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Abstract: Alzheimer’s disease (AD), the most common neurodegenerative disease (NDD), is charac-
terized by chronic neuronal cell death through progressive loss of cognitive function. Amyloid beta
(Aβ) deposition, neuroinflammation, oxidative stress, and hyperphosphorylated tau proteins are
considered the hallmarks of AD pathology. Different therapeutic approaches approved by the Food
and Drug Administration can only target a single altered pathway instead of various mechanisms that
are involved in AD pathology, resulting in limited symptomatic relief and almost no effect in slowing
down the disease progression. Growing evidence on modulating the components of the endocannabi-
noid system (ECS) proclaimed their neuroprotective effects by reducing neurochemical alterations
and preventing cellular dysfunction. Recent studies on AD mouse models have reported that the
inhibitors of the fatty acid amide hydrolase (FAAH) and monoacylglycerol (MAGL), hydrolytic
enzymes for N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively,
might be promising candidates as therapeutical intervention. The FAAH and MAGL inhibitors
alone or in combination seem to produce neuroprotection by reversing cognitive deficits along with
Aβ-induced neuroinflammation, oxidative responses, and neuronal death, delaying AD progression.
Their exact signaling mechanisms need to be elucidated for understanding the brain intrinsic repair
mechanism. The aim of this review was to shed light on physiology and pathophysiology of AD and
to summarize the experimental data on neuroprotective roles of FAAH and MAGL inhibitors. In this
review, we have also included CB1R and CB2R modulators with their diverse roles to modulate ECS
mediated responses such as anti-nociceptive, anxiolytic, and anti-inflammatory actions in AD. Future
research would provide the directions in understanding the molecular mechanisms and development
of new therapeutic interventions for the treatment of AD.

Keywords: neurodegenerative diseases; Alzheimer’s disease; endocannabinoid system; fatty acid
amide hydrolase (FAAH); monoacylglycerol (MAGL); cannabinoid receptors (CB1R; CB2R)

1. Introduction

In neurodegenerative diseases (NDDs), progressive loss of neuronal structure and
function leads to cognitive disabilities such as dementia, neuronal death, and disruption in
the homeostasis of glia [1]. NDD may arise due to age, Alzheimer’s disease (AD), Parkin-
son’s disease (PD), or due to genetic mutations which impact central nervous system (CNS)
function: Huntington’s disease (HD) and early onset AD or PD. NDDs may predispose by
multiple key processes such as aggregation of misfolded proteins, which leads to neurofib-
rillary tangles and plaques, cytotoxicity of neuronal cells, inflammation in response to toxic
insults (e.g., protein aggregates), infection, traumatic injury, or autoimmunity [2].

The most considered process that is implicated in the CNS to protect the brain involves
the immune system (microglia and macrophages) and astrocytes to remove an injurious
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stimulus [3]. Other characteristics, such as altered cell signaling, abnormal cell–cell com-
munication, disrupted presynaptic input, disrupted intracellular signaling, and acquiring
senescence/cell death, contribute to the pathogenesis of NDDs. Involvement of different
systems and biochemical hallmarks exploit NDDs as multifactorial brain disorders. Med-
ication that are in use mostly target single dysregulated pathways instead of targeting
the multiple factors that seem responsible for NDDs, which also accounts for the lack of
effectiveness in medication in slowing down the disease progression [4].

In the last few decades, the endocannabinoid system (ECS) has emerged as one of the
potential molecular targets in the pathophysiology of NDDs, especially in AD to target
inflammation, oxidative stress, and apoptosis responses [5]. ECS is composed of three
components, i.e., (1) cannabinoid receptors (cannabinoid receptor 1-CB1R and cannabinoid
receptor 2-CB2R), (2) lipid molecules synthesized from lipid membrane precursors, called
endocannabinoids (eCBs), anandamide (AEA), and 2-arachidonoyl -glycerol (2-AG), and
(3) enzymes that hydrolyses AEA and 2-AG, i.e., fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase (MAGL). Several studies have focused on the relation between
the endocannabinoid system and AD pathology [6]. To understand the structural and
functional properties of this system, studies draw attention to elucidating the mechanisms
that are involved in physiology and pathophysiology. Based on a literature review, these
studies suggest that the modulation of ECS could compel this system back to normal
functions and regain cell homeostasis [4].

This review is intended to explain the functions of ECS and eventually will discuss
its physiology, pathophysiology, and later pharmaceutical interventions that have been
performed so far. Our aim is also to summarize several studies conducted on animal models
specifically focused on ECS to emphasize the pathophysiological conditions associated
with the ECS during the progression of AD.

Moreover, this review is also driven to highlight the FAAH and MAGL hydrolytic
enzyme inhibitors. These agents reduce amyloid beta (Aβ) protein deposition and inhibit
dopaminergic neuronal death. FAAH and MAGL inhibitors target inflammation and
anxiety in AD. Here, we did our best effort in summarizing the applications of FAAH and
MAGL inhibitors in AD as potential therapeutic interventions.

2. Physiology of the Endocannabinoid System

The brain works in different ways by using different complex systems and keeps
control over all biological functions. Most of the time, we divide those systems into the CNS
and peripheral nervous system (PNS). However, other systems also work in parallel, one
of the most pharmacologically important systems being ECS. This system has been gaining
attention in the last few decades due to its key role it plays in CNS disorders. ECS controls
and allows many biological events, such as learning, memory, emotional processing, sleep,
eating, temperature control, pain, inflammation, and immune responses [7]. However,
knowledge of the physiological function of the ECS is still in an emerging state and requires
complete explanation.

2.1. Components of Endocannabinoid System

eCBs, cannabinoid receptors (CBRs), and the enzymes responsible for their biosynthe-
sis and degradation constitute the ECS. Biological processes are controlled by endogenous
signaling molecules called eCBs (AEA and 2-AG). Two members of the G-protein-coupled
receptors family, CB1R and CB2R [8], are distributed with differential expressions in the
human body. CB1R are primarily found in the brain areas concerned with motor control,
cognition, emotional responses, motivated behavior, and homeostasis, where they control
the release of neurotransmitters at the presynaptic neurons. On the other hand, CB2R
is mainly located on peripheral organs, such as immune cells, monocytes, macrophages,
basophils, lymphocytes, and dendritic cells, and are involved in immunological responses,
control of inflammation, and other body defenses shown in Table 1.
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Table 1. Summarize the connection between eCBs and AD and effects on up/downregulation
on ECS.

Aspects Summary

eCBs and alzheimer’s no conclusive evidence that cannabis or eCBs can stop, reverse, or prevent dementia.

Behavioral symptoms some studies suggest eCBs may help manage agitation and aggression in dementia
patients. However, long-term effects are unclear.

Lab studies endocannabinoids appear to remove amyloid protein (Alzheimer’s hallmark) from
nerve cells in some lab studies.

Clinical trials no specific clinical trials on endocannabinoids in dementia patients.

ECS and CB1R ECS plays a role in neurotransmission and neuroimmune systems. CB1R are abundant
in the brain and hypothalamus, modulating endocrine axes.

ECS and CB2R CB2R are mainly expressed in immune cells.

effects of CB1R agonists may help manage symptoms such as agitation and anxiety in dementia.

Effects of eCBs antagonists antagonists can inhibit CB1R activation by endogenously released eCBs. They may also
act as inverse agonists, shifting CB1R activity from an active state to an inactive state.

Upregulated or downregulated

moderate activation of CB1R by selective agonists or eCBs may have acute beneficial
therapeutic actions, such as pain relief and anti-psychotic effects. Elevation of eCBs
levels by inhibiting degrading enzymes (such as FAAH and MAGL) can also be
beneficial.

Neuroprotective properties ECs may have neuroprotective properties, potentially reducing the risk of
neurodegenerative diseases associated with dementia.

