
Citation: Macario, A.; López, J.C.;

Blanco, S. Molecular Structure of

Salicylic Acid and Its Hydrates: A

Rotational Spectroscopy Study. Int. J.

Mol. Sci. 2024, 25, 4074. https://

doi.org/10.3390/ijms25074074

Academic Editor: László Almásy

Received: 7 March 2024

Revised: 1 April 2024

Accepted: 3 April 2024

Published: 6 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Molecular Structure of Salicylic Acid and Its Hydrates:
A Rotational Spectroscopy Study
Alberto Macario 1,2 , Juan Carlos López 1 and Susana Blanco 1,*

1 Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, IU CINQUIMA, Universidad
de Valladolid, 47011 Valladolid, Spain; alberto.macario@uva.es (A.M.); juancarlos.lopeza@uva.es (J.C.L.)

2 Département de Physique Moléculaire, IPR (Institut de Physique de Rennes), CNRS-UMP 6251, Université de
Rennes, F-35000 Rennes, France

* Correspondence: susana.blanco@uva.es

Abstract: We present a study of salicylic acid and its hydrates, with up to four water molecules,
done by employing chirped-pulse Fourier transform microwave spectroscopy. We employed the
spectral data set of the parent, 13C, and 2H isotopologues to determine the molecular structure
and characterize the intra- and intermolecular interactions of salicylic acid and its monohydrate.
Complementary theoretical calculations were done to support the analysis of the experimental
results. For the monomer, we analyzed structural properties, such as the angular-group-induced
bond alternation (AGIBA) effect. In the microsolvates, we analyzed their main structural features
dominated by the interaction of water with the carboxylic acid group. This work contributes to
seeding information on how water molecules accumulate around this group. Moreover, we discussed
the role of cooperative effects further stabilizing the observed inter- and intramolecular hydrogen
bond interactions.

Keywords: molecular structure; water complexes; rotational spectroscopy; gas-phase; biological
molecules and aggregates

1. Introduction

Salicylic acid (2-hydroxybenzoic acid, SA) is a widely used compound with applica-
tions in food science and pharmacology. It is a plant hormone that plays an important role
in plant defense against stress through different mechanisms, having a significant impact
on photosynthesis, transpiration, the uptake and transport of ions, or plant growth [1]. SA
was first identified in willow (genus Salix) bark, which has been used since ancient times to
alleviate pain and reduce fevers due to its analgesic, antipyretic, and anti-inflammatory
properties [2]. Furthermore, SA is the main precursor of aspirin [3]. Nowadays, SA is
widely employed in dermatology as a keratolytic and bacteriostatic agent [4] or for the
treatment of acne, psoriasis, and other cutaneous diseases [5]. All these biological activities
related to the physical and chemical properties of SA are defined by the molecular structure
of this biomolecule.

The molecular structure of SA is governed by the ortho disposition of its two functional
carboxyl and hydroxyl groups. The possible intramolecular interactions in ortho isomers
confer them properties different from those corresponding to meta or para derivatives [6,7].
Moreover, in benzene derivatives, the presence of functional groups that are asymmetric,
with respect to the substitution axis of the phenyl ring, is associated with an alteration of
the ring structure and the electronic aromatic behavior. This is due to the stabilization of
one of the canonical forms of the aromatic ring over the other, a phenomenon known as
the angular-group-induced bond alternation (AGIBA) effect [8,9]. The knowledge of the
molecular structure of SA and of the interaction between its two groups in ortho disposition
have been the subject of different investigations [10–15]. Two conformers of SA, I and
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II (see Figure 1), were reported to exist from a study of the jet-cooled IR-UV double-
resonance spectrum [10]. By contrast, only the global minimum I form was identified from
the free jet millimeter-wave absorption spectrum [11]. Both I and II conformers present
planar structures with an intramolecular hydrogen bond (HB) O-H· · ·O from the hydroxyl
group to the carbonyl (I) or the hydroxyl (II) moieties of the carboxylic acid group. The
molecular structure of SA-I has been determined by electron diffraction [12], suggesting
that the intramolecular HB interaction is further stabilized by resonance-assisted hydrogen
bonding (RAHB) [16]. In other studies, SA has also been employed as a model of the
investigation of keto-enol tautomerism observed by excited-state intramolecular proton
transfer (ESIPT) [13–15].
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Figure 1. The most stable predicted forms of SA monomer and its monohydrated, dihydrated,
trihydrated, and tetrahydrated complexes. The relative energies are calculated at B3LYP-D3/6-
311++G(d,p) level of theory.

Investigation of microsolvated molecular systems is a relevant subject in chemistry
and biochemistry [17–19]. Microwave spectroscopy techniques are exceptional tools to
determine their structures, adequate for this purpose due to their inherent high reso-
lution [20]. There are a high number of microwave studies of microsolvated organic
molecules [19,21–25], providing models for a better understanding of the water interactions
with biomolecules [26], of hydrogen bond (HB) cooperativity [27], and of the way in which
solvation induces structural changes in the solute molecule [22,23,27,28]. These studies
have also led to an understanding of the role of association processes and the interplay
between the self-association of water and solvation. With few exceptions [22], in complexes
with several H2O molecules, water prefers to link other water molecules, forming chains
or cycles. When the solute has only one HB acceptor site, the structures reflect a balance
between maximizing the number of water-solute interactions and the minimum-energy
structures of the pure water clusters [21]. In solutes with double HB donor/acceptor char-
acter, water molecules close sequential cycles, as observed in amides [28], acids [29–32],
or esters [33]. In the last years, studies of molecules forming clusters with a high number
of water molecules has increased. The microsolvation of benzene derivatives is also of
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interest [34], since they are archetypal molecules in chemistry, and their water complexes
serve as model chromophores to investigate solute-solvent interactions. Understanding
these interactions in aromatic compounds is fundamentally important for studying more
complex systems encountered in many natural chemical reactions [34]. In the specific case
of SA, the study of its microsolvates is particularly relevant and of interest in atmospheric
chemistry [35].

