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Abstract: Intracellular calcium plays a pivotal role in central nervous system (CNS) development by
regulating various processes such as cell proliferation, migration, differentiation, and maturation.
However, understanding the involvement of calcium (Ca2+) in these processes during CNS devel-
opment is challenging due to the dynamic nature of this cation and the evolving cell populations
during development. While Ca2+ transient patterns have been observed in specific cell processes and
molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells,
further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is
required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and
in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules
might play a key role in balancing cell proliferation for self-renewal or promoting differentiation.
These processes are finely regulated in a time-dependent manner throughout brain development,
influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Fur-
thermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs
for treating neurological disorders. Despite significant progress in this field, unraveling the elements
contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that
requires further investigation.

Keywords: calcium signaling; neural stem/progenitor cells; proliferation; differentiation; radial
glial cells

1. Introduction

In mammals, the central nervous system (CNS) originates from a simple neuroep-
ithelium populated by neural stem cells (NSCs), known as neuroepithelial cells. Through
symmetric proliferation, these cells give rise to a pseudo-stratified neuroepithelium, where
bipolar NSCs called radial glia cells (RGCs) are observed. RGCs are multipotent stem cells
capable of self-renewal and differentiation into neurons, astrocytes, and oligodendrocytes
in a time-dependent manner through symmetric and asymmetric cell division [1–3].

NSCs, also referred to as neural progenitor cells (NPCs), must be distinguished from
intermediate progenitor cells (IPCs), as the latter are committed to a neuronal phenotype.
NSCs and IPCs constitute two proliferative zones in the ventricular and subventricular
zones (VZ and SVZ), respectively. IPCs primarily generate pyramidal neurons of the
cerebral cortex, while RGCs directly produce a small portion of neurons, astrocytes, and
oligodendrocytes [4–7].

Both extrinsic and intrinsic factors regulate NSCs’ self-renewal and differentiation
in time and space, thereby affecting cell proliferative patterns, partly determined based
on cell cycle duration [8,9]. Extrinsic factors such as growth factors, neurotransmitters,
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and morphogens play significant roles in CNS development through selective membrane
receptors. Receptor tyrosine kinases (RTKs), guanine nucleotide-binding protein-coupled
receptors (G-protein-coupled receptors; GPCRs), and mechanoreceptors are among the
receptors capable of eliciting intracellular calcium (Ca2+) transients in non-excitable cells.
Consequently, the increase in intracellular Ca2+ in NSC is mediated downstream from
receptor activation via two mechanisms: release from store organelles and entry through
plasma membrane non-voltage-dependent channels.

The activity of Ca2+ as a second messenger relies on changes in the intracellular
Ca2+ concentration ([Ca2+]i) at microdomains sensed by several Ca2+ binding proteins
that regulate intracellular Ca2+ homeostasis by buffering and transporting this ion. These
proteins include calmodulin (CaM), calcyclin, Ca2+-sensitive enzymes, transcription fac-
tors, and Ca2+-sensitive ion channels. Additionally, pumps and exchangers localized
in mitochondria, endoplasmic reticulum (ER), and Golgi membranes contribute to Ca2+

homeostasis [10].
Due to the wide molecular repertoire involved in Ca2+ homeostasis, it is challenging

to associate the molecules involved in Ca2+ dynamics and cell proliferation in the context
of CNS development, as several phenomena coincide in time and space. However, prolifer-
ation is the first event during neural tube development, and alterations in this process can
lead to CNS defects such as microcephaly, megalocephaly, and hemimegaloencephaly [11].

In the VZ, where NSCs reside in the cortical neuroepithelium of rat embryos, three
patterns of spontaneous Ca2+ fluctuations have been reported: (1) isolated fluctuation in a
single cell, (2) paired fluctuation in two adjacent cells, and (3) clustered or synchronized
fluctuation in neighboring cells, each with particular kinetics and frequency patterns [12,13].
Interestingly, in 15- to 20-day-old rat embryos (E15–E20), most cells in the VZ exhibit the
isolated Ca2+ fluctuation pattern, followed by pair fluctuation and cluster fluctuations [13].
However, these patterns have not been related to symmetric or asymmetric RGC prolifera-
tion or the expression of non-voltage-gated channels.

NSCs proliferate symmetrically to increase their pool or asymmetrically to give rise,
directly or indirectly, in a time-dependent manner, to neurons, astrocytes, and oligoden-
drocytes (Figure 1). The potential fates of NSCs rely on their proliferative pattern [8].
Furthermore, symmetric cell division in the VZ is more frequent at early stages, and as
development progresses, the asymmetric pattern starts to generate committed cells with or
without proliferative capacity [14–16].

The proliferation and differentiation of NSC into neurons, astrocytes, and oligoden-
drocytes is a complex and highly regulated process. Certain factors exhibit dual roles
depending on their concentration and cellular context. Among these factors are Notch,
bone morphogenetic proteins (BMPs), brain-derived neurotrophic factor (BDNF), sonic
hedgehog (SHH), Wingless (Wnt), and nerve growth factor (NGF).

Epidermal growth factor (EGF), fibroblast growth factor (FGF), and insulin-like growth
factor (IGF) promote NSC proliferation. Neurogenic factors include neurotrophin-3 (NT-3),
vascular endothelial growth factor (VEGF), and transforming growth factor-beta (TGF-β).
Astrocyte differentiation is influenced by ciliary neurotrophic factor (CNTF), BMP2, BMP4,
leukemia inhibitory factor (LIF), and interleukin-6 (IL-6). Oligodendrocyte differentiation,
on the other hand, is influenced by platelet-derived growth factor (PDGF), IGF-I, neuregulin-
1 (NRG-1), and FGF9 [1,3,8].