2.2. Biosynthesis, Receptor’s Affinity, and Degradation

The eCBs are biosynthesized postsynaptically through a complex process after the
arrival of an appropriate stimuli (Figure 1); they are known as postsynaptic retrograde
mediators. The release of eCBs occurs immediately after the arrival of an adequate signal
at the synaptic space through a mechanism that is not clearly understood yet. However,
it seems that this mechanism is mediated by the action of endocannabinoid membrane
transporter (EMT), which is supported by different studies [9,10].

Most advancement in understanding of ECS was made in early 1990s by accessing
cannabis sativa extract’s endogenous target. After this study, two receptors were recog-
nized and differentiated, and later designated as CB1R and CB2R. They are involved in
physiological activity of ECS, though eCBs have different affinities and efficacies for these
receptors. AEA has more affinity for the CB1R, with the fact that AEA is a partial agonist
on CB1R and inactive on CB2R [11]. On the contrary, 2-AG has the same affinities for
both CB1R and CB2R and acts as a full agonist on both. Few others non-CB receptors
and ion channels are also identified that respond to high level of eCBs, but certainly to
AEA. Interestingly, both AEA and 2-AG have been reported to interact with various other
receptors as well [12].

eCBs are strictly interrelated to their reuptake by the presynaptic and postsynaptic
cells and after their physiological activities on respective CBRs. Endocannabinoids are
quickly degraded by enzymatic hydrolysis after their physiological activity on respective
cannabinoid receptors [13].

The degradation of anandamide (AEA) is carried out by the integral membrane pro-
tein fatty acid amide hydrolase (FAAH), which breaks it down into free arachidonic acid
and ethanolamine. 2-AG is primarily hydrolyzed by three enzymes in the α/β hydrolase
superfamily—monoacylglycerol lipase (MAGL) and α/β-hydrolase domain-containing 6
(ABHD6) and 12 (ABHD12)—into arachidonic acid and glycerol [14]. MAGL is well charac-
terized for its structure and function, while ABHD6 and ABHD12 remain less understood
at the molecular level. In addition to enzymatic degradation, endocannabinoids can be de-
graded by oxidation through cyclooxygenase-2 and several lipoxygenase pathways [15,16].
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Binding of ECS’s to endocannabinoid receptor results in intracellular cascade events through ion 
channel modulation. (4) Modulation of ion channels further ceases the release of neurotransmitters. 

Figure 1. ECS retrograde signaling diagram described by using points. (1) Neurotransmitter stim-
ulation derives ECS synthesis in postsynaptic cells. (2) ECS’s binding to CB1R on presynaptic cell.
(3) Binding of ECS’s to endocannabinoid receptor results in intracellular cascade events through ion
channel modulation. (4) Modulation of ion channels further ceases the release of neurotransmitters.
(5) Neurotransmitter concentration in synaptic cleft affects neurotransmission in postsynaptic cell.
(6) 2-AG degraded by MAGL to arachidonic acid (AA) and glycerol, while AEA metabolized in
postsynaptic cell by FAAH and broken down into AA and ethanolamine (ETA). (7) Microglial CB2R
interacts with 2-AG and starts immune responses. (8) Astrocytes of CB1R interact with AEA and start
related effects.

As far as the termination of endocannabinoid signaling is concerned, a two-step
process includes (1) transport into cells and (2) hydrolysis by two specific enzymatic
systems. Both steps are rate limiting in terms of exerting a precise control over eCBs levels in
tissues and rapid elimination of these signaling molecules on unnecessary conditions. eCBs
uptakes are carried out by a transporter system, which is widely distributed throughout
the brain, like other lipid carriers but facilitated by energy-independent manner [17].

2.3. ECS Retrograde Signaling

ECS functions as a lipid signaling system by the activation of endogenous small
molecules—eCBs, AEA, and 2-AG function as ligands for CBRs. Normally, eCBs release in
response to excitation, inhibition, or initiation of second messenger cascades by indirect
effects on the glutamatergic, GABAergic, and dopaminergic systems [18]. Local excitation
is mediated by retrograde signaling based on the interaction between the transmitter and
receptor and release of AEA and 2-AG into the extracellular space, followed by binding
with receptors localized to the presynaptic membrane [6]. Activation of CB1R in the
presynapse blocks signaling of neurotransmitter release through the suppression of Ca2+

influx via inhibiting voltage gated Ca2+ channels or by inhibiting the cAMP/PKA pathway,
which inhibits adenylyl cyclase. AEA has high affinity, functions as a partial agonist at
CB1R, and has low affinity for CB2R, diffusing into the synaptic cleft. AEA activates
CB1R and other non-CBRs, such as transient receptor potential cation channel subfamily V
member 1 (TRPV1) as a full agonist that exhibits its significant role in synaptic transmission
and pain regulation [19]. Moreover, AEA is also synthesized in the presynapse, and it is
not clear whether AEA engages in anterograde signaling or not. Conversely, 2-AG acts
as a full agonist on both CBRs (CB1R and CB2R) with moderate-to-low binding affinity.
However, the interaction of 2-AG with non-CBRs has emerged recently and needs more
research to expose their interactions. 2-AG is also identified to activate CB1R receptors in
astrocytes [20].
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The distinctive functions of eCBs seem to be a strong rationale for investigating them
as therapeutic targets for NDD, including AD [21]. However, extensive research is needed
to uncover the underlying mechanistic signaling pathways related to pathophysiology
and cognitive decline concerned with AD, as few of them highlighted in Table 1. There-
fore, a precise understanding of all the components of the ECS is necessary to unveil the
pathophysiology of AD, for drug development, particularly to avoid neurotoxicity in all
degenerated diseases. However, further investigation in this direction could improve the ex-
act approach towards molecular mechanisms and development of applicable interventions
for the treatment of AD, which remains a crucial unmet need.

3. Prospective Pathophysiology of the Endocannabinoid System (ECS)

Molecular and biochemical studies have greatly contributed to understanding the
molecular mechanism that worked inside ECS during NDD pathophysiology [22]. Dys-
regulation at cellular level hinders the normal brain functions. However, the study of
each component at a molecular level is another limitation in therapeutic regimens finding
the effective prevention or halting of the neurodegeneration and repair processes [23].
Remarkable potential mechanisms and factors are responsible in the pathophysiology of
AD, but are still beyond our understanding, which is the main reason for the complexity
of the ECS and interconnected receptor-mediated networks [24,25]. The current findings
are described in Figure 2 below, with molecular mechanisms across the synapses and the
involvement of microglial and astrocyte’s CB2R and CB1R receptors, respectively. Our
hypothesis is that targeting and involving the ECS in AD may be beneficial, although there
are other factors, systems, and mechanisms that are not yet fully understood.
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of AEA and 2-AG in synaptic cleft stimulates CB1R and CB2R on presynaptic neurons that further
inhibit the release of neurotransmitters, such as glutamate and GABA, and cause synaptic dysfunction.
Aβ is considered the most causative agent of AD because of its action in microglia and astrocyte
activation, which lead to neuronal damage through glutamate-mediated excitotoxicity. Aβ enhances
the influx of calcium ions through postsynaptic NMDA receptors or pore-like structure; it also inhibits
AChE and increases the Ach level in the synaptic cleft, which further increases postsynaptic calcium
influx. This results in downstream signaling pathways related to neuronal excitotoxicity (decrease
glutamate). Ethylamine (EtNH2), N-acyl phosphatidylethanolamine phospholipase D (NAPE-PDL),
Phosphatidylinositol bisphosphate.