In a recent study [36], we observed the presence of SA as a thermal recombination prod-
uct of o-anisic acid, together with methyl salicylate [37], methyl 2-methoxybenzoate [38],
and their complexes with water [38,39]. Water could interact with SA in multiple ways due
to the presence of several donor or acceptor groups in this molecule. As inferred from gas-
phase microsolvation studies of related acids [29,31,40,41], the most favorable interaction
sites correspond to the carboxyl group, with which water molecules may easily close cycles.
Another aspect to consider is how microsolvation affects intramolecular interactions. A
special situation is observed in the monohydrate of o-anisic acid [36], where each of the two
observed conformers of the monomer forms its corresponding water cluster. One complex
maintains an intramolecular interaction with a trans-COOH arrangement, and the other
presents a cis carboxylic acid disposition that establishes the typical sequential ring of the
carboxyl group with water.

In this work, we have taken advantage of the potential of the chirped-pulse Fourier
transform microwave spectroscopy (CP-FTMW) technique, aided by supersonic jets, to
study SA microsolvates with multiple water molecules. We present the gas-phase molecular
structure of SA, determined through extensive isotopic species measurements. We have
experimentally analyzed the structural properties of SA, such as the AGIBA effect [8,9] and
the intramolecular HB interaction. We have observed and analyzed the spectra of several
SA hydrates with up to four water molecules to gain information on how water molecules
accumulate around an acid group, as well as information on the structures adopted by these
clusters. Another aspect on which we have focused our work is the identification of pieces
of evidence of cooperative effects that further stabilize HB intramolecular interactions in
the complexes [42] as the number of associated interacting molecules increases.

2. Results and Discussion
2.1. Rotational Spectrum

To address the rotational spectrum of SA (see Figures 2 and S1), we used the rotational
parameters determined in the millimeter-wave study [11] to predict its rotational spectrum
in the 2–8 GHz microwave region. We measured a new set of 64 µb-type R- and Q–branch
transitions, with J ranging from 1 to 10. The analysis of the spectrum was conducted using
Watson’s semirigid rotor Hamiltonian in the A reduction and the Ir representation [43],
including the transitions previously observed [11]. The resulting rotational parameters are
compared with those previously obtained from millimeter-wave data [11] and with the
theoretical predictions in Table 1. The high S/N ratio allowed us to identify the spectra of
all the 13C isotopologues in their natural abundances, as shown in Figure S1. Moreover,
when we included deuterium oxide (D2O) into the reservoir adapted to the carrier gas line,
the deuterium atoms substituted the hydroxyl and carboxyl hydrogen atoms. As a result,
we observed the spectra of the mono- and disubstituted deuterated species. The analyses of
the spectra of the isotopologues were conducted using the same Hamiltonian used for the
parent, with the quartic centrifugal distortion constants fixed to the values determined for
the parent species. All the rotational parameters determined are listed in Tables S6 and S7.
No other SA conformations were identified in the rotational spectrum in agreement with
the calculated relative energies and the predicted values of the dipole moments (Figure 1
and Table S1).
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Figure 2. CP-FTMW, 6–8 GHz, rotational spectrum of SA and its water complexes. A selection of
the most intense transitions has been pointed out for the SA-I (blue), SA-w (red), SA-w2 (green),
SA-w3 (orange), and SA-w4 (purple) species to compare their relative intensities. The excerpt in
black facilitates comparison between transitions of all the species observed (SA, SA-w, SA-w2, SA-w3,
SA-w4). The excerpt in orange shows the doublets observed for the SA-w3 species.

Table 1. Experimental rotational parameters determined for SA, compared with those predicted for
conformer SA-I at B3LYP-D3/6-311++G(d,p) level of theory.

Fitted Param. 1 (MW) (MW + MMW) 2 (MMW, ref. [11]) 3 SA-I—Theor.

A/MHz 2340.25075(42) 4 2340.25105(17) 2340.248(2) 2336.30
B/MHz 1223.76931(31) 1223.76941(13) 1223.79(2) 1221.78
C/MHz 803.89784(31) 803.89788(18) 803.90(1) 802.24
Pcc/uÅ2 0.12962(19) 0.12960(10) 0.127 0.00
∆J/kHz 0.1091(90) 0.11722(67) 0.049(6) 0.1897

∆JK/kHz −0.230(28) −0.2536(26) 0.130(9) −0.3939
∆K/kHz 0.134(20) 0.1505(44) - 0.2128
δJ/kHz −0.0303(44) −0.03392(37) - 0.0843
δK/kHz 0.069(14) 0.0812(18) - −0.1244

N 64 114 50 -
σ/kHz 6.8 11.1 23.0 -

1 A, B, and C are the rotational constants. Pcc is the planar moment of inertia, derived from Pcc = (Ia + Ib − Ic)/2.
∆J, ∆JK, ∆K, δJ, and δK are the quartic centrifugal distortion constants. N is the number of rotational transitions
fitted. Σ is the rms deviations of the fit. 2 Fit of the 64 measured in this work (MW) and the 50 transitions measured
in ref. [11] (MMW) transitions observed for SA-I. 3 Experimental parameters reported in reference [11]. 4 Standard
error is given in parentheses in units of the last digit.

Once the transitions observed for the monomer and its isotopologues were removed,
we were able to identify the spectrum of a new species with a set of over 60 µa-type R-
branch and µb-type R- and Q–branch transitions. No µc-type lines were observed. These
lines were attributed to a monohydrated SA-w species (Figure 2). The analysis of this
spectrum gave the set of rotational parameters listed in Table 2. A conformational search
of the monohydrated clusters for the two most stable conformers of SA was performed
theoretically by exploring the possible interactions of water and SA, both with a dual
proton donor/proton acceptor character (Figure S3). The values of the experimental
rotational constants are close to those predicted for the two lower energy conformers of
the monohydrated cluster, I-w-a and II-w-a (see Figure 1 and Table 2). There are two
reasons to consider conformer I-w-a as the observed species. Firstly, species I is the only
one observed in the spectra for the SA monomer, so it will be the only species present in
the molecular jet to form any cluster [36]. Secondly, the monohydrated cluster I-w-a is
predicted to be the global minimum, being 900 cm−1 more stable than conformer II-w-a
(Figure 1). This assignment was unambiguously corroborated by the measurements of
monodeuterated isotopologues and the subsequent study of the monohydrate molecular
structure (see below). No other monohydrated forms of SA were identified.
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Table 2. Experimental rotational parameters obtained for the SA-w monohydrated and SA-w2

dihydrated complexes, compared with the predicted parameters of I-w-a, II-w-a, I-w2-a, and II-w2-a
conformers of SA–watern (n = 1, 2) complexes calculated at B3LYP-D3/6-311++G(d,p) level of theory.

