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Abstract: Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central
role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter
TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the
human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase
and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether
TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs.
Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and
chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of
1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36
and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs.
By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs.
Long-term TSLP incubation with furin generated two peptides devoid of activating property on
HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP.
These findings have potential relevance in understanding novel aspects of asthma pathobiology.

Keywords: airway remodeling; asthma; chymase; epithelial cells; macrophage; mast cell; tryptase;
TSLP; VEGF-A

1. Introduction

Bronchial epithelial cells are not only a physical barrier, but also a major component
of the immune system and maintain lung tissue homeostasis [1]. Environmental stimuli
can damage bronchial epithelial cells, representing a first immunologic event in several in-
flammatory lung disorders [2,3]. Damaged epithelial cells release several cytokines, termed
alarmins [i.e., thymic stromal lymphopoietin (TSLP), IL-33, and IL-25], which drive asthma
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immunology [4,5]. TSLP, a pleiotropic cytokine initially cloned in a murine thymic stromal
cell line [6], is mainly expressed by lung epithelial cells [7–12]. TSLP is also expressed by hu-
man dendritic cells (DCs) [13], mast cells [7,14–16], monocytes [13,17], macrophages [17,18],
and granulocytes [19]. This cytokine is also released from structural cells, such as air-
way smooth muscle cells [20] and fibroblasts [21]. TSLP activates a heteromeric complex
composed of a thymic stromal lymphopoietin receptor (TSLPR) chain and interleukin 7
receptor-α (IL-7Rα) [22,23]. The dimerization of both receptor chains upon TSLP binding
results in the activation of Janus kinases (JAKs) and signal transducer and activator of
transcription 5 (STAT5), which represents a critical downstream biochemical event [24,25].

TSLP has been broadly implicated in the pathogenesis of type 2 inflammatory dis-
ease [26,27]. TSLP plays a key role in the initiation of the type 2 immune response through
the activation of group 2 innate lymphoid cells (ILC2) [28], T helper 2 (Th2) cells [29], and
dendritic cells (DCs) [16,26]. In addition, TSLP activates effector cells in asthma such as
human lung macrophages (HLMs) [18], mast cells [14], and eosinophils [30]. The above
considerations have led to the conclusion that TSLP is a master orchestrator of asthma
pathobiology [5,27] and the approval of a monoclonal antibody anti-TSLP (tezepelumab)
highly effective in severe asthma treatment [31–33].

Harada and collaborators identified two variants of TSLP in human bronchial ep-
ithelial cells: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP) [25,34,35].
The short form TSLP (sfTSLP) overlaps the C-terminus of the lfTSLP [27]. The lfTSLP
has a signal peptide encoded in the first 28 amino acids at the N-terminal portion of the
protein [36]. The sfTSLP is human-specific, as there are no reports of a similar variant
in other species [27]. sfTSLP mRNA is constitutively expressed in bronchial [34] and in-
testinal epithelial cells [37,38], fibroblasts [39], macrophages [17], and keratinocytes [40,41]
Inflammatory stimuli specifically upregulate lfTSLP mRNA but not sfTSLP in human
bronchial epithelial cells [42] and macrophages [17]. Despite evidence of a dichotomy of the
two isoforms of TSLP in humans, the in vivo and in vitro functions of sfTSLP in humans
are still largely unclear [4,43].