3.1. Functioning of Endocannabinoid Receptors (CBRs)

eCBs bind to CBRs to fulfil cellular demands. These receptors (CB1R and CB2R)
perform a crucial role in ECS signaling pathways after activation with eCBs. They are G
protein-coupled receptors (GPCRs), CB1R and CB2R, which interact with cellular functions,
engaged with other receptors such as Transient receptor potential cation channel subfamily
V member 1 (TRPV1), isolated from murine astrocytes. Another GPCR receptor—found in
vascular endothelial cells that mediate local vasodilation effect of AEA; G protein-coupled
receptor 119 (GPR119)—mediates some of the analgesic and anti-inflammatory effects of
palmitoylethanolamide (PEA), transient receptors potential channels such as vanilloid
TRPV1 receptor and Peroxisome proliferator-activated receptor alpha (PPARα) [26]. The
composition of CBRs are integral membrane proteins and have a characteristic structure
consisting of seven hydrophobic transmembrane domains [27].

These GPCRs are expressed at very high levels in the brain with higher protein ex-
pression levels than any other GPC receptors, N-methyl D-aspartate receptor (NMDA),
or γ-aminobutyric acid type A (GABA-A) receptor [28]. CB1R is found in many different
brain regions in different neuronal subpopulations and is involved in learning and memory
processes [29]. Generally, they expressed presynaptically, although evidence of their pres-
ence at the somatodendritic has also been verified by different studies [30]. Moreover, CBRs
are also found in peripheral tissues, including the gastrointestinal tract, reproductive tract,
immune system, arteries, heart, lungs, sympathetic ganglia, and endocrine glands [31].

3.2. Controversial Reviews about the Neuroprotective Roles of CB1R and CB2R

CB1R are highly documented in the hippocampus and cortex regions, correlating their
effects with eCBs in learning and memory processes, even though the role of CB1R in
AD pathophysiology is still under discussion. In mice hippocampus, declining in CB1Rs
with a rapid decline of cognitive function have noticed with the loss of neurons [32–34].
Some other studies showed that CB1R levels do not change in AD while suggesting their
important roles in preserving cognitive functions as well [35–38]. Excitingly, CB1R together
with CB2R was found with Aβ plaques in postmortem brain tissues from individuals with
AD [33,39]. Several findings showed mixed results of the above investigation, and no clear
evidence exists. Studies that endorse CB1R as a potential target for AD treatment still
demand further investigation [40,41].

Moreover, other findings related to AD noted a parallel overexpression of eCBs and
CB1R together [42,43]. Different studies at gene level suggest that gene expression and
protein-targeted approaches have exhibited ECS components in hippocampus region,
based on mouse model studies [44–46]. As the dorsal region of hippocampus is involved in
memory-related functions, different expressions of CB1R have been reported in different
neuronal regions, such as downregulation in glutamatergic neurons and overexpression in
GABAergic neurons [47]. Furthermore, very few studies related to CB1R gene have been
documented that show dysregulation of CB1R encoding gene CNR1-cannabinoid receptor 1
gene [48]. At gene level, no extensive research has been performed so far. However, under-
standing the complex regulation of CNR1 gene could suggest new therapeutic interventions
where CB1R could be a promising target at cellular level. However, CB1R is known to
have a complex expression pattern, being localized in several brain cell types (neuron/glial
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cells) and subcellular compartments that exhibit extremely differing behavioral functions
through the activation of multiple and/or selective signaling pathways.

Activation of CB1R generally leads to hyperpolarization of neuronal membranes and
stimulation of different intracellular signaling cascades [49]. CB1R mainly modulates the
release of neurotransmitters, such as serotonin, glutamate, dopamine, noradrenaline, and
γ-aminobutyric acid (GABA) [50]. Neuronal cells expressing CB1R are mostly GABAergic
neurons and relate to the cholecystokinin positive and parvalbumin negative type of
interneurons. Animal studies with induced ischemic brain injury have shown that CB1R
agonists display a positive response towards neuroprotection by a reduction in glial cell
damage [51].

CB2R were primarily found on endocrine immune cells and peripheral organs. On
this basis, they were considered as peripheral CBR. Later, their overexpression has been
noticed up to 100-fold in inflammatory processes, after tissue injuries, brain trauma, and
peripheral tissue injuries, and through disrupted homeostasis [52]. CB2R has also been
found on astrocytes, brainstem, and microglia under stress conditions, but not on resting
microglia [53]. In activated microglia, CB2R induced anti-inflammatory cytokines though
proinflammatory cytokines. This shows that immune response of CB2R plays a significant
role as a key regulator in the immune system. During neuroprotection, similar responses
of microglia and brain infiltrated immune cells reduce the neuroinflammation, oxidative
stress, cellular apoptosis, and toxic neural excitability in AD [54].

Nevertheless, recent findings also suggest that CB1R helps regulate the immune
system in AD models or traumatic brain injury. Moreover, high levels of eCBs (AEA,
2-AG) in the brain by inhibiting hydrolytic enzymes FAAH and MAGL are still a successful
therapeutic option for controlling the immune response in AD and others brain disorders.
Understanding AEA and 2-AG participation in relieving the symptoms of neurological
diseases has become an important topic to establish new treatments.

3.3. Alteration in Endocannabinoid’s Expression and Involvement of FAAH and MAGL in AD

eCBs (AEA and 2-AG) exert their biological effects by binding them to receptors.
The consecutive action of Ca2+-dependent and/or Ca2+-independent N-acyltransferase
monitored by N-acyl-phosphatidylethanolamine specific phospholipase D seems to be the
most appropriate biosynthetic pathway of AEA. 2-AG biosynthesis is regulated by either
a signaling pathway of phosphatidylinositol-4,5-diphosphate or the metabolic pathway
that involves triglycerides containing sn2-arachidonic esters. As these two eCBs are biosyn-
thesized by different pathways, their concerning attributions are also different [55]. An
increase in the AEA level is associated with improvements om decision-making ability
and cognitive flexibility, while an increase in the 2-AG level is related to the destruction of
cognitive flexibility and inhibitory response ability [55,56].

Some preclinical data have enlightened valuable effects of endocannabinoids in re-
ducing certain neuropathological features relevant to AD. Research on animal models of
AD demonstrated Aβ-induced hippocampal degeneration and cognitive decline result
with a concomitant increase of 2-AG activity [57,58]. It has been concluded from different
studies that endocannabinoids expression alteration may be enhanced in the AD brain
as a protective mechanism against Aβ-induced damage [59–61]. Several studies support
neuroprotective attributes of the ECS in response to wide range of neurodegeneration.
Though none of these therapies in AD patients have exhibited any curative or lasting
effects.These underlying pathologies are the target of many current therapies for AD [62].

Moreover, eCB-induced neuroprotection in response to excitotoxicity has widely been
proved by various research studies and considered therapeutically beneficial for achieving
different mechanisms, e.g., inhibiting glutamate release from presynaptic neurons, inhi-
bition of Ca2+ release, and blockage of voltage-dependent N–, P/Q–, and L-type calcium
channels [63,64]. Early inhibition of eCBs inactivation was found to reduce loss of memory
retention, neuronal death, and Aβ-induced gliosis [65,66]. For eCBs inactivation, enzymes
FAAH and MAGL hydrolysis the AEA and 2-AG, respectively. Because of different facts
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and findings, eCBs pathways are widely believed to be involved AD and FAAH has a major
role in AD pathology and cognitive aspects [67,68].

FAAH and MAGL both belong to the serine hydrolase family, in which FAAH ex-
tensively distributed throughout the body with high concentrations in the brain and
liver [14,69] degrades many fatty acid amides, including acylethanolamides such as anan-
damide and sleep factor oleamide. Although FAAH can inactivate 2-AG, the main enzyme
responsible for the inactivation of 2-AG is MAGL. This enzyme is distributed in specific
neuronal terminals in the brain. Besides the ground facts of hydrolytic actions of FAAH
and MAGL on eCBs in ECS, their potential therapeutic applications in many CNS disorders,
cancers, and neuroinflammatory diseases, many irretrievable/retrievable inhibitors have
been used to explain their different selectivity.