Fitted Param. 1 SA-w I-w-a II-w-a SA-w2 I-w2-a II-w2-a

A/MHz 2315.34456(45) 2 2313.15 2311.93 1769.91699(48) 1780.40 1759.99
B/MHz 645.08107(14) 648.76 647.51 451.04489(18) 453.67 450.32
C/MHz 505.03872(14) 507.09 506.29 360.15478(16) 362.04 359.17
Pcc/uÅ 2 0.51743(24) 0.42 0.44 1.38688(57) 0.96 1.17
∆J/kHz 0.0845(37) 0.017 0.016 0.0763(27) 0.008 0.007

∆JK/kHz −0.0757(32) 0.106 0.104 −0.0699(26) 0.064 0.092
∆K/kHz - 0.066 0.056 - 0.072 0.072
δJ/kHz −0.0274(15) 0.004 0.004 −0.0333(12) 0.001 0.001
δK/kHz - 0.068 0.066 - 0.049 0.049

µa/µb/µc/D +/+/- 0.6/1.0/1.2 0.7/0.6/1.2 +/+/- 0.5/0.9/0.0 0.8/0.8/0.0
∆EDFT/cm−1 - 0.0 3 890.6 - 0.0 4 639.9

N 84 - - 126 - -
σ/kHz 5.4 - - 7.7 - -

1 A, B, and C are the rotational constants. Pcc is the planar moment of inertia, derived from Pcc = (Ia + Ib −
Ic)/2. ∆J, ∆JK, ∆K, δJ and δK are the quartic centrifugal distortion constants. µa, µb, and µc are the components
of the electric dipole moment, + or – mean the observation or not of the corresponding selection rules. ∆EDFT is
the energy relative to the most stable conformer (I-w-a and I-w2-a, respectively). N is the number of rotational
transitions fitted. σ is the rms deviations of the fit. 2 Standard error is given in parentheses in units of the last
digit. 3 Absolute energy is −572.6949094 Eh. 4 Absolute energy is −649.1747737 Eh.

To explore the complexes of SA with a higher number of water molecules, conforma-
tional searches were conducted for SA-w2, SA-w3, and SA-w4 clusters using the CREST
(Conformer-Rotamer Ensemble Sampling Tool) application [44] followed by B3LYP-D3/6-
311++G(d,p) [45–48] structure optimizations. Some of the resulting structures are given in
Figures S4–S6, and the spectroscopic parameters are given in Tables S3–S5. From the pre-
dicted energies, it can be deduced that the predicted preferred interaction sites are related
to the COOH group. As examples, we have included some of the possible complexes with
water molecules closing rings with the phenol group that have, in all cases, rather high
energies relative to the global minima.

In the next step, we identified a weaker spectrum consisting of over 125 µa-type R-
branch and µb-type R- and Q–branch transitions. These transitions were analyzed using the
same Hamiltonian as before, and a set of rotational constants related to a dihydrated cluster
SA-w2 was determined (Table 2). Due to its weak intensity, the deuterated species could
not be identified in the spectra enriched with deuterium oxide. As with the monohydrated
species, the set of rotational constants is comparable to those predicted for the I-w2-a and II-
w2-a species (see Table 2). Following the same arguments considered for the monohydrated
complex, the dihydrated species was identified as the predicted global minimum I-w2-a
conformer.

After removing all the measured lines of the SA-w and SA-w2 complexes, there was
still a dense spectrum of weaker lines. Searches for the spectra of the SA-w3 cluster
led to the identification of a series of doublets attributable to one of such complexes.
Most of the µa-type R-branch and µb-type R- and Q-branch transitions were split by
50–200 kHz with doublets of the same intensity (see Figure 2). This feature has been
observed in similar trihydrates such as formamide-w3 [28], ethyl carbamate-w3 [49], or
methyl carbamate-w3 [50], where the chain of three water molecules closes a cycle with
the amide group. Considering the four most stable conformers that present this water
trimer disposition with the acid group of SA, only two have rotational constants close to the
experimental ones (Tables 3 and S4). Nevertheless, the observed conformer was assigned
to the global minimum I-w3-a, since the observed transitions are only in agreement with
the selection rules derived from the values of the predicted dipole moment components
for this conformer. A two-states Hamiltonian, in this case using Watson’s semirigid S
reduction [43], including Coriolis coupling terms [51], was used to analyze the spectrum.
The centrifugal distortion constants were kept equal for both states. It was possible to
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determine the Coriolis coupling term and the energy difference between both vibrational
states. The results are summarized in Table 3.

Table 3. Experimental rotational parameters obtained for the two vibrational states (ν = 0 and 1)
observed for the SA-w3 species of the trihydrated complex compared with the predicted parameters
of SA-I-w3-a, SA-I-w3-b, and SA-I-w3-c conformers of the SA trihydrated complex calculated at
B3LYP-D3/6-311++G(d,p) level of theory.

Fitted Param. 1 SA-w3 (ν = 0) SA-w3 (ν = 1) I-w3-a I-w3-b I-w3-c

A/MHz 1412.46036(98) 2 1412.42970(98) 1412.10 1436.05 1421.44
B/MHz 315.84360(19) 315.84610(22) 319.03 317.16 327.39
C/MHz 260.77801(14) 260.78823(15) 263.04 262.98 284.18
Pcc/uÅ2 9.9634(11) 9.9989(12) 10.33 11.82 60.41
∆J/kHz 0.01785(63) 0.018 0.016 0.029

∆JK/kHz −0.1706(86) −0.091 −0.077 −0.163
∆K/kHz 1.431(79) 0.846 0.812 1.225
d1/kHz −0.00297(44) −0.001 −0.002 −0.001
d2/kHz 0.00197(39) −0.001 −0.001 0.001

Fbc/MHz 0.1304(52) - - -
∆E01/MHz 717.0(5.2) - - -

µa/µb/µc/D +/+/− 0.6/0.6/0.6 0.1/0.0/0.3 1.5/1.3/0.1
∆EDFT/cm−1 - 0.0 3 130.4 130.4

N 160 - - -
σ/kHz 7.0 - - -

1 A, B, and C are the rotational constants. Pcc is the planar moment of inertia, derived from Pcc = (Ia + Ib – Ic)/2.
∆J, ∆JK, ∆K, d1, and d2 are the quartic centrifugal distortion constants. Fbc is the Coriolis coupling constant. ∆E01
is the energy difference between the two vibrational states. µa, µb, and µc are the components of the electric dipole
moment, + or – mean the observation or not of the corresponding selection rules. ∆EDFT is the energy relative to
the most stable I-w3-a conformer. N is the number of rotational transitions fitted. σ is the rms deviations of the fit.
2 Standard error is given in parentheses in units of the last digits. 3 Absolute energy is −725.6502119 Eh.