Int. J. Mol. Sci. 2024, 25, 4073 3 of 24

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 24 
 

 

receptors. Receptor tyrosine kinases (RTKs), guanine nucleotide-binding protein-coupled 
receptors (G-protein-coupled receptors; GPCRs), and mechanoreceptors are among the 
receptors capable of eliciting intracellular calcium (Ca2+) transients in non-excitable cells. 
Consequently, the increase in intracellular Ca2+ in NSC is mediated downstream from re-
ceptor activation via two mechanisms: release from store organelles and entry through 
plasma membrane non-voltage-dependent channels. 

The activity of Ca2+ as a second messenger relies on changes in the intracellular Ca2+ 
concentration ([Ca2+]i) at microdomains sensed by several Ca2+ binding proteins that regu-
late intracellular Ca2+ homeostasis by buffering and transporting this ion. These proteins 
include calmodulin (CaM), calcyclin, Ca2+-sensitive enzymes, transcription factors, and Ca2+-
sensitive ion channels. Additionally, pumps and exchangers localized in mitochondria, en-
doplasmic reticulum (ER), and Golgi membranes contribute to Ca2+ homeostasis [10]. 

Due to the wide molecular repertoire involved in Ca2+ homeostasis, it is challenging 
to associate the molecules involved in Ca2+ dynamics and cell proliferation in the context of 
CNS development, as several phenomena coincide in time and space. However, prolifera-
tion is the first event during neural tube development, and alterations in this process can 
lead to CNS defects such as microcephaly, megalocephaly, and hemimegaloencephaly [11]. 

In the VZ, where NSCs reside in the cortical neuroepithelium of rat embryos, three 
patterns of spontaneous Ca2+ fluctuations have been reported: (1) isolated fluctuation in a 
single cell, (2) paired fluctuation in two adjacent cells, and (3) clustered or synchronized 
fluctuation in neighboring cells, each with particular kinetics and frequency patterns 
[12,13]. Interestingly, in 15- to 20-day-old rat embryos (E15–E20), most cells in the VZ ex-
hibit the isolated Ca2+ fluctuation pattern, followed by pair fluctuation and cluster fluctu-
ations [13]. However, these patterns have not been related to symmetric or asymmetric 
RGC proliferation or the expression of non-voltage-gated channels. 

NSCs proliferate symmetrically to increase their pool or asymmetrically to give rise, 
directly or indirectly, in a time-dependent manner, to neurons, astrocytes, and oligoden-
drocytes (Figure 1). The potential fates of NSCs rely on their proliferative pattern [8]. Fur-
thermore, symmetric cell division in the VZ is more frequent at early stages, and as devel-
opment progresses, the asymmetric pattern starts to generate committed cells with or 
without proliferative capacity [14–16]. 

 
Figure 1. Scheme of the cellular phenotype generated during development from a heterogeneous 
population of neural stem cells. NSCs proliferate symmetrically ( ) to increase their pool or asym-
metrically (black) to give rise, directly or indirectly, in a time-dependent manner, to neurons (green 
arrows), astrocytes (blue arrows), and oligodendrocytes (red arrow). NSCs = neural stem cells; IPCs 
= intermediate progenitor cells. Blue doted arrow = repressed gliogenic signals; Blunt green arrow 
= pro-neuronal genes repressing gliogenic signals; Blunt blue arrow = gliogenic signals repressing 
neuronal genes. Created using BioRender.com. 
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2. Calcium and Cell Cycle Regulation

Considerable information has been amassed concerning the role of Ca2+ in cell cycle
regulation, albeit only a fraction of it originates directly from NSCs. While the mechanisms
involved are likely redundant across cell types, certain peculiarities may exist between
them. This section will discuss the role of Ca2+ in cell cycle regulation and the involvement
of effector proteins at various stages of the cell cycle within the context of NSCs.

Cytosolic Ca2+ concentration ([Ca2+]c) regulates cell proliferation, with Ca2+ oscilla-
tions occurring throughout the cell cycle believed to regulate this process [17–19]. In RGC,
[Ca2+]c increases via the binding of morphogens and growth factors to GPCRs and RTKs
or through mechanoreceptor activation [19–21].

Changes in [Ca2+]c are associated with different phases of the cell cycle and the
quiescent stage. In NSCs, Ca2+ signaling is essential for maintaining self-renewal or
promoting cell differentiation by participating in various stages of the cell cycle, including
the G1, S, G2, and M phases. Ca2+ binds to several proteins during this process, leading to
alterations in the expression of cell cycle regulatory proteins [22,23]. During the G1 phase,
the increase in [Ca2+]c can directly activate Ca2+-dependent kinases, such as Ca2+/CaM-
dependent protein kinases (CaMKs) and protein kinases C (PKC), thereby increasing the
expression of cell cycle regulatory proteins, including cyclins and cyclin-dependent kinases
(CDKs). Ca2+ affects DNA replication during the S phase by modulating the activity of
enzymes involved in DNA synthesis through Ca2+-dependent tyrosine kinase (PYK2), CaM,
the activated protein kinase (MAPK), and ERK signaling pathways [24,25]. Furthermore,
in G2, Ca2+-dependent kinases regulate cell cycle progression by controlling the activity
of cyclin B and CDK1. In the M phase, Ca2+ signaling is essential for spindle formation,
chromosome segregation, microtubule dynamics, and the activation of proteins such as
mitotic kinases [26,27].

It has been suggested that in NSCs, changes in the duration of the G1 phase dictate
self-renewal or differentiation, with a shorter G1 observed during symmetric division
(self-renewal) and a longer G1 observed to be NSC divide in an asymmetric and symmetric
non-proliferative fashion [28,29]. The role of Ca2+ in symmetric or asymmetric cell division
remains unclear. However, using a cyclin-dependent kinase inhibitor to prolong the cell
cycle appears sufficient to induce premature neurogenesis in mouse embryos [29]. This
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suggests that changes in [Ca2+]c during the G1 phase may influence the duration of this
stage, potentially affected by factors such as receptor density and type, Ca2+ membrane
channels, and levels of Ca2+-dependent kinases, all of which can impact cell cycle regulatory
proteins. Interestingly, elevated levels of GPCRs associated with PKC activation and Ca2+

mobilization have been shown to enhance neuron differentiation, hinting at the involvement
of this pathway in asymmetric NSC division [25,30–32].