The FAAH enzyme is mostly located in pyramidal cells of the cerebral cortex, hip-
pocampus, and olfactory bulb [70]. This enzyme strictly controls the duration of AEA
effects but to some extent also limits 2-AG activity. However, studies have revealed that
MAGL mediates 85% of total hydrolyzation of 2-AG in the brain [71]. If we compare
both these enzymes at a cellular level, FAAH is primarily a postsynaptic enzyme, whereas
MAGL is a presynaptic inhibitor. Specific localization of both enzymes (FAAH and MAGL)
also suggests that AEA and 2-AG signaling may subserve functional roles that are involved
in spatial segregation [12].

3.4. Correlation between CB2R and FAAH

Based on a literature review and ongoing studies, a relationship exists between CB2R
and FAAH in AD pathology [72]. Overexpression of CB2R and FAAH enzyme have been
revealed in postmortem report of AD patient, enriched with Aβ neuritic plaque [69]. In-
creased FAAH activity is associated with inflammatory processes with an increase in the
arachidonic acid (AA) level, the precursor of proinflammatory molecules. Therefore, in-
creased hydrolysis of AEA in astrocytes results in increased release of AA, which further
results in an inflammatory response. Consequently, FAAH inhibitors modulate the signal-
ing of ECS and several biological responses associated with pain relief, anti-inflammatory
response, and neuroprotection by acting on CB1R and CB2R [66,73]. FAAH-induced in-
flammation is a key problem in NDD and particularly in AD. In an in vitro experiment,
knockdown of FAAH suppressed prostaglandin E2 production and pro-inflammatory gene
expression. Similar results have been seen with FAAH inhibitors [74,75]. Functions of
FAAH inhibitors such as the regulation of lipid metabolism and anti-inflammation have
been reported in animal studies. In addition, combined effects of FAAH/MAGL inhibitors
have remained a topic of interest. However, inhibition of either FAAH or MAGL enzymes
has remained unable to induce a full spectrum of actions.

In AD, disrupted FAAH catalytic hydrolysis of eCBs significantly affects many physio-
logical processes, such as neuronal protection, memory retention, cognition, pain modula-
tion, and immune functions. Different studies have documented the major involvement of
FAAH in neurodegeneration and impacts on cognitive functions. This might be considered
as one of the prime targets for formulating the drug therapy for neurodegenerative diseases
such as AD. Inhibition of FAAH can improve neuronal transmission, allow regulation of
eCBs, and/or counteract neuroinflammation via CB1R and CB2R. Besides, it is thought
that some of the pharmacological effects of dual FAAH/MAGL inhibitors are stronger than
the complete inhibition of either FAAH or MAGL [76,77].

There are several evident studies that support the correlation in CB2R and inhibitory
effects of FAAH and MAGL enzymes in AD pathogenesis. Increased FAAH activity
is associated with inflammatory processes by increase in the level of AA, which is the
precursor for proinflammatory molecules. Therefore, an increase in the hydrolysis of AEA
in astrocyte cells results in high levels of AA and inflammation. Many studies reveal that
systemic administration of these MAGL/FAAH inhibitors may have therapeutic impact of
memory as shown in a rodent AD model [69,78].
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4. Pharmacological Interventions for ECS in Alzheimer’s Disease

ECS components are well studied in favor of their ubiquitous distribution and dif-
ferential expression in human body and CNS. This section of the review will focus on
potential therapeutic targets for ECS components (Figure 3), as well as limitations in current
treatments for AD. To date, the available treatments are only effective in the early stages of
the disease as the etiology of AD has not been fully revealed [79]. Further investigation
into the pathological mechanisms related to genes encoding CB1R and CB2R, eCBs, and
metabolic enzymes involved in their synthesis and catabolism would be essential for the
development of effective and safe drugs for AD.
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Several studies have examined gene expression in brain regions affected by AD, such
as the hippocampus, entorhinal cortex, frontal cortex, and temporal cortex, and have found
that the GABAergic synapse pathway and retrograde endocannabinoid signaling pathways
are thought to be involved in the altered physiological function of these regions, apart
from the relatively less sensitive cerebellum [80–83]. Such studies have revealed that the
GABAergic synaptic pathway, inflammatory pathways, and the retrograde endocannabi-
noid signaling pathways are considered or seemed to be involved in the alteration of
normal physiological function of brain region in all AD-affected individuals, except the
cerebellum, which is less sensitive to the effects of AD.

Furthermore, among these studies, one study has predicted three miRNAs as potential
candidates targeting these genes: hsa-mir-17-5p, hsa-mir-106a-5p, and hsa-mir-373-3p [84].
Moreover, three transcription factors (TFs) were also identified as the potential upstream
regulators of the robust differentially expressed genes (DEGs) in these brain regions; ELK-1,
GATA1, and GATA2. No further research has been conducted under this scope for potential
application of these miRNAs and TFs as therapeutic and diagnostic targets [85]. Another
potential target site for AD treatment needs to be considered are TRPV channels/receptors
that reduce cortex and hippocampus in AD mouse model and AD patients. TRPV1/TRPV2
have shown involvement with microglia for Aβ phagocytosis and anti-inflammatory
effects in in vivo and in vitro studies [85,86]. Different approaches focused on mouse
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primary neuron and microglia cultures. Human datasets and AD mouse models have
emphasized the correlation of TRPV1/TRPV2 expression and the ability of microglial Aβ

phagocytosis [86]. Cannabidiol (CBD), the most well-known compound acting on CBRs and
non-CBRs, has diverse effects on signaling pathway that interlinks microglial phagocytotic
activity with TRPV2 activation. Furthermore, TRPV2 mediates PDK1/Akt-dependent
phagocytosis and increased mRNA expression of phagocytosis related receptors, crucial
for autophagy [87]. Moreover, CBD effectively reduces neuroinflammation by improving
mitochondrial function and ATP production via TRPV2 activation [88]. Therefore, TRPV2
and other TRP channels/receptors, along with TREM2 and TREM1, could also be potential
therapeutic targets in AD. CBD and other phytocannabinoids can be promising drug
candidates in AD (see Table 2), though more analyses are needed.

Table 2. Overview of different compounds (with therapeutic effects) acting as endocannabinoids
modulators, allosteric modulator, cannabinoids receptors agonists, antagonists, and mixed agonists.

AEA and 2-AG
Modulators

CB1R Specific
Agonists

CB1R Specific
Antagonists

Allosteric
Modulators of

CB1R
CB2R Specific Agonists CB2R Specific

Antagonists
Mixed Receptors

Agonist

URB597
(symptoms of
schizophrenia)

ACEA
(anti-inflammatory)

Rimonabant
(SR141716)

(obesity, type 2
diabetes,

dyslipidemia)

Org27569-positive
allosteric modulator

(PAM)

JWH-133
(reduction in
inflammatory
components)

SR144528
(anti-

nociceptive)

THC
(inflammatory pain,
metabolic syndrome,

obesity))

PF-04457845
(osteoarthritic pain)

ACPA
(anti-inflammatory)

AM-251
(decrease

excitotoxicity)

Pepcan-12-negative
allosteric modulator

(NAMs)

JWH-051
(relative lack of

psychotropic effects
compared to CB1R

agonist)

AM-630
(pain)

CBD
(neuroinflammatory

diseases, chronic
and inflammatory

pain)

JZL184
(anti-nociceptive)

Methanandamide
(neuroprotection)

AM-281
(neuroprotection) PM-226 WIN-55, 212–2

JZL195
(anti-nociceptive)

O-1812
(Neuroprotection)

Taranabant
(MK-0364) HU-308

Nabilone
(prevent memory

loss)

JD5037-peripheral
CB1R inverse

agonist
(neither affects

behavioral
responses mediated

by CB1Rs in the
brain)

GW-405833
(pain) JWH-018

AM4113 L-759, 633
HU-210

(anti-inflammatory,
anti-psychotic)

LH-21 L-759, 656 CP-55, 940
(anti-emetic)

PIMSR

O-1966
AM1241
Xie2–64
AM1710
JHW015

(specific CB2R agonists
in CNS disorder)

MDA7

Briefly, considering CB1R and CB2R as potential target sites for AD treatment was
discussed earlier. We have found distinct and conflicting literature analysis in which CB1R
expression either reduced in cortex and hippocampus regions or remain unaffected [89].
Few studies reveal that CB1R expression reduce in hippocampal and Para hippocampal
areas with AD progression, while a defensive role of CB2R against neuroinflammation
has been noticed due to their upregulation in microglial cells in animal models [6,90,91].
However, several research findings either support or deny CB1R involvement in AD and
claim CB1R expression remains unaffected even disease progress. Nevertheless, confus-
ingly, the activation of CB1R is associated with adverse effects on the CNS, and this has
limited the use of candidate drugs that bind with CB1R [41,45]. The psychoactive adverse
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effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R
ligands as drugs [92–94]. However, the discovery of CB1R allosteric modulators in the last
decade has provided new tools to target the CB1R [6,95].