Finally, with the remaining lines, we were able to assign another spectrum attributable
to an SA-w4 cluster. The spectrum is composed of over 170 µa- and µb-type transitions.
By comparing the values of the rotational constants and the observed selection rules with
the theoretical values and the predicted dipole moments (Table S5), the observed species
can be identified with one of the two most stable conformers. We tentatively assigned the
observed species to the global minimum I-w4-a (Table S5). A summary of the results is
shown in Table 4.

Table 4. Experimental rotational parameters obtained for the SA-w4 species of the tetrahydrated com-
plex of SA compared with the predicted parameters of I-w4-a, I-w4-b, I-w4-c, and I-w4-d conformers
of SA tetrahydrated complex calculated at B3LYP-D3/6-311++G(d,p) level of theory.

Fitted Param. 1 SA-w4 I-w4-a I-w4-b I-w4-c I-w4-d

A/MHz 1055.8085(24) 2 1073.10 1066.29 1059.87 1093.11
B/MHz 248.19262(15) 250.60 251.56 251.90 343.76
C/MHz 220.88132(19) 222.99 224..02 224.40 217.21
Pcc/uÅ 2 113.4455(21) 110.68 113.23 115.48 104.46
∆J/kHz 0.191(46) 0.035 0.035 0.040 0.036

∆JK/kHz 0.094(10) −0.212 −0.150 −0.175 −0.186
∆K/kHz −0.239(36) 1.297 1.508 1.332 1.985
d1/kHz 0.208(44) 0.001 0.001 0.001 0.001
d2/kHz −0.135(21) 0.001 0.001 0.001 0.001
HJ/Hz 0.0106(20) - - - -

µa/µb/µc/D +/+/- 0.8/1.4/0.2 0.7/1.6/0.4 0.8/1.3/1.6 0.6/3.1/0.5
∆EDFT/cm−1 - 0.0 3 165.7 241.2 267.8

N 169 - - - -
σ/kHz 6.4 - - - -

1 A, B, and C are the rotational constants. Pcc is the planar moment of inertia, derived from Pcc = (Ia + Ib – Ic)/2.
∆J, ∆JK, ∆K, d1, and d2 are the quartic centrifugal distortion constants and HJ is the sextic centrifugal distortion
constant. µa, µb, and µc are the components of the electric dipole moment, + or – mean the observation or not
of the corresponding selection rules. ∆EDFT is the energy relative to the most stable I-w4-a conformer. N is the
number of rotational transitions fitted. σ is the rms deviations of the fit. 2 Standard error is given in parentheses in
units of the last digit. 3 Absolute energy is −802.1296231 Eh.
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All the measured transitions (Tables S17–S24) and rotational determined parameters
(Tables S6 and S7) for SA and its hydrated clusters are given in the Supporting Information.

2.2. Molecular Structure

The degree of planarity of a given species is typically discussed in terms of the value of
the planar moment of inertia Pcc, which represents the mass extension out of the ab inertial
plane. As pointed out in the previous study [11], for an SA monomer, this value is close
to zero for the parent species and remains at practically the same values for all observed
isotopologues, indicating that all the substituted C atoms, as well as the hydroxyl and
carboxyl hydrogen atoms, lie in the ab inertial plane. The small value of Pcc (0.12962(19) uÅ2)
could be attributed to vibrational contributions [52]. Moreover, this value is smaller than
that obtained for benzoic acid (0.183 uÅ2) [53] and larger than for phenol (0.015 uÅ2) [54].
These differences can be explained in terms of the intramolecular HB interaction in SA,
which limits the out-of-plane vibrations of the carboxyl group in SA compared to benzoic
acid, demonstrating that the presence of an intramolecular interaction somewhat decreases
the flexibility of the molecule. The SA-w complex presents a slightly higher Pcc value
(0.51743(24) uÅ2), attributable to the preferred orientation of water interacting with the
carboxyl group that leaves the non-interacting H19 atom out of plane, and to possible
intermolecular vibrational contributions. Moreover, this value is coherent with a planar
skeleton structure. This structure is consistent with the Pcc values of the 2H isotopologues,
except for that of the H19 atom, corroborating the conclusion of a planar skeleton structure
of an SA-I-w-a complex. The dihydrated SA-I-w2-a conformer presents a value of Pcc
(1.38688(57) uÅ2), consistent with two non-interacting water hydrogen atoms out of plane.
The planar moment is then compatible with a planar skeleton structure, including both
the water oxygen and the interacting hydrogen atoms lying in the ab inertial plane. The
value of Pcc for the trihydrated complex (9.9634(11) uÅ2) reflects the contribution of water
molecules lying slightly out of the ab plane, as occurs in other related complexes such
as formamide–w3 [28], ethyl cabamate-w3 [49], or methyl carbamate–w3 [50]. The same
behavior is observed for the SA-w4 complex with a value of Pcc (113.4455(21) uÅ2), much
higher than the other values observed in this work, indicating that the configuration of this
complex is nonplanar.

The complete sets of experimentally determined rotational constants for the parent
species of SA and SA-w and their isotopologues were employed to determine the substi-
tution rs [55,56] and effective r0 [57] structures. The substitution structure employs the
Kraitchman method [55] to derive the absolute values of the coordinates of every iso-
topically substituted atom in the principal inertial axis system of the parent species. The
method relies on the variation of the experimental moments of inertia upon substitution.
The Costain formula [56] is usually used to estimate coordinate uncertainties. The sign of
the obtained coordinates had to be resolved from a reasonable structure. Nevertheless, this
method may have problems for atoms lying close to the inertial axes due to zero-point vi-
brational effects. On the other hand, the effective structure is determined by a least squares
fit of all the experimentally determined rotational constants [57]. However, for the SA-I
conformer, the effective r0 structure could not be well determined. That was also the case
for planar species such as o-anisic acid [36] and anisole [58], due to the effects of vibrational
contributions. Following previous works [36], the mass-dependent rm structure [59] was
complementarily employed in this case. This structure introduces into the least squares
fit a limited set of additional adjustable parameters that consider the mass-dependence of
the vibrational contribution to determine equilibrium quality parameters [59,60]. For the
SA-w monohydrated species, the rm parameters obtained for the monomer were kept fixed
to determine its effective structure. Finally, for the remaining hydrated species (SA-w2,
SA-w3, and SA-w4), as no isotopologues could be identified in the spectra, the equilibrium
re structures were considered as a good estimation of the molecular geometries, owing to
the good agreement between the predicted and the experimental rotational constants.
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2.2.1. Monomer (SA-I)