Other studies have revealed that Ca2+ waves are propagated through connexins in the
VZ of the embryonic brain to enhance RGC proliferation [23]. Since RGCs are situated close
to the ventricular lumen, they are exposed to physical and chemical factors from both the
surrounding tissue and the cerebrospinal fluid (CSF) in their basal and apical regions, re-
spectively. The ventricular system originates from an open tube in the embryonic brain that
gradually closes and rapidly expands due to the accumulation of CSF [33]. Consequently,
spontaneous Ca2+ transients may be induced through mechanoreceptor activation via
CSF circulation from a caudal to a rostral direction [21]. The positive hydrostatic pressure
exerted by CSF stimulates the proliferation of neuroepithelial cells and RGCs through
primary cilia, which are considered specialized organelles for Ca2+ signaling [34–36]. Inter-
estingly, only approximately 56% of RGCs obtained from E16 mice exhibit Ca2+ transients
in response to mechanical stimulation [37], suggesting heterogeneity among RGCs [38,39].

This observation also implies that 44% of RGCs do not exhibit mechanically stimulated
Ca2+ transients, suggesting that intracellular Ca2+ transients in these populations may occur
through ligand–receptor activation, leading to Ca2+ release from storage and its subsequent
entry through membrane channels. In this regard, the signal transduction pathways of
GPCRs or TKs are of interest, as several morphogens and growth factors act through
them. Receptor activation leads to the hydrolysis of phosphatidylinositol 4,5-biphosphate
(PIP2)-producing diacylglycerol (DAG) and inositol-triphosphate (IP3); IP3 predominantly
binds to its receptor in the ER, resulting in Ca2+ release into the cytoplasm. Subsequently,
as [Ca2+]c increases, Ca2+-sensitive proteins, such as CaM [19], play a pivotal role in
transducing Ca2+ signals within the cell, controlling the transition from one phase of the
cell cycle to the next by activating CaMKs, which phosphorylate target proteins involved
in the cell cycle, such as cyclin-dependent kinases, essential for cell cycle progression.
Furthermore, CaM can interact with growth factor receptors, such as the EGF receptor
(EGFR), to modulate their activity and regulate cell proliferation [40]. In particular, CaM
intervenes in the G1-S phase boundary, the transition from the G2 phase to mitosis (M),
and the anaphase–telophase transition [37,41].

The involvement of CaM in the cell cycle is further supported by the use of antago-
nists, such as W13, W7, and trifluoperazine, or monoclonal antibodies, which promote cell
cycle arrest and the inhibition of DNA synthesis [42–44]. Together with CaM, Ca2+ stim-
ulates the expression of genes that lead to the activation of the cyclin-dependent kinases
p33cdk2 and p34cdc2, which are necessary for the progression of G2 to M and control the
signaling cascade that regulates the phosphorylation of the retinoblastoma protein, con-
trolling a restriction point in G1-phase to enter the S-phase [45–47]. Furthermore, CaMKs
and calcineurin can activate different signal pathways, such as those mediated by the
nuclear factor of activated T-cells (NFAT), nuclear kappa-light-chain enhancer of activated
B cells (NFκB), and stimulate transcription through the adenosine 3′,5′-cyclic monophos-
phate (cAMP) response element-binding protein (CREB) affecting cell proliferation and
differentiation [48–50].

Calcyclin, a member of the S-100 family, also known as S100 Ca2+-Binding Protein A6
(S100A6), is expressed in various cell types, including neuron-like and glial-like cells in
the pyramidal and molecular layers of the hippocampus at midgestation, in the entorhinal
cortex throughout gestation, and in the fetal occipital cortex [51–53]. Its expression in glia-
like cells, particularly in the entorhinal cortex and the occipital cortex in fetuses, suggests
an important role in neural development.

In the adult brain, S100A6 is expressed in NSC and astrocyte precursors, indicating
its potential involvement in generating astrocytes in the hippocampus [54]. Other studies
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reported its expression in epithelial cells and its overexpression in cancer epithelial cells,
suggesting a role in cell proliferation [55–58]. Additionally, its effect on fibroblasts, where its
deficiency prolongs the G0/G1 phase and leads to cell cycle withdrawal, further supports
its involvement in the cell cycle [59]. These findings provide insights into the potential
role of calcyclin in NSC neurogenesis and gliogenesis. However, further studies are
needed to understand how this protein influences the NSC division pattern for self-renewal
and differentiation.

It is important to mention that Ca2+ not only promotes or regulates the length of the
cell cycle but also plays an essential role in the degradation of certain cyclins by activating
the Ca2+-dependent protease calpain, thereby halting cell cycle progression [60].

As mentioned above, growth factors such as the EGF and FGF stimulate NSC pro-
liferation through receptor activation, leading to increased cytosolic [Ca2+]c and CaMK
activation. These kinases can phosphorylate and activate transcription factors involved
in cell cycle progression and proliferation, such as myocyte enhancer factor 2 (MEF2)
and NFAT, and modulate the activity of CDKs and their inhibitors, thus regulating NSC
progression through different cell cycle phases [23,61–63].

In summary, Ca2+ entry into NSC is crucial for cell cycle regulation, and depending on
the activated pathway, NSCs will either achieve self-renewal or differentiate into specific
neural lineages. Therefore, changes in the transcriptional profiles of NSCs during CNS
development will determine the effects of Ca2+ on these cells. Consequently, we will review
the expression of membrane proteins such as GPCRs, transitory receptor potential channels
(TRPs), RTKs, and connexins during development and their roles in NSC proliferation.