Mast cells, widely distributed in almost all human tissues [44,45], are strategically
located in different compartments of the human lung [31,46–48]. Human lung mast cells
(HLMCs) are recognized as central effectors in different asthma phenotypes [31,47,49].
The secretory granules of human mast cells contain preformed mediators, including
tryptase and chymase [50]. Historically, human mast cells were classified into two subsets
based on their protease content [51]: mast cells expressing tryptase are referred to as MCT,
whereas those containing tryptase and chymase are known as MCTC [51]. MCTC are pre-
dominant in the lungs of patients with asthma [52–54]. Both proteolytic enzymes account
for more than 25% of the total cellular protein [55,56]. Activated mast cells release tryptase
and chymase [51,57,58], which have marked effects on the humoral and cellular compo-
nents of the extracellular environment [50,59]. Previous studies have shown that tryptase
and chymase can cleave several cytokines [59,60], promoting their activation [61–66]. Con-
versely, in other settings, mast cell proteases can exhibit anti-inflammatory activities by
degrading proinflammatory cytokines [67,68]. Recent studies have shown that TSLP could
also be a substrate for mast cell proteases. Prolonged incubation of nasal polyp extracts
cleaves TSLP [69]. Moreover, it was demonstrated that TSLP can be cleaved by tryptase,
although the cleavage site was not identified [60,69]. Finally, chymase caused only minor
cleavage of TSLP [70].

Angiogenesis, the formation of new blood vessels, is fundamental to provide blood
vessels to maintain tissue homeostasis [71,72]. In bronchial asthma, inflammatory angio-
genesis is a critical factor in developing and sustaining airway remodeling [73,74]. Vascular
endothelial growth factor-A (VEGF-A), released by several immune cells (e.g., macrophages,
mast cells, basophils, and eosinophils) [57,75–77], is the most potent angiogenic factor.

In this study, we used strictly controlled conditions, as well as short incubation times
and low enzyme/substrate ratios, to evaluate the early proteolytic events of recombinant
human (rh) tryptase and chymase on TSLP by mass spectrometric analysis. We also investi-
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gated whether the TSLP and its fragments generated by enzymatic activity of tryptase and
chymase can induce the release of angiogenic factors from human lung macrophages.

2. Results
2.1. Effects of Tryptase and Chymase on TSLP

Mast cells are strategically located in different lung compartments of asthmatic pa-
tients [46–49,75]. These cells reside in close proximity to HLMs, which are the predominant
immune cells in the human lung [48,78–80]. Activated HLMCs release tryptase and chy-
mase [50,58]. This observation prompted us to investigate whether these proteases could
potentially cleave TSLP. Recombinant human TSLP (≃15 kDa) was incubated with either
tryptase or chymase at a 1:10 enzyme:substrate ratio by performing kinetic experiments
(from 0 to 240 min) at 37 ◦C, and the digestion products were examined by SDS-PAGE.
The reactions with tryptase were carried out in PBS in the presence of heparin [81], using
a tryptase:heparin ratio of 1:10. Figure 1A shows that incubation of TSLP (~15 kDa) with
tryptase resulted in a progressive decrease of the band corresponding to the intact protein.
The densitometric analysis confirms that the intensity of the full-size TSLP band completely
disappeared after 240 min of incubation (Figure 1B). These findings confirm and extend the
previous observations [60,69] that TSLP is a substrate for tryptase.
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Figure 1. (A) Recombinant human lfTSLP (5 µg) was treated with recombinant human tryptase
(0.5 µg) at 37 ◦C in the presence of heparin (1:10). Samples were withdrawn at 0, 30, 60, 120, and
240 min, and inactivated by heating for 10 min at 99 ◦C to stop the cleavage reaction. Each di-
gestion mixture corresponding to 1 µg of protein was separated on 16% Tris-Tricine gel. The gel
was stained with a colloidal Coomassie Brilliant Blue solution. (B) The reduction of the band in-
tensity at ~15 kDa was quantified by densitometric analysis. The results show the mean ± SD of
three independent experiments.