The experimental rs and rm structures, the gas-phase electron diffraction ra struc-
ture [12], and the equilibrium re structure are compared in Tables S8 and S9. Figure 3a
compares the rs and re structures. Overall, there is a good agreement between the different
methods for all geometrical parameters, except for the C1 atom, for which the a rs coordinate
results in an imaginary value, due to its proximity to the center of mass of the molecule.
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bond lengths experimentally determined and (c) predicted bond orders from the NBO calculations
done at B3LYP-D3/6-311++G(d,p) level of theory.

It is worth analyzing the structural features associated to the O· · ·H-O HB interaction
between the hydroxyl and carboxyl groups, which closes a six-membered planar ring, com-
paring SA with phenol [54,61] and benzoic acid [12]. The rm (O12-H16) distance (0.990(14) Å)
increases when compared to phenol (rs = 0.957(6) Å [54], ra = 0.958(3) Å [61]) (see Figure 3
for atom labelling). On the other hand, the rm (C2-O12) length (1.342(13) Å) decreases
(rs = 1.375(5) Å [54]; ra = 1.379(2) Å [61]). Comparing the structure of the carboxyl group
with that of benzoic acid [12], the following changes are observed: the C11-O13 length
decreases (1.3496(42) Å vs. 1.367(8) Å), the C11=O14 distance remains unchanged (1.2258(42)
Å vs. 1.225(6) Å), and the C1-C11 distance decreases (1.4682(83) Å vs. 1.484(6) Å). The
distance O14· · ·H16 = 1.7569(40) Å is typical of a moderate HB, and thus the enlargement
of the O12-H16 distance is a natural consequence of this interaction. The alteration of the
rest of the parameters relative to benzoic acid and phenol could be attributed to the effects
of a resonance-assisted hydrogen bond (RAHB) [16]. From the determined bond lengths
and the predicted bond orders (see Figure 3b,c), C3-C4 and C5-C6 bonds exhibit a higher
double-bond character compared to their C2-C3, C4-C5, and C1-C6 neighbor bonds. Thus,
the structure of the phenyl ring suggests the prevalence of one of the aromatic canoni-
cal benzene forms relative to the other, as it is schematically shown in Figure 3b,c. This
prevalence is consistent with the presence of an AGIBA effect governed by the hydroxyl
group [8,9]. The fact that the C1-C2 bond may not be consistent with this effect is probably
due to the intramolecular hydrogen bond RAHB effects. This competition between the
AGIBA and the RAHB effects, which was also observed in o-anisic acid [36], influences the
structure of the phenyl ring and contributes to understanding how these effects coexist.
NBO calculations support these conclusions (see Tables S10 and S11).

2.2.2. Monohydrated Complex (SA-w)

The rs, r0, and re geometric parameters of the monohydrated complex of SA are
compared in Tables S12 and S13 and in Figure 4, where it is possible to observe a good
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agreement between them. The effective structure was calculated by keeping the phenyl
ring rm structure of the monomer fixed in the fit to determine the intra- and intermolecular
interactions. The comparison between the monomer and heterodimer re structures, together
with the predicted NBO conjugative stabilization energies (Table S10), indicates that the
ring structure is not substantially altered by the presence of water. In this complex water
closes a six-membered sequential cycle with the carboxyl group through two O-H· · ·O
hydrogen bonds further stabilized by RAHB, as reflected by the structural parameters and
calculated bond orders (Tables S12 and S11, respectively). This sequential cycle is also
observed in the benzoic acid-water cluster [40], and in the monohydrated complexes of
other benzene derivatives, such as the o-anisic acid [36] or the p-toluic acid [62], or other
structures presenting a carboxylic acid such as formic acid [41], acetic acid [31], propanoic
acid [29], or the di- and trifluoroacetic acids [30,32].
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Figure 4. Predicted B3LYP-D3/6-311++G(d,p) re structures, estimated interaction energies (green,
in kJ/mol), and hydrogen bond distances (black (theoretical) and blue (experimental), in Å) for the
salicylic acid monomer (SA) and its complexes with one (I-w-a), two (I-w2-a), three (I-w3-a), and four
(I-w4-a) water molecules. For the SA monomer, the experimental distances correspond to the mass-
dependent rm (blue) structure. For the monohydrated conformer, SA-w, the re structure is compared
with the experimentally determined substitution rs (purple) and effective r0 (blue) structures. The
red numbers are the labelling of the water molecules. The interaction energies were estimated from
the empirical equation taken from the QTAIM calculations and reference [63] (see text).

The dominant intermolecular interaction is the OH· · ·Ow HB, reflecting the enhanced
acidity of the carboxyl hydrogen atom (see Figure 4). The corresponding distance of
1.7531(24) Å (re = 1.764 Å, Table S12) is shorter than that estimated for the benzoic acid-



Int. J. Mol. Sci. 2024, 25, 4074 10 of 18

water complex (1.80 Å) [40]. The C=O· · ·Hw HB distance is 1.9819(25) Å (re = 2.031 Å),
larger than that reported for the benzoic acid-water heterodimer (1.95 Å) [40]. This could
be explained by considering that the carbonyl moiety also supports the intramolecular HB
with the ortho hydroxy group, sharing its electron density between both HBs. This, in turn,
further stabilizes the dominant intermolecular OH· · ·Ow HB interaction.

The formation of the OH· · ·Ow HB naturally enlarges the carboxyl O-H distance
(r0 = 1.0065(13) Å) relative to that of the SA monomer (rm = 0.969(2) Å), as happens for the
benzoic acid-water complex [40]. Even though the distances between C11 and both oxygen
atoms could not be experimentally determined, the calculated equilibrium geometries
show a shortening in the C-OH bond length and an enlargement of the C=O distance upon
formation of the complex. These effects, due to RAHB, are evidenced by the changes in the
calculated NBO bond orders and the delocalization energies when comparing the monomer
with the monohydrated form (see Tables S10 and S11). The formation of the hydrated
complex also seems to affect the geometry of the ortho alcohol group. The intramolecular
HB is shorter than that observed for the monomer form, while there is an increase in the
O-H bond length (see Tables S8 and S12). In other words, the interaction of water with the
acid group appears to increase the strength of the intramolecular HB.