3. G-Protein-Coupled Receptors and Calcium Signaling

GPCRs constitute a large family of cell surface receptors that play a crucial role in
transmitting signals from the extracellular environment to the inside of the cell through
the hydrolysis of heteromeric guanine nucleotide-binding proteins (G-proteins). Upon
the activation of GPCR, the liberation of the alpha subunit (αi, αs or αq) determines the
downstream signaling pathway [64].

G-proteins are composed of the β/γ (Gβ/γ) dimmer and the α subunits, forming a
trimeric protein complex. They are classified based on their α (Gα) subunit, which dictates
their function upon receptor activation and promotes the disassembly of the trimetric
protein. While the Gα subunits initiate the transduction signaling pathway downstream
from receptor activation, the Gβ/γ subunit regulates the activity and stability of the Gα

subunit, thereby contributing to GPCR-mediated signaling. The Gα subunits are further
classified into Gαs, Gαi, Gαq11, and Gα12/13 subfamilies based on their primary sequence
and function. Specifically, Gαs and Gαi stimulate and inhibit cAMP synthesis, respectively,
while Gα12/13 regulates actin cytoskeletal remodeling by activating Rho GTPase, and Gαq11

activates phospholipase C, leading to intracellular Ca2+ release and entry [64].
Moreover, as mentioned previously, after IP3R binds to its receptors in the ER and

Ca2+ depletion occurs, conformational changes in the Ca2+ sensor proteins, named stromal
interaction molecules (STIM) in the ER membrane, are triggered. These changes activate
membrane proteins such as Ca2+ channels, such as ORAI (1, 2, and 3) and TRPC1, facilitating
store-operated Ca2+ entry (SOCE) and [65,66] (Figure 2). Consequently, the increased
[Ca2+]c serves to refill the ER and activate Ca2+-sensitive proteins, including CaM, CaMKs,
calcyclin, calcineurine, and Ca2+-dependent PKCs, all of which play critical roles in NSC
proliferation. For instance, CaMKII promotes cell cycle progression, entry into the S phase,
and neurogenesis while also phosphorylating PKC, predominantly affecting the G0/G1
and G2 phases [67,68].

Moreover, GPCRαq has been reported to influence NSC self-renewal and differen-
tiation (Table 1). Its effect on NSC differentiation likely occurs through symmetric non-
proliferative or asymmetric divisions.
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Table 1. Gαq-coupled receptors that affect cell proliferation.

Receptor Function Ligand Agonists Antagonist

5-HT2AR
(serotonin

2A receptor)

Promotes NSC
proliferation ex
vivo, in vitro,

and in vivo [69]
Its antagonism
increases NSC
differentiation

in vitro [70]

Serotonin
LSD [71], DOI [72], 25CN-NBOH

[73], Mescaline [74], Pimavanserin
[75], S 16924 [76]

Spiperone [71,77], compound 3b
[PMID: 28943244] [78], M100,907
(volinanserin), Pirenperone [71],

(−)-MBP (meta-bromo-
phenylisopropylamine) [79],
Eplivanserin hemi fumarate

(SR-46349B) [80], Sarpogrelate,
Naftidrofuryl [81], Risperidone,
Pipamperone [82], Olanzapine,

Ketanserin, Clozapine, Zotepine,
Ziprasidone, ORG5222, Tiaspirone,

Ocaperidone [83], Ketanserin,
Altanserin [84]

5-HT2CR
(serotonin

2C receptor)

Its antagonism
increases NSC
differentiation
in vitro [70].

Serotonin

LSD [71], DOI [72], Mescaline [74],
(−)-MBP (meta-bromo-

phenylisopropylamine) [79], RO
60-0175 [85], Lorcaserin [86],

MK-212, WAY-161503 [87]

Spiperone [71], RS-102221[87],
Mianserin, 1-NP, ICI 169,369, LY

53857 [84], SB206553, SB242084 [88],
Nefazodone, Mirtazapine [89],
Ritanserin, Mesulergine [90]

M1R
(muscarinic

type 1
receptor)

Promotes NSC
differentiation
in vitro [91,92].

Acetylcholine

AF102B, AF150 (S), AF267B [93],
Xanomeline [94], Sabcomeline [95],

AC-42, TBPB, N-desmethylclozapine
[96], Pirenzepine, Carbachol [97],

77-LH-28-1 [98]

Pirenzepin [99], Telenzepine [100],
Biperiden [101], Clemastine [102]

H1R
(Histamine

type 1
receptor)

Increases NSC
neuron

differentiation
in vitro. Its
antagonism

reduces
neurogenesis
in vivo [32].

Histamine PEA [103], Beta-histine [104],
Histaprodifen [105], 2-TEA [106]

Diphenhydramine, Pyrilamine [106],
Chlorpheniramine, Mepyramine

[107], Promethazine [108], Cetirizine
[109], Hydroxyzine [110],

Clemastine [111], Loratadine,
Desloratadine [112], Fexofenadine,

Levocetirizine [113], Azelastine,
Acrivastine, Astemizole, Ebastine,

Fexodenadine, Ketotifen,
Mizolastine, Terfenadine [114]

ADRα-1AR
(adrenergic
α1-receptor)

Increases NSC
proliferation
in vitro [115].

Norepinephrine
(noradrenaline)

Epinephrine
(adrenaline)

Phenylephrine [116], Methoxamine
[117], Metaraminol, Midodrine,

Xylometazoline, Oxymetazoline,
Naphazoline, Tetrahydrozoline

[118], Clonidine, Cirazoline, Sgd
101/75, St 587, Amidephrine,

SKF89748, SDZ NVI 085, SK&F
102652, ST-1059, A-61603, A-204176,

NS-49, ABT-866, BMY 7378 [119]

Prazosin [116], Terazosin [117],
Tamsulosin [120], Phentolamine
[121], Doxazosin [122], Alfuzosin

[123]

CCK1R
(Cholecystokinin

type 1
receptor)

Increases NSC
proliferation

and
differentiation
into neurons
in vitro [124].