CB1R is associated with adverse effects including anxiety, depression, and even sui-
cidal attempts, and hence, the search for new therapeutic targets with minimal adverse
effects is of interest. Modulation of neuroprotection by CB2R makes it a favorable topic
of consideration as a potential therapeutic substrate in AD therapy [96–99]. In a normal
brain, the expression of CB1R is more than CB2R. During AD, CB2R expression is upreg-
ulated that exhibits either a recovery phase or to oppose activated immunopathological
conditions [100–102]. Predominantly, CB2R and CB1R work in contrasting conditions to
regulate neuronal firing and neurotransmitter release. Studies have revealed that can-
didate drugs specifically acting on CB2R probably offer a novel therapeutic strategy for
treating neuropsychiatric and neurological diseases without emergence of the adverse
effects of CB1R [103,104]. CB2R activation results in the reduction of inflammation in
response to neurotoxic and pro-inflammatory mediators by reactive astrocytes and mi-
croglial cells, modulate Aβ aberrant processing and stimulating microglial proliferation
and migration [53,54,105]. Different compounds have been studied including CBD that
have drawn attention to counteract Aβ-induced insults through reduction in oxidative
stress, tau phosphorylation, and expression of inducible nitric oxide synthase [106–108].

The use of hydrolase inhibitors has been mentioned as a new drug strategy with a
strong potential for treating CNS disorders [109,110]. The direct stimulation of a receptor
by eCBs’ agonist or antagonist directly increases the content of eCBs. This makes the
action of the agonist or antagonist on the receptor less robust than indirect stimulation
and causes this strategy to be less prone to side effects. Therefore, inhibitors of FAAH
and MAGL indirectly increase the excitability of the ECS by reducing the hydrolysis of
endocannabinoids. Several FAAH and MAGL inhibitors have been assessed in preclinical
studies, as shown in Figure 4. and summarized in Table 3.
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Table 3. Therapeutic effects of FAAH and MAGL compounds inhibiting endocannabinoid degrada-
tion based on preclinical studies (IC50: 50% inhibitory concentration; h: human; r: rat; m: mouse;
data are provided as mean, mean ± standard deviation).

Class Compounds IC50 (nM) Therapeutic Effects References

FAAH inhibitor
(irreversible

covalent)

URB597
33.5 (h)
3.8 (r)
45 (m)

(i) increase in endocannabinoid
anandamide,
(ii) suppressed glutamate
Aβ42-induced toxicity
(iii) stimulate mitochondrial
membrane potential
(iv) reduction in interleukin (IL)-1β
(v) tumor necrosis factor-α (TNFα)
expression
(vi) neuropathic pain

[111,112]

URB937 26.8 ± 4.9 (r)

(i) increase in endocannabinoid
anandamide,
(ii) inflammatory pain
(iii) neuropathic pain

[113]

AM374 13 (r) (i) increase in endocannabinoid
anandamide [114]

AM3506 2.8 ± 0.3 (r) (i) hypertension
(ii) posttraumatic stress disorder [115]

PF-3845 18 (h)

(i) inflammatory pain
(ii) traumatic brain injury
(iii) neuropathic pain
(iv) visceral pain
(v) anxiety-related disorders

[116]

PF-04457845 (PF-7845)
7.2–50.4 (h)
7.4–43.1 (r)

2.5 (m)

(i) analgesic and anxiolytic effects
(ii) 25-fold higher than URB597 for
high in vivo efficacy
(iii) long duration of action for
inflammatory pain
(iv) very well tolerated in healthy
subjects

[117]

PF-750 16.2-595
(i) analgesic,
(ii) anti-inflammatory,
(iii) anti-depressant

[114,118]

LY2183240
37.3 ± 5.4 (h)

2.1 (r)
12.4 (m)

(i) analgesic [118–120]

MAFP
0.33 ± 0.07 (h)

2.5 (m)
1–3 (r, m)

[121–123]

SA-57 1.9 (h)
3.2 (m) [124,125]

FAAH inhibitor
(reversible binding)

OL-135 206 (h)
2.1 (m)

(i) neuropathic pain
(ii) inflammatory pain
(iii) visceral pain

[114,122,126]

OL-92 0.28 (m) [127]

MK-4409 11 (h)
11 (r) (i) neuropathic pain [110,128,129]

ST4070 9 (m) [130]

FAAH inhibitors
(slowly reversible binding) JZP-327A 11 (h) [73,131]

FAAH inhibitor
(partial reversible binding) JNJ-1661010 33 ± 2.1 (h)

34 ± 6.5 (r)
(i) neuropathic pain
(ii) inflammatory pain [132,133]

FAAH inhibitor
(partial irreversible

inhibitor)
JNJ-42165279 313 ± 28 (r) (i) analgesic and anxiolytic effects [114,134]
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Table 3. Cont.

Class Compounds IC50 (nM) Therapeutic Effects References

FAAH inhibitor
(reversibility not available) URB880 0.63 ± 0.04 (r) (i) analgesic

(ii) anti-depressant [135]

irreversible binding
with MAGL

N-arachidonoyl
maleimide

2180 ± 620 (h)
>10,000 (r)

(i) reducing neuroinflammation
(ii) improving synaptic plasticity
(iii) spatial learning
(iv) memory in AD animals

[136,137]

Disulfiram 360 (h)
(surrogate substrate assay)

(i) reducing neuroinflammation
(ii) improving synaptic plasticity
(iii) spatial learning
(iv) memory in AD animals

[138]

SAR-629 0.9 (h)
0.22 (m)

(i) reducing neuroinflammation
(ii) improving synaptic plasticity
(iii) spatial learning
(iv) memory in AD animals

[139]

JJKK-006 0.6 (h)

(i) reducing neuroinflammation
(ii) improving synaptic plasticity
(iii) spatial learning
(iv) memory in AD animals

[140]

JJKK-048
0.363 (h)
0.214 (r)

0.275 (m)

(i) reducing neuroinflammation
(ii) improving synaptic plasticity
(iii) spatial learning
(iv) memory in AD animals

[140,141]

ML-30 0.54 (h)
4.4 (r)

1.9 (m)

(i) reducing neuroinflammation
(ii) improving synaptic plasticity
(iii) spatial learning
(iv) memory in AD animals

[139,140]

KML-29 5.9 (h)
43 (r)

15 (m)

(i) reducing neuroinflammation
(ii) improving synaptic plasticity
(iii) spatial learning
(iv) memory in AD animals

[141]

JZL-184
3.9 (h)
262 (r)
10 (m)

(i) decrease in proinflammatory
reactions of microglia and astrocytes.
(ii) reduced total Aβ burden and its
precursors

[142,143]

JW642
4.7 (h)
14 (r)

7.6 (m)

(i) anti-hyperalgesia
(ii) anti-anxiety/depression [142]

reversible inhibitor of
MAGL JZP-361 46 (h) (i) alleviate pain and inflammation [142]

slowly reversible with
MAGL AM6701 1.2 ± 0.35 (h)

1.7 (r)

(i) neurodegenerative cascade,
Behavioral deficits linked to Seizure’s
damage

[144,145]

partially reversible
binding with MAGL URB-602 360 (h)

28,000 (r)
(i) anti-nociceptive, anxiolytic,
anti-inflammatory [146]

MAGL/FAAH dual
inhibitor JZL-195

4 (hMAGL)
2 (hFAAH)

19 (mMAGL)
13 (mFAAH)

(i) enhanced brain levels of
anandamide and 2-AG
(ii) anti-allodynic effects

[139,142,147]

irreversible inhibitor of
both MAGL and FAAH

enzymes
CAY10499 76 (h)

86 (r)
(i) anti-inflammatory
(ii) neuroprotective [147]

Note: FAAH and MAGL inhibitors are differentiated with one another based on their IC50 values which show the
potency of inhibition. The above lists under respective categories show their therapeutic effects that have been
documented in different studies related to AD.