On the other hand, since the monohydrated I-w-a form presents a planar skeleton, we
employed the method given by Ouyang and Howard [31] to determine the angle θ between
the a principal axis of the monomer form and the intermolecular axis of the monohydrated
cluster (see Supplementary Information). As a result, the calculated θ angle for I-w-a species
is 7.7◦, close to the observed for the water complex of benzoic acid (5◦) [40]. Therefore,
the intermolecular bonding axis can be considered to be nearly parallel to the a principal
inertial axis of the observed monomer species.

2.2.3. Dihydrated Complex (SA-w2)

For the dihydrated SA-w2 species, the non-observation of the spectra of any mono-
substituted isotopologue precludes the determination of the r0 and rs structures. However,
the good agreement between the experimental and predicted rotational parameters, which
is less than 1%, allows us to consider the re structure predicted for conformer I-w2-a as a
reliable estimate of the molecular geometry (see Figure 4 and Table S14). In this complex, a
dimer of water closes a sequential eight-membered cycle with the carboxylic acid group
through a chain of three O-H· · ·O HBs. The intramolecular O-H· · ·O interaction between
the hydroxyl and carbonyl groups is also maintained. This arrangement is similar to other
cases of acid dihydrates such as formic acid [41], acetic acid [31], propanoic acid [29], or
di- and trifluoroacetic acids [30,32]. In all these cases where the water dimer is closing a
cycle with a molecule bearing two closely positioned proton donor and proton acceptor
groups, the water molecules lie in the molecular plane or in the plane of the carboxyl group,
with the non-interacting hydrogen atoms out of the plane, pointing each one in opposite
directions.

In this structure, the water dimer has a distance between the interacting hydrogen and
oxygen atoms closer to the equivalent length of the carboxyl group, so the interaction be-
tween them presents a natural arrangement less forced than the monohydrated conformer.
The hydrogen bond angles are close to the canonical value of 180◦ (see Table S14). Coop-
erative forces are favored in homodromic cycles, reinforcing the HB interactions, leading
to a shortening of the hydrogen bonds when comparing the HB distances with those of
the monohydrate, as shown in Figure 4. As pointed out previously [28], the Ow1· · ·Ow2
distance (2.682 Å) is shorter than that reported for water dimer (2.976 Å) [64], and even
shorter than the Ow· · ·Ow distance (2.78 Å) of the water tetramer [65]. All these O· · ·O
distances related to hydrogen bonds are listed in Table 5.
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Table 5. Predicted O· · ·O distances between the oxygen atoms forming hydrogen bonds for the
identified conformers of SA and its complexes SA-w (I-w-a), SA-w2 (I-w2-a), SA-w3 (I-w3-a), and
SA-w4 (I-w4-a), calculated at B3LYP-D3/6-311++G(d,p) level of theory. See Figure 3 for the atom
labelling and Figure 4 for the labelling of the water molecules.

O· · ·O/Å SA I-w-a I-w2-a I-w3-a I-w4-a

O12· · ·O14 2.635 2.620 2.617 2.617 2.612
O13· · ·Ow1 - 2.710 2.648 2.616 2.576
O14· · ·Ow2 - 2.779 2.766 2.764 2.694
Ow1· · ·Ow2 - - 2.682 - 2.835
Ow1· · ·Ow3 - - - 2.691 2.740
Ow2· · ·Ow3 - - - 2.698 -
Ow3· · ·Ow4 - - - - 2.745
Ow2· · ·Ow4 - - - - 2.781

O· · ·O w-dimer 1 2.976
O· · ·O w-trimer 2 2.85

O· · ·O w-tetramer 3 2.78
1 Taken from reference [64]. 2 Taken from reference [66]. 3 Taken from reference [65].

2.2.4. Trihydrated Complex (SA-w3)

The complex assigned to the I-w3-a conformer (Figure 1) shows a chain of three
water molecules closing a 10-membered ring with the carboxyl group. Compared to the
dihydrated complex, the presence of the third water molecule alters the planarity and the
dynamics of the molecule. In terms of planarity, the oxygen atom (Ow1), which interacts
with the OH-carboxyl moiety (see Figure 4), is close to the SA plane, slightly inclined
backward (−4.3◦, with respect to the SA ab plane), while the other water molecules lie
out of plane. Thus, Ow2 is tilted over 25◦ and Ow3 around 10◦ ahead of the ab plane of
the monomer (see Table S15). This is consistent with the experimentally observed Pcc
value. This deviation from planarity contrasts with other acid trihydrates, such as di- and
trifluoroacetic acids [30,32], which are closer to planarity. Similarly, the planar molecule
of formamide forms a complex with three water molecules, presenting a Pcc value of
7.03654(6) uÅ2 [28], close to the value observed for SA-w3 (9.963(1) uÅ2, Table 3). Moreover,
the most stable conformations for SA-w3 (Figure S5) closely resemble those found for
the formamide-w3 complex. Regarding the dynamics of the molecule, the observation of
tunneling doublets suggests an inversion of the configuration, similar to what occurs in
formamide-w3 [28]. In this study, a path for the inversion of the configuration alternative
to that passing by a high-energy planar molecule transition configuration was identified
through successive flipping motions of the water molecules. As shown in Figure S12, a
similar path is calculated for SA-w3. This periodic pseudorotation function with reasonably
low barriers could explain the observed doublets associated with the dynamics created by
the presence of the third water molecule.

Based on the predicted equilibrium structure (Table S15) and the NBO calculations
(Tables S10 and S11), it appears that the structure of SA, particularly the CO-H and C=O
acid structure and the intramolecular HB, is not significantly affected by the presence of the
third water molecule. On the other hand, the cooperative effects result in a shortening of all
intermolecular HB distances between water molecules and SA compared to SA-w2 and SA-
w complexes, as depicted in Figure 4. Examining the distances between the oxygen atoms
involved in the HBs (Table 5) reveals a shortening in the distances associated with the HBs
between SA and the water molecules (O13· · ·Ow1 and O14· · ·Ow2), which is pronounced in
the OH· · ·Ow1 HB.