CCK-8

A-71623 [125], SR-146131 [126], FPL
14294, AR-R 15849, A-71623,

PD149164, PD170292, PD151932, GI
18177 [127]

SR 27897 [126], L-364,718,
Devazepide [128], Dexloxiglumide,
Lorglumide, Proglumide [129], and

MK 329 (devazepide) [127]

CaSR
(Ca2+-

sensing
receptor)

NSCs
differentiate to

the oligodendro-
cyte [130].

Ca2+, Mg2+,
L-tryptophan

[130], spermine
[131]

Neomycin [132], Vitamin D,
Velcalcetide [133]

Calcilytics, Phosphate [134],
Ronacaleret [135], 2-methyl-3-

phenethyl-3H-pyrimidin-4-one [136],
compound (S)-3h [PMID: 15686947]

[137], compound 17 [PMID:
15300839] [138],

1-arylmethylpyrrolidin-2-yl ethanol
amine [139]
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amine [117], Metaraminol, 
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Oxymetazoline, Naphazoline, 
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Prazosin [116], Terazosin [117], Tamsulosin [120], 
Phentolamine [121], Doxazosin [122], Alfuzosin [123] 

Figure 2. Calcium entry stimulated via GPCR activation in neural stem cells. GαqPCR is activated
through ligand binding promoting PLC activation, Ca2+ is released from the endoplasmic reticulum
(ER), Ca2+ depletion in the ER is sensed by the stromal interaction molecules (STIM) and its confor-
mational change to move and contact Ca2+ channels (ORAI and TRPC1) in the cell membrane to
promote Ca2+ entrance for ER refill through sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) and
bind to proteins with roles in cell proliferation. Created using BioRender.com.

4. Transitory Receptor Potential Channels and NSC Proliferation

The TRP ion channels comprise a large family of proteins characterized by six trans-
membrane domains and relatively long intracellular amino and carboxyl termini, encoded
by 28 genes. These proteins form channels by arranging into tetramers (homotetramers
or heterotetramers), where the S5 and S6 domains come together with the interconnecting
loop to create the central pore [140,141]. Most TRPs are non-selective cation channels
permeable to Na+, Ca2+, and Mg2+ and expressed in both excitable and non-excitable
cells [142]. The mechanisms underlying the activation are poorly understood; however,
they have been reported to be activated by voltage changes, receptor-operated activation,
Ca2+-store depletion, ligands, and sensory responses to heat, cold, and pain [142,143].

The first member of the TRP superfamily was identified in Drosophila as a protein
involved in phototransduction [144,145]. Since then, these proteins have been classified
into seven subfamilies based on their homology to Drosophila’s photoreceptor: TRPC
(canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin),
TRPA (ankyrin), and TRPN (no mechanoreceptor potential C; nompC) [146,147]. TRP
channels are implicated in several physiological processes, including cell proliferation,
migration, survival, Ca2+ and Mg2+ homeostasis, neuronal growth, temperature sensation,
and pain perception [142,148]. Here, we will discuss the TRP channels involved in the
proliferation of NSCs.

4.1. TRPCs

TRPCs consist of seven members grouped into four subfamilies, all of which are
activated downstream from GPCRs and intracellular Ca2+ release or DAG [147] (Figure 2).
The first family comprises TRPC4 and TRPC5; the second includes only TRPC1; the third
encompasses TRPC3, TRPC6, and TRPC7; and TRPC2 is the sole member of the fourth
family; however, it is not expressed in humans as it is encoded by a pseudogene [149].
These channels are expressed early during embryo development and persist into adulthood,
playing essential roles in neuronal development, including NSC proliferation, cerebellar
granule cell survival, axon pathfinding, neuronal morphogenesis, and synaptogenesis [150].
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Among the TRPC channels, TRPC1, TRPC3, TRPC6, and TRPC7 have been involved
in cell proliferation [151–156]. Ca2+ mobilization through these channels occurs via store-
operated and receptor-operated activation, following phospholipase C (PLC) activation
downstream from Gαq/11PCRs and RTKs, which leads to DAG and IP3 production. DAG is
required for the receptor-operated activation of at least TRPC3, TRPC6, and TRPC7, while
IP3 causes Ca2+ release from the ER and the activation of TRPC1, a process triggered by
store-operated channel activation. Furthermore, TPCR4 is activated via a receptor-operated
mechanism by Gαi-PCRs (Figure 3) [157–163].
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TRPCs. Created using BioRender.com.

Strübing and colleagues (2003) reported greater expression of five TRPC proteins
(TRPC1, 3, 4, 5, 6) in the embryonic compared with the adult brain. Furthermore, they
proposed that TRPC1 plays an important role in forming heterotetramers composed of
TRPC1/TRPC4/TRPC5 and TRPC1/TRPC3/TRPC6 [164]. Studies using smooth muscle
and endothelial cells have shown that TRPC1 mediates Ca2+ influx induced by basic FGF
(bFGF), thereby increasing cell proliferation [165,166]. Since bFGF plays an important role in
cortical NSC proliferation in vitro and in vivo through FGF receptor-1 (FGFR-1) [167–169],
it is likely that the mechanism reported in endothelial cells is also active in NSCs. Indeed,
in the murine telencephalic neuroepithelium, TRPC1 and FGFR-1 are co-expressed in
proliferating NSCs, and they have been coimmunoprecipitated from membrane extract
preparations [164,169].

Furthermore, Ca2+ entrance and NSC proliferation induced by bFGF are reduced
in TRPC1 knockdown NSCs [164,170], leading to cell cycle arrest in G0/G1 due to the
overexpression of CaMK-II beta (Camk2b) and CDK inhibitor 2A (Cdkn2a) [171].