More satisfactory results in mouse models exhibited that CBD and THC, when used in
combination, their efficacy is synergized. Certainly, these studies propose that modulation
of the endocannabinoid system could be an effective treatment strategy in AD.
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5. Conclusions

We comprehensively reviewed physiological and pathological conditions of ECS and
summarized the compounds under two hydrolysis enzymes that are considered the most
effective therapeutics for treating AD by utilizing endocannabinoid system. In this review,
we also highlighted different aspects regarding CB1R and CB2R controversial neuroprotec-
tive roles based on different conducted studies and this area needs more research to clearly
understand their involvement in AD. We briefly talked about different channels and related
receptors because literature surveys show limited studies on these aspects. Moreover, very
little research studies are conducted on miRNA and gene expression studies; GABAergic
synapse pathway and the retrograde endocannabinoid signaling pathways also demand
more precise research.

We tried our best in this review particularly to collect FAAH/MAGL inhibitors and
other possible therapeutics, such as endocannabinoids modulators, allosteric modula-
tor, cannabinoids receptors agonists, antagonists, and mixed agonists. FAAH/MAGL in-
hibitor’s applications relating to learning and memory, neuropathic pain, anti-inflammatory,
analgesic, improving synaptic plasticity, depression, anxiety, and other processes have been
evaluated. Despite the above provided studies and the literature review, limited evidence
supports the clinical implementation of the inhibitors in AD, and furthermore, compre-
hensive studies should be conducted to unveil the benefits of the potential therapeutics
listed above.

After all exceeding summaries, we came to the point that pathophysiological investiga-
tions are much needed to understand the AD as well as neurological diseases mechanistic
pathways, since MAGL is involved with peripheral inflammation according to many stud-
ies and only few studies have been devoted to them, those have therapeutic potential
for the treatment of AD. Similar views have been associated with FAAH/MAGL dual
inhibitors, the lack of existing data in animal behavior studies and experimentations gives
rise to further questions that need to be solved. Compounds other than FAAH/MAGL
inhibitors should be considered in future studies with pharmacological efficacy to alleviate
the underlying AD pathophysiology. Moreover, comparative studies could lead to the
intervention of new therapy regimens.
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92. Hryhorowicz, S.; Kaczmarek-Ryś, M.; Andrzejewska, A.; Staszak, K.; Hryhorowicz, M.; Korcz, A.; Słomski, R. Allosteric

modulation of cannabinoid receptor 1—Current challenges and future opportunities. Int. J. Mol. Sci. 2019, 20, 5874. [CrossRef]
[PubMed]

93. Nguyen, T.; Li, J.X.; Thomas, B.F.; Wiley, J.L.; Kenakin, T.P.; Zhang, Y. Allosteric modulation: An alternate approach targeting the
cannabinoid CB1 receptor. Med. Res. Rev. 2017, 37, 441–474. [CrossRef] [PubMed]

94. Laprairie, R.B.; Kulkarni, P.M.; Deschamps, J.R.; Kelly, M.E.; Janero, D.R.; Cascio, M.G.; Stevenson, L.A.; Pertwee, R.G.; Kenakin,
T.P.; Denovan-Wright, E.M. Enantiospecific allosteric modulation of cannabinoid 1 receptor. ACS Chem. Neurosci. 2017, 8,
1188–1203. [CrossRef] [PubMed]

95. Polini, B.; Cervetto, C.; Carpi, S.; Pelassa, S.; Gado, F.; Ferrisi, R.; Bertini, S.; Nieri, P.; Marcoli, M.; Manera, C. Positive allosteric
modulation of CB1 and CB2 cannabinoid receptors enhances the neuroprotective activity of a dual CB1R/CB2R orthosteric
agonist. Life 2020, 10, 333. [CrossRef] [PubMed]

96. Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat.
Rev. Neurol. 2020, 16, 9–29. [CrossRef] [PubMed]

97. Abate, G.; Uberti, D.; Tambaro, S. Potential and limits of cannabinoids in alzheimer’s disease therapy. Biology 2021, 10, 542.
[CrossRef] [PubMed]

98. Gonçalves, E.D.; Dutra, R.C. Cannabinoid receptors as therapeutic targets for autoimmune diseases: Where do we stand? Drug
Discov. Today 2019, 24, 1845–1853. [CrossRef]

99. Cassano, T.; Villani, R.; Pace, L.; Carbone, A.; Bukke, V.N.; Orkisz, S.; Avolio, C.; Serviddio, G. From Cannabis sativa to cannabidiol:
Promising therapeutic candidate for the treatment of neurodegenerative diseases. Front. Pharmacol. 2020, 11, 124. [CrossRef]

100. Morris, G.; Walder, K.; Kloiber, S.; Amminger, P.; Berk, M.; Bortolasci, C.C.; Maes, M.; Puri, B.K.; Carvalho, A.F. The endocannabi-
noidome in neuropsychiatry: Opportunities and potential risks. Pharmacol. Res. 2021, 170, 105729. [CrossRef]

101. Duffy, S.S.; Hayes, J.P.; Fiore, N.T.; Moalem-Taylor, G. The cannabinoid system and microglia in health and disease. Neuropharma-
cology 2021, 190, 108555. [CrossRef]

102. Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid receptor 2 signaling in neurodegenerative
disorders: From pathogenesis to a promising therapeutic target. Front. Neurosci. 2017, 11, 30. [CrossRef]

103. Chen, D.-J.; Gao, M.; Gao, F.-F.; Su, Q.-X.; Wu, J. Brain cannabinoid receptor 2: Expression, function and modulation. Acta
Pharmacol. Sin. 2017, 38, 312–316. [CrossRef] [PubMed]

104. Wu, J. Cannabis, cannabinoid receptors, and endocannabinoid system: Yesterday, today, and tomorrow. Acta Pharmacol. Sin. 2019,
40, 297–299. [CrossRef]

105. Abd El-Rahman, S.S.; Fayed, H.M. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating
CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized
rats. PLoS ONE 2022, 17, e0265961. [CrossRef] [PubMed]

106. Elsouri, K. Amyloid Cascade Hypothesis Perspective on Alzheimer’s Disease. Ph.D. Thesis, Florida Atlantic University, Boca
Raton, FL, USA.