2.2.5. Tetrahydrated Complex (SA-w4)

In the SA-w4 complex assigned to I-w4-a (Figures 1 and 4), the trend observed for
the SA-w1, SA-w2, and SA-w3, where a chain of water molecules closes a cycle with the
carboxyl group, breaks down. In this case, it appears as if the SA-w2 complex has captured
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a second water dimer. The two water molecules interacting with SA in SA-w4 have a
similar arrangement as that for SA-w2. This is further corroborated after removing the
contribution of the third and fourth water molecules, obtaining the same structure and
planar moments as for the SA-w2. The equilibrium structure (see Table S16) also confirms
that the oxygen atoms of these two water molecules interacting with the carboxyl group
are in the SA plane. As mentioned, the SA-w2 has a favorable geometry for interaction
with the carboxyl group. The second water dimer closes a water tetramer cycle in the most
favorable arrangement. A similar disposition has been observed for the formamide-w4
complex [67]. In this case, the plane of the water tetramer is bent over 110◦ (see Table S16),
with respect to the plane of the SA-w2 moiety.

In this cluster, as in the previous cases, cooperative effects shorten the HB distances
between water and SA. In Figure 4, it can be observed that these distances progressively de-
crease upon the addition of new water molecules. However, in SA-w4, the water molecules
do not form a sequential cycle with the carboxylic acid group. Consequentially, the HB
distances between water molecules notably increase, diverging from the trend observed by
the SA-w2 and SA-w3 clusters. However, the intramolecular HB is also shortened compared
to the other species, indicating further stabilization of cooperativity between the four water
molecules and SA. All these pieces of evidence were also corroborated by the NBO analysis
(see Tables S10 and S11).

2.3. Cooperative Effects and Dissociation Energies

When discussing HB cooperativity, two aspects are usually considered. One of them
involves HBs between molecules with multiple conjugated π bonds (known as RAHB or
π-cooperativity) [16,42,68]. An example is the reinforcement of the O-H· · ·O intramolecular
HB in SA. The second aspect is related to the formation of linear or cyclic chains involving
multiple molecules with double roles as HB donors and acceptors. We can consider
the hydrates of SA observed in this work as good examples of σ cooperativity. A first
consequence of cooperativity is the shortening of the hydrogen bonds, as described in the
previous section (Figure 4). In the same way, an increase in the HB energy per bond should
be analyzed.

A preliminary approach to analyzing the energies per bond involves calculating the
dissociation energies. These have been obtained at MP2/6-311++G(2df,2dp) level using the
counterpoise method to correct the energies for the basis set superposition error (BSSE) [69].
We selected this computational level to facilitate comparison with those obtained previously
for the benzoic acid—water complex [40]. The positive value of the interaction energy
obtained after BSSE correction represents the equilibrium dissociation energy De. The
dissociation energies (De) are given in Table 6, together with the average energy per bond.
The predicted De value in SA-w is 41.3 kJ/mol, which is close to the 41.9 kJ/mol obtained for
the monohydrated cluster of benzoic acid. Hence, the presence of an ortho intramolecular
HB does not seem to affect the dissociation energy. It is possible to observe that the average
energy per bond increases as the number of water molecules increases along the series
SA-w, SA-w2, SA-w3. However, it decreases for the SA-w4 complex consistently with the
fact that this cluster is no longer formed through a single cycle as the smaller size clusters.
In any case, the energy per bond in the SA-w4 cluster is higher than that calculated for the
SA-w heterodimer. The reinforcement of the dissociation energy can be also interpreted as
a signature of the σ cooperative effects when the number of water molecules increases in
the clusters, and it is especially pronounced when the cluster consists of a cycle, as occurs
for SA-w, SA-w2, and SA-w3 complexes.
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Table 6. Predicted equilibrium dissociation energies dissociation energies De and average dissociation
energies per intermolecular bond (De/HB) for the identified conformers of salicylic acid—water
complexes, SA-w (I-w-a), SA-w2 (I-w2-a), SA-w3 (I-w3-a), and SA-w4 (I-w4-a), calculated at MP2/6-
311++G(2df,2dp) level of theory and employing the counterpoise method to correct the basis set
superposition error (BSSE).

I-w-a I-w2-a I-w3-a I-w4-a

De/kJ mol−1 41.34 88.70 123.34 168.87
De/HB/kJ mol−1 20.67 29.57 30.84 28.14

To individually analyze the strength of each HB, we have performed QTAIM (Quan-
tum Theory of Atoms in Molecules) [70,71] and NCI (Non-Covalent Interaction) [72]
calculations. QTAIM analyzes the topology of the electron density to determine bond paths
(BP) and bond critical points (BCP), while NCI analysis allows the visualization of the
electron density regions associated with non-covalent interactions. Figures S7–S11 show
the combined results of these analyses for all the identified SA species. Moreover, using the
electronic density provided by the QTAIM analysis at the BCPs, the interaction energies of
the HB can be estimated following the empirical equation proposed by Emamian et al. [63].
The interaction energy estimated for the intramolecular HB of SA slightly increases step-
wise along the series from the monomer (34.24 kJ/mol) to the tetrahydrated complex
(37.38 kJ/mol) (see Figure 4). The energy of the interaction between the carboxylic OH and
the interacting water molecule (Ow1) increases its value by approximately 12 kJ/mol from
the mono- to the dihydrated cluster, maintains almost the same value in the trihydrate and
experiences an increment close to 12 kJ/mol when passing to the tetrahydrated complex.
The high value of the energy of this bond and its increment in energy are probably due to
the strong acid character of the OH carboxyl proton. The same behavior is reflected in the
HB interaction between the C=O of the carboxyl moiety and its water partner (Ow2). It is
worth mentioning that the intramolecular HB is dominant in SA and SA-w, while in the
other clusters, the carboxyl OH–Ow1 HB is dominant.