TRPC3 is also highly expressed in NSCs derived from mouse embryonic stem cells
(mESC). Knocking out this channel in this cell type promotes impaired pluripotency, neural
differentiation, and increased apoptosis, suggesting that TRPC3 activity participates in cell
survival, the maintenance of pluripotency, and the transition of mESCs to NSCs through
the disruption of the mitochondrial membrane potential in undifferentiated mESCs and
mESCs undergoing neural differentiation. This reveals that TRPC3 is required for both

BioRender.com


Int. J. Mol. Sci. 2024, 25, 4073 9 of 24

early and late neural differentiation [153]. Moreover, it has recently been reported that the
increased neuron differentiation of NSCs by ketamine is due to dramatic repression of the
expression of TRPC3, partly by regulating the Glycogen synthase kinase 3β (GSK3β)/β-
catenin pathway [172].

The above findings are relevant since medical practitioners and veterinarians use
ketamine as an anesthetic during pregnancy or early after birth, which may affect brain
development [173]. However, how ketamine regulates NSC differentiation and whether
GSK3β participates in the ketamine-induced differentiation of NSCs is still unclear.

The participation of TRPC1 and TRPC3 in cell differentiation has also been observed af-
ter the knockdown of these channels in immortalized rat hippocampal cells (H19-7) derived
from E17 Holtzman rat embryos, where cell differentiation is blocked. Another channel
that is highly expressed in this cell type during proliferation and decreases dramatically
upon differentiation is TRPC7 [173]. This suggests that TRPC1 and TRPC3 could be related
to asymmetric division, while TRPC7 may be involved in the symmetric division of NSCs.

4.2. TRPVs

The TRPV family comprises six non-voltage-gated channel members named TRPV1
to TRPV6, which are further subdivided into the thermo-TRPV (TRPV1 to TRPV4) and
the Ca2+-selective-TRPV (TRPV5 and TRPV6) subtypes [174]. In mammals, these proteins
possess six ankyrins (Ank) repeat domains at the N-termini and a TRP-box in the C-termini.
It has been proposed that the Ank repeat, TRPV1, and TRPV4 harbor an ATP-binding site,
which might be important for channel activation and inactivation by CaM. Additionally,
the TRP-box domain is believed to facilitate channel inactivation, gating, and protein
tetramerization [175–177].

Mechanical stimulation, pH, and osmotic pressure changes are among the stimuli
involved in its activation. The physiological functions of these channels vary depending
on the TRPV subtype and the tissue in which they are expressed [178] (Figure 4). To our
knowledge, TRPV1, TRPV5, and TRPV6 do not participate in NSC proliferation or CNS
development, while TRPV2, TRPV3, and TRVP4 participate in these processes.

TRPV2 is a non-selective cation channel exhibiting Ca2+ permeability and highly
expressed in the brain, lung, and spleen, where it contributes to Ca2+ homeostasis and
macrophage activation [179]. It is activated by noxious heat (threshold of >52 ◦C), changes
in osmolarity and membrane stretch, and growth factors, the latter causing PI-3K-dependent
and -independent translocation to the plasma membrane [180,181].

Morgan and colleagues reported that ventral mesencephalic human NSCs exhibit high
expressions of TRPV2 and TRPV3, which decline as differentiation progresses. Moreover,
they suggested that these channels underline the mechanism for nearly all spontaneous
Ca2+ activity in both proliferating and differentiating cells [182]. However, Santoni and
collaborators found that the overexpression of TRPV2 in glioblastoma stem cells leads to
the upregulation of GFAP and β-III tubulin levels, promotes differentiation both in vitro
and in vivo, and reduces cell proliferation [183]. This suggests that the function of this
channel may vary depending on the cellular type and context.

Although no effect of TRPV4 has been reported in NSCs, an interesting aspect of this
channel is its association with the increased proliferation of oligodendrocyte progenitor
cells (OPCs). The stimulation of rat OPCs with a selective TRPV4 agonist, GSK1016790A,
induced a concentration-dependent increase in cell proliferation through Ca2+ influx
via a PKC-dependent pathway. This effect was prevented by the TRPV4-antagonist,
HC067047 [184].
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brown arrow) and can be activated by PKC (blue arrow) through GPCR DAG and Ca2+ release (black
arrows in the right). Yellow arrow = extracellular Ca2+ influence TRPV4 activity. Created using
BioRender.com.

4.3. TRPPs

TRPP is a family comprising two members: polycystin-1 (PC1) and polycystin-2
(PC2) [185]. The latter is closely related to TRPV1 and TRPV2, while PC1 is not considered
to be part of the TRP family due to its molecular structure [186]. However, both PC1 and
PC2 have been detected in the primary cilia of RGCs, where they appear to contribute
to the planar cell polarity of late RGCs [187]. PC2 is situated in the plasma and ER
membranes, where it interacts with TRPC1 and IP3R (Figure 5), thereby modulating
intracellular Ca2+ signaling, for example, by prolonging the half-time decay of the IP3-
induced Ca2+ transient [188–190].

Interestingly, these channels are expressed in mice at E12.5 in the developing cerebral
cortex [191]. The knockdown of the expression of PC1 or PC2 in E13.5 primary cerebral
cortical NSCs promotes an increase in proliferation and a decrease in neuron differentiation
through a mechanism in which the Notch and STAT3 signaling are enhanced. The above
is supported by the participation of this pathway in NSC self-renewal and blocking its
differentiation [192]. Furthermore, reducing STAT3 expression leads to higher IPC produc-
tion from NSCs [193]. Hence, it can be suggested that reducing PC1 and PC2 expression
promotes symmetric cell division. During CNS development, these two channels may
contribute to switching from symmetric to asymmetric NSC division and RGC transition to
IPCs and, consequently, neuron differentiation.
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5. Receptor Tyrosine Kinases

RTKs are cell surface receptors with intrinsic enzymatic activity regulated via ligand
binding. Their molecular structure consists of an N-terminal extracellular domain for
ligand recognition, a single transmembrane domain, and an intracellular kinase domain
followed by a largely C-terminal tail region, which generates regulatory signals [194].

