and medicine are well known.

There is still an outstanding challenge in the design and synthesis of responsive
supramolecular polymers: to precisely control the shape, size, and stability of the self-
assembled aggregates from aqueous supramolecular polymerization events [51,236]. For-
tunately, there are some examples in the literature that open new insights into the precise
control of supramolecular polymers growth [237]. In addition, it is important to achieve
precise control on the morphology of that responsive nanocarriers. In this sense, the ability
to modulate the shape and size of supramolecular polymers would open perspectives in
the design of specific systems for loading and transport specific drugs/contrast agents. On
the other hand, it is also necessary to design responsive supramolecular polymers with
good stability. When nanocarriers are administrated, they drive through bloodstream and
resist adverse conditions. Therefore, new supramolecular polymers designed for thera-
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peutic purposes must exhibit some degree of robustness in order to remain stable (against
dilution effects or the action of blood proteins) until they reach the target [238]. Also,
stimuli-responsiveness could be used to modulate the effect of protein corona formation,
leveraging stimuli-responsive strategies to enhance stealth and therapeutic efficacy [239].

To date, supramolecular research has evolved significantly. The understanding of
biological recognition processes is increasingly elucidated by the strikingly advances in
engineering the functionality of smart natural systems. Several fields of study offer new
avenues to address the design and synthesis of supramolecular polymers, with particular
emphasis on the development of responsive self-assembled systems. The great biomedical
impact of sensitive supramolecular polymers lies in their ability to respond to one, two,
or more stimuli, which makes them suitable drug nanocarriers for the diagnosis, preven-
tion, and treatment of serious human diseases. On the other hand, the promising use of
responsive supramolecular assemblies in diagnosis has been also studied. The development
of new nanodevices for diagnosis is essential to achieve early detection of functional ab-
normalities to prevent disease progression. For instance, in medical imaging, magnetic
resonance imaging (MRI) offers attractive features, including the absence of radiation
damage and the high contrast it provides between neurological, musculoskeletal, and other
soft tissues [240]. In MRI, the use of paramagnetic transition metal ion chelates as contrast
agents is highly exploited. Mainly Gd-DTPA (Gadolinium-diethylene-triaminepentaacetic
acid)-based systems have provided information on intracranial lesions for a few decades
now [241,242], with relevant use for in vivo detection of β-amyloid deposits in mouse
models of Alzheimer’s Disease [243,244].

The possibility to control and tune the structure of supramolecular polymers makes
them also attractive for their use as bioimaging probes. In the last decade, several stud-
ies revealed that self-assembled nanofibers functionalized with fluorescent groups will
be potential agents for their use in bioimaging [245,246]. Although the application of
supramolecular assemblies in diagnosis remains a challenge, some recent advances can
provide insights [247]. Moreover, multi-stimuli responsive nanosystems are promising can-
didates in the development of new diagnostic tools. The possibility to use a supramolecular
polymer responsive to both an external and an internal stimulus would be promising for
acquiring two or more different imaging tests that require the patient to be anesthetized.

Besides therapy and diagnosis, advanced functionality through the integration of
multiple functional components will endow nanomaterials with bioinspired capabilities,
mimicking biological structures and functions, e.g., molecular recognition, self-healing.