3. Materials and Methods
3.1. Experimental Details

The rotational spectra of SA and its SA hydrates were investigated using a broad-
band chirped-pulse Fourier transform microwave spectrometer (CP-FTMW), as described
elsewhere [73]. A commercial sample of SA (m.p. ~158 ◦C, b.p. ~211 ◦C), used without
further purification, was placed in a reservoir at the heatable nozzle, where it was kept at
150 ◦C. A water reservoir inserted in the carrier gas line was used to increase the amount of
water vapor in the expansion. Ne was used as the carrier gas, with a stagnation pressure
of 2 bar and pulses of 700 µs. The gas mixture expanded supersonically into the vacuum
chamber through a 0.8 mm nozzle. After a small delay, an arbitrary waveform generator
created a 2–8 GHz chirped-pulse of 4 µs duration, which was then amplified to 200 W
and broadcasted inside the chamber through a horn antenna, arranged perpendicular to
the molecular expansion. The molecular transient emission signal was detected through a
second horn antenna, preamplified, recorded with a digital oscilloscope (40 µs gate length),
and Fourier-transformed into the frequency domain. For each molecular pulse, the polar-
ization/detection steps were repeated 8 times. This operation sequence was repeated as
soon as the optimum vacuum conditions were restored in the chamber, typically operating
at a 5 Hz repetition rate. The accuracy of the frequency measurements is estimated to be
better than 15 kHz. All the single substituted 13C isotopomers were measured in their
natural abundance. To record the spectra of the deuterated isotopologues, a 1:1 mixture
of water and deuterium oxide was placed in the reservoir. To measure and analyze the
spectra, several available programs were used [74–77].
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3.2. Theoretical Methodology

To explore the conformational landscapes of SA with two, three, and four water
molecules, we employed the Conformer-Rotamer Ensemble Sampling (CREST) tool based
on the xtb semiempirical extended tight-binding program package [44]. The resulting
conformers were further optimized using the B3LYP hybrid density functional [45–48] with
the D3 Grime’s dispersion correction term [78] and the Pople’s 6-311++G(d,p) basis set [79].
In addition to the three conformers predicted in previous work [11], for the monomer forms,
we predicted two additional new stable forms, IV and V (see Figures 1 and S2). The results
for the hydrated complexes are compiled in Figures S3–S6 and Tables S2–S5. For all the
predicted species, harmonic frequency calculations were conducted to ensure that all the
calculated conformers are true minima. Natural Bond Orbital (NBO) [80], non-covalent
interactions (NCI) [72], and Quantum Theory of Atoms in Molecules (QTAIM) [70,71]
analyses were performed for all the experimentally observed species at the same DFT
B3LYP-D3/6-311++G(d,p) level. Complementary MP2/6-311++G(2df,2pd) [81] calculations
were used to estimate the dissociation energies, employing the counterpoise method to
correct the basis set superposition error (BSSE) [69]. All the DFT and MP2 calculations were
done using the Gaussian 16 program package [82].

4. Conclusions

In this work, we have recorded the rotational spectra of SA, its monosubstituted 13C
isotopologues, several 2H species, and the SA-wn (n = 1–4) hydrates using CP-FTMW
spectroscopy. The analysis of the experimental data has been complemented with computa-
tional chemistry calculations, including NBO, NCI, and QTAIM analyses, to gain a better
understanding of the structural behavior of SA and its hydrates and to characterize the
different inter- and intramolecular HB interactions established in these species.

The experimentally determined SA structure has allowed us to characterize the O-
H· · ·O intramolecular HB between the carboxylic acid and the hydroxyl functional group
in ortho position. This HB forms a sequential six-membered cycle further stabilized by π

cooperativity (RAHB), which reinforces the planarity and rigidity of the molecule. The
AGIBA effect governed by the alcohol group is reflected in the benzene ring bond lengths.
However, in proximity to the carboxylic acid or hydroxyl groups, the structure of the ring
appears to be dominated by the RAHB effects.

The analysis of the spectra of the hydrated complexes revealed interesting insights into
how water aggregates around an acid group. As we have already mentioned, the possible
aggregates around the phenolic OH group all have high energies (see Figures S2–S5). In the
complex phenol-w, the O-H group acts preferably as a proton donor. The corresponding
structure is predicted to be much more stable than the form in which water behaves as the
proton donor [83]. However, in the most stable forms of SA, the proton donor capacity
of the phenolic OH group is employed in the intramolecular interaction, so the possible
SA-water complexes with water interacting with the phenol O-H group are expected to
have higher energies, as it is confirmed by the calculations.

In the mono-, di-, and trihydrated clusters, water, or its dimer or trimer, forms a chain,
closing a sequential cycle with the two HB donor OH and acceptor C=O ends of the carboxyl
group. In the tetrahydrated species, water molecules form a tetramer cycle, bonding to the
SA carboxyl group with contacts similar to those established in the SA-w2 cluster. While
the mono- and dihydrated clusters maintain the planarity of the heavy atom skeleton of
the complex, the spectra of SA-w3 and SA-w4 evidence of their non-planarity, as shown
by the planar moment values Pcc, further corroborated by the theoretical computations.
The trihydrated cluster has two of the water molecules slightly out of the plane. In the
SA-w4 complex, two of the water molecules are in the plane of SA bonded to the carboxylic
acid group, keeping the form of SA-w2 species, while the other two lie above the plane
of SA in an arrangement where the plane of the water molecules presents an angle of
about 110◦ with respect to the SA-w2 plane. The cyclic structures of the hydrates of SA are
comparable with those reported by Howard and coworkers on organic acid mono-, di-,
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and trihydrates [29–32]. However, in contrast with the non-planar heavy atom skeleton
observed here for the trihydrate of SA, the trihydrates of di- and trifluoroacetic acids seems
to have nearly planar heavy atom skeletons.

In the work on formamide-(H2-O)3 complexes [28], the structural relationship between
the formamide-(H2O)n clusters and the pure water clusters (H2O)n+2 was pointed out. The
structures determined in this work for the SA-wn complexes could be related in the same
way to the structures determined or predicted for the (H2O)n+2 clusters [20,64–66,84]. The
pieces of evidence found of the enhanced hydrogen bonding (HB), due to the cooperativity
associated with the increased number of water molecules in the clusters, are remarkable.
The evolution of the HB features reflected in the changes of the O··H and O· · ·O distances,
the BSSE corrected dissociation energies per HB, the HB strengths estimated from the
QTAIM analysis, and the stabilizing delocalization energies predicted by the NBO calcula-
tions evidence the existence of σ cooperativity. The differences between the intermolecular
HBs of I-w-a species and those of the monohydrated species of benzoic acid [40] indicate
the strong influence of the intramolecular interaction altering the proton acceptor properties
of the C=O functional group. In conclusion, the interaction with the water molecules in the
clusters increases the strength of the intramolecular HB, which is the dominant interaction
in complex
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