107. Sánchez-Sarasúa, S.; Fernández-Pérez, I.; Espinosa-Fernández, V.; Sánchez-Pérez, A.M.; Ledesma, J.C. Can we treat neuroinflam-
mation in Alzheimer’s disease? Int. J. Mol. Sci. 2020, 21, 8751. [CrossRef]

108. Mahdi, O.; Baharuldin, M.T.; Nor, N.H.M.; Chiroma, S.M.; Jagadeesan, S.; Moklas, M.A. The Neuroprotective Properties,
Functions, and Roles of Cannabis sativa in Selected Diseases Related to the Nervous System. Cent. Nerv. Syst. Agents Med. Chem.
(Former. Curr. Med. Chem. Cent. Nerv. Syst. Agents) 2021, 21, 20–38. [CrossRef] [PubMed]

https://doi.org/10.1016/j.neulet.2020.135208
https://doi.org/10.3390/cells11060987
https://www.ncbi.nlm.nih.gov/pubmed/35326437
https://doi.org/10.1007/s12640-016-9632-6
https://www.ncbi.nlm.nih.gov/pubmed/27260222
https://doi.org/10.3390/ijms23105367
https://doi.org/10.1111/bph.12615
https://doi.org/10.1038/s41401-022-01000-7
https://doi.org/10.1089/brain.2020.0879
https://doi.org/10.3389/fneur.2020.00087
https://doi.org/10.3390/molecules26175413
https://doi.org/10.3390/ijms20235874
https://www.ncbi.nlm.nih.gov/pubmed/31771126
https://doi.org/10.1002/med.21418
https://www.ncbi.nlm.nih.gov/pubmed/27879006
https://doi.org/10.1021/acschemneuro.6b00310
https://www.ncbi.nlm.nih.gov/pubmed/28103441
https://doi.org/10.3390/life10120333
https://www.ncbi.nlm.nih.gov/pubmed/33302569
https://doi.org/10.1038/s41582-019-0284-z
https://www.ncbi.nlm.nih.gov/pubmed/31831863
https://doi.org/10.3390/biology10060542
https://www.ncbi.nlm.nih.gov/pubmed/34204237
https://doi.org/10.1016/j.drudis.2019.05.023
https://doi.org/10.3389/fphar.2020.00124
https://doi.org/10.1016/j.phrs.2021.105729
https://doi.org/10.1016/j.neuropharm.2021.108555
https://doi.org/10.3389/fnins.2017.00030
https://doi.org/10.1038/aps.2016.149
https://www.ncbi.nlm.nih.gov/pubmed/28065934
https://doi.org/10.1038/s41401-019-0210-3
https://doi.org/10.1371/journal.pone.0265961
https://www.ncbi.nlm.nih.gov/pubmed/35349580
https://doi.org/10.3390/ijms21228751
https://doi.org/10.2174/1871524921666210127110028
https://www.ncbi.nlm.nih.gov/pubmed/33504317


Int. J. Mol. Sci. 2024, 25, 4050 19 of 20

109. Lodola, A.; Castelli, R.; Mor, M.; Rivara, S. Fatty acid amide hydrolase inhibitors: A patent review (2009–2014). Expert Opin. Ther.
Pat. 2015, 25, 1247–1266. [CrossRef]

110. Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 2018, 17, 623–639.
[CrossRef] [PubMed]

111. Kong, X.; Gao, J. Macrophage polarization: A key event in the secondary phase of acute spinal cord injury. J. Cell. Mol. Med. 2017,
21, 941–954. [CrossRef]

112. Wang, D.; Lin, Q.; Su, S.; Liu, K.; Wu, Y.; Hai, J. URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion
by inhibiting mTOR-dependent autophagy. Neuroscience 2017, 344, 293–304. [CrossRef]

113. Ogawa, S.; Kunugi, H. Inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase: New targets for future antidepres-
sants. Curr. Neuropharmacol. 2015, 13, 760–775. [CrossRef] [PubMed]

114. Karanian, D.A.; Karim, S.L.; Wood, J.T.; Williams, J.S.; Lin, S.; Makriyannis, A.; Bahr, B.A. Endocannabinoid enhancement protects
against kainic acid-induced seizures and associated brain damage. J. Pharmacol. Exp. Ther. 2007, 322, 1059–1066. [CrossRef]
[PubMed]

115. Gunduz-Cinar, O.; MacPherson, K.P.; Cinar, R.; Gamble-George, J.; Sugden, K.; Williams, B.; Godlewski, G.; Ramikie, T.; Gorka, A.;
Alapafuja, S. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing
and stress-reactivity. Mol. Psychiatry 2013, 18, 813–823. [CrossRef] [PubMed]

116. Booker, L.; Kinsey, S.G.; Abdullah, R.A.; Blankman, J.L.; Long, J.Z.; Ezzili, C.; Boger, D.L.; Cravatt, B.F.; Lichtman, A.H. The fatty
acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. Br. J.
Pharmacol. 2012, 165, 2485–2496. [CrossRef]

117. Battista, N.; Maccarrone, M. Basic mechanisms of synthesis and hydrolysis of major endocannabinoids. In The Endocannabinoid
System; Elsevier: London, UK, 2017; pp. 1–23.

118. Ortar, G.; Morera, E.; De Petrocellis, L.; Ligresti, A.; Moriello, A.S.; Morera, L.; Nalli, M.; Ragno, R.; Pirolli, A.; Di Marzo, V. Biaryl
tetrazolyl ureas as inhibitors of endocannabinoid metabolism: Modulation at the N-portion and distal phenyl ring. Eur. J. Med.
Chem. 2013, 63, 118–132. [CrossRef] [PubMed]

119. Lemos, C.; Valério-Fernandes, Â.; Ghisleni, G.C.; Ferreira, S.G.; Ledent, C.; de Ceballos, M.L.; Köfalvi, A. Impaired hippocampal
glucoregulation in the cannabinoid CB1 receptor knockout mice as revealed by an optimized in vitro experimental approach. J.
Neurosci. Methods 2012, 204, 366–373. [CrossRef]

120. Petrosino, S.; Ligresti, A.; Di Marzo, V. Endocannabinoid chemical biology: A tool for the development of novel therapies. Curr.
Opin. Chem. Biol. 2009, 13, 309–320. [CrossRef]

121. Ates, M.; Hamza, M.; Seidel, K.; Kotalla, C.E.; Ledent, C.; Gühring, H. Intrathecally applied flurbiprofen produces an
endocannabinoid-dependent antinociception in the rat formalin test. Eur. J. Neurosci. 2003, 17, 597–604. [CrossRef]

122. Grace, M.; Lieu, T.; Darby, B.; Abogadie, F.C.; Veldhuis, N.; Bunnett, N.W.; McIntyre, P. The tyrosine kinase inhibitor bafetinib
inhibits PAR 2-induced activation of TRPV 4 channels in vitro and pain in vivo. Br. J. Pharmacol. 2014, 171, 3881–3894. [CrossRef]

123. Minkkilä, A.; Savinainen, J.R.; Käsnänen, H.; Xhaard, H.; Nevalainen, T.; Laitinen, J.T.; Poso, A.; Leppänen, J.; Saario, S.M.
Screening of various hormone-sensitive lipase inhibitors as endocannabinoid-hydrolyzing enzyme inhibitors. ChemMedChem
2009, 4, 1253–1259. [CrossRef]

124. Owens, R.A.; Mustafa, M.A.; Ignatowska-Jankowska, B.M.; Damaj, M.I.; Beardsley, P.M.; Wiley, J.L.; Niphakis, M.J.; Cravatt, B.F.;
Lichtman, A.H. Inhibition of the endocannabinoid-regulating enzyme monoacylglycerol lipase elicits a CB1 receptor-mediated
discriminative stimulus in mice. Neuropharmacology 2017, 125, 80–86. [CrossRef]

125. Wang, L.; Yui, J.; Wang, Q.; Zhang, Y.; Mori, W.; Shimoda, Y.; Fujinaga, M.; Kumata, K.; Yamasaki, T.; Hatori, A. Synthesis and
preliminary PET imaging studies of a FAAH radiotracer ([11C] MPPO) based on α-ketoheterocyclic scaffold. ACS Chem. Neurosci.
2016, 7, 109–118. [CrossRef] [PubMed]

126. Feledziak, M.; Lambert, D.; Marchand-Brynaert, J.; Muccioli, G.G. Inhibitors of the endocannabinoid-degrading enzymes, or how
to increase endocannabinoid’s activity by preventing their hydrolysis. Recent Pat. CNS Drug Discov. (Discontin.) 2012, 7, 49–70.
[CrossRef] [PubMed]

127. Myllymäki, M. Synthesis of 3-heterocycle phenyl N-alkyl Carbamates and Their Activity as FAAH Inhibitors. Ph.D. Thesis,
Helsinki University of Technology, Department of Chemistry, Helsinki, Finland, 2009.