Ligand-activated RTKs stimulate many cellular processes, including protein synthesis,
cell cycle progression, DNA synthesis, and cellular replication. Each RTK unleashes a
specific set of responses through ligand binding that leads to the cross-phosphorylation
of the RTK and the subsequent recruitment and activation of intracellular proteins, which
transmit their signal to a series of targets, such as cyclins, PKC, phosphatidylinositol-3-
kinase (PI-3K), GTPase, rat sarcoma virus/mitogen-activated protein kinase (Ras/MAPK),
phospholipase A2 (PLA2), and transcription factors [194].

Growth factors such as PDGF, EGF, bFGF, and IGF-I promote an increase in [Ca2+]c [195–198].
In contrast with GPCR activation, RTK stimulation induces a long-lasting Ca2+ elevation
that activates a specific pattern of genes, different from those regulated by the brief spikes
caused by the release of Ca2+ from the RE and SOCE.

Several transduction pathways can be activated downstream from RTKs, and it is
well established that these promote cell proliferation. However, the only pathway related
to Ca2+ dynamics is the one associated with PLCγ activation, which promotes IP3 and
DAG production (Figure 6). Recent studies suggest that PLCγ1 plays an important role in
CNS development through ligand–receptor activation. However, PLCγ1 has been linked
to neurite outgrowth, cell migration, axon guidance, and synaptic plasticity in vitro, and
there is limited evidence linking it to NSC proliferation [199–203].
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There is no doubt that RTK activation leads to NSC proliferation (Table 2). How-
ever, it is likely that ligand-binding activation may differentially affect cell division pat-
terns in a spatiotemporal manner for proper CNS development. Interestingly, the PLCγ1
pathway regulates the dynamics of the actin cytoskeleton through the production of
IP3 and DAG, which promote Ca2+ release from intracellular storage and Ca2+ influx,
respectively [204,205].

The regulation of actin-cytoskeleton allows neuronal cells to undergo morpholog-
ical changes during mitosis, cell polarity, neuronal processes extension, cell migration,
synapse formation, and axon pathfinding. Interestingly, changes in the length of the basal
processes of RGCs and the position of their cellular body occur during cell division, and
the dynamics of actin cytoskeleton for cell proliferation are related to transducing signals
from the cell surface to the nucleus, thereby regulating gene expression and cell cycle
progression. Furthermore, actin filaments are essential for forming the contractile ring
during cytokinesis and the regulation of cyclase-associated proteins that coordinate actin
polymerization and depolymerization, which influence cell cycle progression and cell
division patterns [9,206–208].

Despite differences in ligands, amino acid sequences, and structures, almost all RTKs
can activate the same signaling pathways, which affect cell proliferation. Cellular function
is likely to depend on receptor density, the coactivation of RTKs, and cross-talk with GPCRs,
which selectively influence gene expression and cell function.

BioRender.com


Int. J. Mol. Sci. 2024, 25, 4073 13 of 24

Table 2. RTKs that affect neural stem cell proliferation.

RTK Role Ligands/Agonists Antagonists

EGFR (ErbB)

Increases NSC proliferation,
migration, and survival in vivo and

in vitro [209–211].
Promotes oligodendrocyte

differentiation of NSCs in vivo
[198,212].

The knockout mice show the
atrophy of the anterior cerebral

cortex in vivo [213]

EGF, TGF-α [209],
Amphiregulin, Betacellulin,
Heparin-binding EGF-like

growth factor [214]
Epiregulin, Epigen [215],

Neuroregulins [211]

Cetuximab, Panitumumab [214],
Trastuzumab, Pertuzumab, ABX-EGF,

EMD-7200, h-R3, ICR-62, ZD1839 (Gefitinib
Iressa), OSI-774 (Erlotinib), Lapatinib

(GW572016, GW2016), EKB-569, AEE788,
BMS-599626, AZD 9291, Dacomitinib,

Afatinib, CO-1686, Neratinib, Canertinib,
AC-480, AZD 8931, AST 1306 [216]

FGFR1

Maintains the self-renewal of NSCs
[217]. NSC proliferation and

neurogenesis in the developing
cerebral cortex [169]

Its deletion, together with FGFR2
and FGFR3, leads to Foxg1-positive
precursors telencephalic cell death,

resulting in the loss of the basal
ganglia and cortex in vivo [218].

FGF-1, -2, -4, -6, -7, -8, -10,
-16, -17, -18, -22 [219]

Derazantinib (ARQ087, ASP5878,
AZD4547), Infigratinib (BGJ398),

Debio-1347, Dovitinib [220,221], Brivanib
(BMS-582664), BMS-540215, E-3810

(AL3810), NP603, LY2874455, Fisogatinib
(CH518328, Debio 1347, E7090),

Rogaratinib (BAY1163877), Futibatinib
(TAS-120), Pemigatinib (INCB054828),

Erdafitinib (JNJ-42756493) [221]

PDGFRα

The knocking down or blocking
antibodies of PDGFRα suppresses

the proliferation of NSCs and
increases the cell death rate [222].

PDGF-A, PDGF-B,
PDGF-AB, PDGF-C [223]

Dasatinib, Masitinib [224],
Axitinib [225],

Sorafenib, Pazopanib, Cediranib [225,226]
Imatinib,

Sunitinib, Nilotinib [224–226]

IGF-1R C

The knocking down of the receptor
reduces NSC proliferation, stunts
brain growth, and decreases the

neuronal number [227].

IGF-II, Insulin, IGF-I
(Somatomedin C) [228]

NVP-ADW742, α-IR3, JB-1 [229]
NVP-AEW541 [230],

MAB391, OSI-906 [231]

TrkB (Ntrk2)

Promotes NSC survival and
proliferation [232] in cortical

precursors in vivo and promotes
proliferation and enhanced

neurogenesis [233].