6. Concluding Remarks

The weak association of natural assemblies has inspired the design of synthetic sys-
tems. The combination of supramolecular chemistry with polymer science has given rise
to a novel class of nanoassemblies named supramolecular polymers. Unlike covalent
systems, supramolecular polymers are well-ordered assemblies hold together by weak
and non-covalent interactions. The main forces that drive supramolecular self-assembly
are hydrogen-bonding, metal-ligand coordination, π-stacking, and host–guest interactions.
In this review, we gave a brief overview of the various non-covalent interactions that
hold supramolecular nanostructures together, as well as some outstanding strategies for
the design of these systems. Specifically, we described a common strategy in the design
of water-soluble supramolecular polymers which consists of the use of a hydrophobic
core (such as benzene-1,3,5-tricarboxamine, perylene-bismide, triarylamine or porphyrin).
Furthermore, we highlighted the most remarkable properties of supramolecular polymers
that make them potential candidates for a wide variety of applications. These systems hold
attractive features that make them potential candidates in biomedicine. The modular, tun-
able, and reversible self-assembly of supramolecular polymers confers them the attractive
interest for achieving control in drug delivery. Especially, we focused this review on one of
the most marvelous properties of supramolecular polymers: their ability to assemble and
disassemble in response to stimuli. Firstly, we described the most relevant properties of
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the diverse internal (pH, redox potential, enzyme activity) and external (light, ultrasound,
electric/magnetic field) stimuli. In the case of temperature, it is a versatile stimulus that
can be applied as both internal or external stimulus. Later, we focused on the biomedical
applications of responsive supramolecular polymers including drug delivery. In this re-
gard, we have collected the most recent discoveries that represent major breakthroughs for
supramolecular medicine. To date, the most relevant responsive supramolecular polymers
have been designed with the ability to respond against pH, temperature, and light. Moreover,
the most representative examples found in the literature gather supramolecular polymers
based on host-guest complexation. Although the translation of responsive supramolecular
polymers into the clinic still remains a challenge, in the literature we found outstanding
works that will open new insights into this field.
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Copolymer Conjugates with Gemcitabine and Paclitaxel: Impact of Molecular Weight on Activity toward Human Ovarian
Carcinoma Xenografts. Mol. Pharm. 2017, 14, 1384–1394. [CrossRef] [PubMed]

125. Liu, X.; Hu, D.; Jiang, Z.; Zhuang, J.; Xu, Y.; Guo, X.; Thayumanavan, S. Multi-Stimuli-Responsive Amphiphilic Assemblies
through Simple Postpolymerization Modifications. Macromolecules 2016, 49, 6186–6192. [CrossRef] [PubMed]

126. Leung, F.K.-C. Aqueous Supramolecular Assemblies of Photocontrolled Molecular Amphiphiles. In Supramolecular Assemblies
Based on Electrostatic Interactions; Aboudzadeh, M.A., Frontera, A., Eds.; Springer International Publishing: Cham, Switzerland,
2022; pp. 267–308.

127. Hirose, T.; Helmich, F.; Meijer, E.W. Photocontrol over Cooperative Porphyrin Self-Assembly with Phenylazopyridine Ligands.
Angew. Chem. Int. Ed. 2013, 52, 304–309. [CrossRef] [PubMed]

128. Xu, F.; Pfeifer, L.; Crespi, S.; Leung, F.K.-C.; Stuart, M.C.A.; Wezenberg, S.J.; Feringa, B.L. From Photoinduced Supramolecular
Polymerization to Responsive Organogels. J. Am. Chem. Soc. 2021, 143, 5990–5997. [CrossRef] [PubMed]

129. Ikejiri, S.; Takashima, Y.; Osaki, M.; Yamaguchi, H.; Harada, A. Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven
by Molecular Machines. J. Am. Chem. Soc. 2018, 140, 17308–17315. [CrossRef] [PubMed]

130. Komarov, I.V.; Afonin, S.; Babii, O.; Schober, T.; Ulrich, A.S. Diarylethenes–Molecules with Good Memory. In Molecular
Photoswitches; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 151–175.

131. Minkin, V.I. Photo-, Thermo-, Solvato-, and Electrochromic Spiroheterocyclic Compounds. Chem. Rev. 2004, 104, 2751–2776.
[CrossRef] [PubMed]

132. Zhu, L.; Lu, M.; Zhang, Q.; Qu, D.; Tian, H. Construction of Polypseudorotaxane from Low-Molecular Weight Monomers via
Dual Noncovalent Interactions. Macromolecules 2011, 44, 4092–4097. [CrossRef]

133. Bandara, H.M.D.; Burdette, S.C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825.
[CrossRef] [PubMed]
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