128. Chicca, A.; Arena, C.; Manera, C. Beyond the direct activation of cannabinoid receptors: New strategies to modulate the
endocannabinoid system in CNS-related diseases. Recent Pat. CNS Drug Discov. (Discontin.) 2015, 10, 122–141. [CrossRef]
[PubMed]

129. Molinski, S.V.; Shahani, V.M.; MacKinnon, S.S.; Morayniss, L.D.; Laforet, M.; Woollard, G.; Kurji, N.; Sanchez, C.G.; Wodak, S.J.;
Windemuth, A. Computational proteome-wide screening predicts neurotoxic drug-protein interactome for the investigational
analgesic BIA 10–2474. Biochem. Biophys. Res. Commun. 2017, 483, 502–508. [CrossRef]

130. Patel, J.Z.; Parkkari, T.; Laitinen, T.; Kaczor, A.A.; Saario, S.M.; Savinainen, J.R.; Navia-Paldanius, D.; Cipriano, M.; Leppanen, J.;
Koshevoy, I.O. Chiral 1, 3, 4-oxadiazol-2-ones as highly selective FAAH inhibitors. J. Med. Chem. 2013, 56, 8484–8496. [CrossRef]
[PubMed]

131. Patel, J.Z. The development of potent and selective inhibitors of enzymes involved in endocannabinoid inactivation. Ph.D. Thesis,
University of Eastern Finland, Kuopio, Finland, 2015.

https://doi.org/10.1517/13543776.2015.1067683
https://doi.org/10.1038/nrd.2018.115
https://www.ncbi.nlm.nih.gov/pubmed/30116049
https://doi.org/10.1111/jcmm.13034
https://doi.org/10.1016/j.neuroscience.2016.12.034
https://doi.org/10.2174/1570159X13666150612225212
https://www.ncbi.nlm.nih.gov/pubmed/26630956
https://doi.org/10.1124/jpet.107.120147
https://www.ncbi.nlm.nih.gov/pubmed/17545313
https://doi.org/10.1038/mp.2012.72
https://www.ncbi.nlm.nih.gov/pubmed/22688188
https://doi.org/10.1111/j.1476-5381.2011.01445.x
https://doi.org/10.1016/j.ejmech.2013.02.005
https://www.ncbi.nlm.nih.gov/pubmed/23474898
https://doi.org/10.1016/j.jneumeth.2011.11.028
https://doi.org/10.1016/j.cbpa.2009.04.616
https://doi.org/10.1046/j.1460-9568.2003.02470.x
https://doi.org/10.1111/bph.12750
https://doi.org/10.1002/cmdc.200900137
https://doi.org/10.1016/j.neuropharm.2017.06.032
https://doi.org/10.1021/acschemneuro.5b00248
https://www.ncbi.nlm.nih.gov/pubmed/26505525
https://doi.org/10.2174/157488912798842223
https://www.ncbi.nlm.nih.gov/pubmed/22280341
https://doi.org/10.2174/1574889810999160603185126
https://www.ncbi.nlm.nih.gov/pubmed/27630088
https://doi.org/10.1016/j.bbrc.2016.12.115
https://doi.org/10.1021/jm400923s
https://www.ncbi.nlm.nih.gov/pubmed/24083878


Int. J. Mol. Sci. 2024, 25, 4050 20 of 20

132. Pertwee, R.G. Cannabinoid Receptor Ligands; Tocris Bioscience Scientific Review Series; University of Aberdeen: Aberdeen, Scotland,
2020.

133. Keith, J.M.; Jones, W.M.; Tichenor, M.; Liu, J.; Seierstad, M.; Palmer, J.A.; Webb, M.; Karbarz, M.; Scott, B.P.; Wilson, S.J. Preclinical
characterization of the FAAH inhibitor JNJ-42165279. ACS Med. Chem. Lett. 2015, 6, 1204–1208. [CrossRef]

134. van Heerden, M.; Roosen, W.; Lachau-Durand, S.; Bailey, G.; Ndifor, A. Exacerbation of Background Nuclear Cataracts in
Sprague-Dawley Rats in Embryo-Fetal Development Studies With JNJ-42165279, a Fatty Acid Amide Hydrolase Inhibitor. Toxicol.
Pathol. 2021, 49, 1193–1205. [CrossRef]

135. Mor, M.; Lodola, A.; Rivara, S.; Vacondio, F.; Duranti, A.; Tontini, A.; Sanchini, S.; Piersanti, G.; Clapper, J.R.; King, A.R. Synthesis
and QSAR of fatty acid amide hydrolase inhibitors: Modulation at the N-portion of biphenyl-3-yl alkylcarbamates. J. Med. Chem.
2008, 51, 3487. [CrossRef]

136. Bisogno, T.; Ortar, G.; Petrosino, S.; Morera, E.; Palazzo, E.; Nalli, M.; Maione, S.; Di Marzo, V.; Group, E.R. Development of a
potent inhibitor of 2-arachidonoylglycerol hydrolysis with antinociceptive activity in vivo. Biochim. Et Biophys. Acta (BBA)-Mol.
Cell Biol. Lipids 2009, 1791, 53–60. [CrossRef]

137. Xie, S.; Borazjani, A.; Hatfield, M.J.; Edwards, C.C.; Potter, P.M.; Ross, M.K. Inactivation of lipid glyceryl ester metabolism in
human THP1 monocytes/macrophages by activated organophosphorus insecticides: Role of carboxylesterases 1 and 2. Chem.
Res. Toxicol. 2010, 23, 1890–1904. [CrossRef] [PubMed]

138. Deng, H.; Li, W. Monoacylglycerol lipase inhibitors: Modulators for lipid metabolism in cancer malignancy, neurological and
metabolic disorders. Acta Pharm. Sin. B 2020, 10, 582–602. [CrossRef] [PubMed]

139. Korhonen, J.; Kuusisto, A.; van Bruchem, J.; Patel, J.Z.; Laitinen, T.; Navia-Paldanius, D.; Laitinen, J.T.; Savinainen, J.R.; Parkkari,
T.; Nevalainen, T.J. Piperazine and piperidine carboxamides and carbamates as inhibitors of fatty acid amide hydrolase (FAAH)
and monoacylglycerol lipase (MAGL). Bioorganic Med. Chem. 2014, 22, 6694–6705. [CrossRef] [PubMed]

140. Aaltonen, N.; Savinainen, J.R.; Ribas, C.R.; Rönkkö, J.; Kuusisto, A.; Korhonen, J.; Navia-Paldanius, D.; Häyrinen, J.; Takabe, P.;
Käsnänen, H. Piperazine and piperidine triazole ureas as ultrapotent and highly selective inhibitors of monoacylglycerol lipase.
Chem. Biol. 2013, 20, 379–390. [CrossRef] [PubMed]

141. Chang, J.W.; Niphakis, M.J.; Lum, K.M.; Cognetta, A.B.; Wang, C.; Matthews, M.L.; Niessen, S.; Buczynski, M.W.; Parsons,
L.H.; Cravatt, B.F. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with
endocannabinoid substrates. Chem. Biol. 2012, 19, 579–588. [CrossRef] [PubMed]

142. Long, J.Z.; Li, W.; Booker, L.; Burston, J.J.; Kinsey, S.G.; Schlosburg, J.E.; Pavón, F.J.; Serrano, A.M.; Selley, D.E.; Parsons, L.H.
Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 2009, 5, 37–44.
[CrossRef] [PubMed]

143. Patel, J.Z.; Ahenkorah, S.; Vaara, M.; Staszewski, M.; Adams, Y.; Laitinen, T.; Navia-Paldanius, D.; Parkkari, T.; Savinainen, J.R.;
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