BDNF [232,233], NT-4, NT-3
[234], L-783,281 [235]

Amitriptyline,
7,8-Dihydroxyflavone,

Deoxygedunin,
Paecilomycine A [236]

Larotrectinib, Entrectinib,
Selitrectinib (LOXO-195), Altiratinib,
DS-6051b, Lestaurtinib, Merestinib,
MGCD516, PLX7486, ONO-5390556,

TPX-0005, Repotrectinib [237]

TrkC (Ntrk3)
Increases neuron differentiation

in vitro [238] and NSC proliferation
in vitro and in vivo [233].

NT-3 [234,238], L-783,281
[235]

Larotrectinib, Entrectinib, Selitrectinib
(LOXO-195), Repotrectinib, Altiratinib,

Crizotinib, DS-6051b, Lestaurtinib,
Merestinib, MGCD516, TSR-011,
ONO-5390556, TPX-0005 [237]

Ntrk2: Neurotrophic Receptor Tyrosine Kinase 2; Ntrk3: Neurotrophic Receptor Tyrosine Kinase 3.

6. Gap Junctions

Connexins are proteins with four transmembrane domains named based on their pre-
dicted molecular weight. These molecules form hemichannels composed of six connexins
which together form a connexon. The union between connexons in different cells forms a
gap junction, allowing the direct cytoplasmic exchange in low-weight molecules and ions
between adjacent cells [239]. In total, 20 and 21 types of connexins have been reported in
mice and humans, respectively [240]. In the developing cerebral cortex of mice (E14–E18),
Cx26, Cx36, Cx37, Cx43, and Cx45 are highly and differentially expressed [241].

In NSCs, connexins play several crucial roles, including cell–cell communication,
cell synchronization, cell cycle progression, and niche maintenance. Connexins expressed
during late corticogenesis in all cortical layers include Cx26 and Cx37, while those abundant
in the VZ are Cx36, Cx43, and Cx45 [241]. Therefore, the latter are likely to play an important
role in NSC proliferation. Moreover, their expression varies according to the phase of the
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cell cycle and developmental stage. The pharmacological blocking of connexins prevents
DNA synthesis in NSCs [23,242–245]. Notably, reducing Cx43 translation using short
hairpin technology decreases spontaneous Ca2+ activity and the rate of RGC proliferation,
thereby reducing NSC and IP pools [23,246].

Spontaneous Ca2+ activity during early corticogenesis (E15) in rats propagates in
clusters of RGCs within the VZ. As development progresses and neurons migrate, this
Ca2+ pattern decreases [247]. Ca2+ waves occur through gap junctions, initiated by ATP
binding to the GPCR subtype P2Y1, coupled to a Gαq/11 protein. This leads to the activation
of PLCγ, IP3 synthesis, and intracellular Ca2+ release due to IP3R activation in the ER
membrane [23,248,249].

As mentioned above, Cx43 is one of the most prominent connexins implicated in
NSC proliferation (Figure 7). Cx43 forms gap junction channels that directly connect the
cytoplasm of adjacent cells, essential for coordinating NSC proliferation within their niche.
The pharmacological blocking of gap junctions or knockdown Cx43 stunts the nuclear
migration of the S/G2-phase cells in the upper strata of the VZ, while the knockout of this
connexin disorganized the VZ/SVZ and promoted deficiencies in neuronal migration in
mice [245,250].

Furthermore, Cx43 facilitates the integration of environmental signals within the
NSC niche by allowing NSCs to communicate with each other and responding to growth
factors, neurotransmitters, and other cues influencing proliferation. Although Cx43 appears
particularly important for NSC proliferation, other connexins, such as Cx30 and Cx45, may
also contribute to cell–cell communication within NSC populations [251]. However, their
specific roles in regulating NSC proliferation are less characterized than Cx43.
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Figure 7. Radial glia cell cycle and conexin-43. (A) Scheme showing the level of expression of Cx43
during the cell cycle and gap junction. During the S Phase, Cx43 is highly expressed, and RGCs are
coupled; as the cell cycle progresses, Cx43 decreases its expression, and RGCs are less coupled, while
in the M phase, cells are uncoupled. (B) In the S phase, radial glia initiates Ca2+ waves by releasing
ATP, which binds to P2Y1 receptors in the membrane of adjacent cells, inducing IP3 Ca2+ release from
the endoplasmic reticulum (ER). Created using BioRender.com based on [23,242,252].

7. Conclusions

It is evident that NSC proliferation and [Ca2+]c levels are closely related. Therefore,
the regulation of cell proliferation and differentiation during brain development must
be finely tuned to ensure correct cytoarchitecture and function development. As devel-
opment progresses, molecules involved in Ca2+ dynamics exhibit changes in expression,
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impacting molecule–cell interactions and downstream signaling pathways in a temporally
and spatially different manner. Furthermore, studying NSCs in vivo and in vitro presents
challenges due to the diversity of NSC populations coexisting with progenitor-committed
and differentiated cells as development progresses.

By providing an overview of the role of Ca2+ signaling in NSC proliferation and
differentiation, we aim to deepen our understanding of the intricate relationship between
Ca2+ signaling and its dynamics in NSCs, particularly focusing on proliferation and dif-
ferentiation process. Through in-depth exploration of the role of RGCs and the impact of
Ca2+ fluctuations on cell cycle regulation, we underscore the complex mechanisms govern-
ing CNS development. By synthesizing findings from several studies, we emphasize the
significance of Ca2+ signaling pathways in orchestrating the fates of NCSs, with potential
implications for understanding neurodevelopmental processes and devising therapeutic
interventions for neurological disorders originating in fetal development. This review
underscores the expanding knowledge in this field and the importance of further research
to unravel the nuances of Ca2+-mediated signaling in NSC biology.
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