Similar experiments were performed to evaluate the effect of recombinant human
chymase on TSLP. Figure 2A shows that the progressive incubation (from 0 to 240 min
at 37 ◦C) of TSLP with chymase, using an enzyme:substrate ratio of 1:10, resulted in a
progressive decrease of the band corresponding to the intact protein at 15 kDa. Several
TSLP fragments were detected over a period of incubation of 30 to 240 min (Figure 2A).
The densitometric analysis confirms that chymase efficiently degraded TSLP, generating
several smaller fragments (Figure 2B).
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Figure 2. Cleavage analysis of lfTSLP by chymase. (A) Recombinant human TSLP (5 µg) was treated
with chymase (0.5 µg at 37 ◦C). 1 µg aliquots were withdrawn at 0, 30, 60, 120, and 240 min, inactivated
by heating for 10 min at 99 ◦C to stop the cleavage reaction and separated on 16% Tris-Tricine gel. The
gel was stained with colloidal Coomassie Brilliant Blue solution. (B) Densitometric analysis of the
cleavage products of TSLP generated by chymase (as shown in panel A). The progressive and marked
reduction in the band intensity at ~15 kDa, and the appearance of several smaller fragments, indicated
that TSLP is a substrate for chymase. The results show the mean ± SD of 3 independent experiments.

2.2. Mass Spectrometry Analysis of Early Cleavage Products of TSLP Generated by Tryptase
and Chymase

The recombinant TSLP was incubated with tryptase or chymase under controlled
proteolytic conditions suitable for assessing a single cleavage event on the intact molecule by
mass spectrometry. Preliminary experiments were performed for each protease to set up the
optimal proteolysis conditions by mass spectrometry [82]. Supplementary Figure S1 shows
the MALDI-MS spectrum of TSLP under non-proteolytic conditions. The mass signals
recorded in the spectrum correspond to the mono (m/z 15,056.47), doubly (m/z 7528.7) and
triply charged (m/z 5019.88) ions of intact TSLP, respectively, in agreement with the expected
values (m/z 15,056.46, 7528.73, and 5019.49, respectively).

The proteolytic products of TSLP generated by tryptase under controlled conditions
were then analyzed by MALDI-MS. The corresponding mass spectrum is shown in Figure 3.
Besides the mass signals assigned to the intact protein (marked with an asterisk in the
figure), two additional peaks were recorded in the spectrum. Based on their measured mass
values and the TSLP sequence, the signal at m/z 4361.19 was assigned to the 98-132 fragment
(theoretical m/z 4367.20) (indicated as A and the sequence of amino acids underlined in
green in Figure 3); the peak at m/z 10,713.18 was identified as the complementary portion of
the TSLP protein (fragment 1-97, theoretical m/z 10,714.28, indicated as B and the sequence
of amino acids underlined in red in Figure 3). These results suggest that tryptase exerts an
early proteolytic activity at the cleavage site located between the peptide bond Met97-Lys98.

The proteolytic products of TSLP following incubation with chymase under lim-
ited proteolysis conditions were also analyzed by MALDI-MS. The corresponding mass
spectrum is shown in Figure 4, where the peaks corresponding to the intact protein are
marked with an asterisk. Among the other recorded signals, the peak at m/z 4164.65 (in-
dicated as A in Figure 4) was assigned to the peptide 1-36 (theoretical molecular weight
4164.74 Da). The signal at m/z 10,916.86 (indicated as B in Figure 4) was associated to the
complementary fragment 37-132 within the TSLP sequence (theoretic molecular weight
10,916.74 Da). These peptides were originated from a chymase preferential proteolytic
site [59,83] located between the peptide bond Phe36-Asn37. All the other peaks in the
spectrum were generated by sub-digestion of the main fragments.
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Figure 3. MALDI-MS analysis of TSLP following incubation with tryptase under strictly controlled
conditions (E:S 1:1000 for 30 min at 37 ◦C). The signals marked with an asterisk correspond to the
mono and doubly charged ions of the intact protein. Peaks at m/z 4361.19 and m/z 10,713.19 were
assigned to the complementary peptides 98-132 and 1-97, respectively (marked A and B in the figure)
originating from a single proteolytic cleavage between the peptide bond Met97-Lys98. The amino
acid sequences of the two peptides (A and B) are shown in the inset and are underlined in red (A) or
in green (B) in the upper panel of the figure. The tryptase preferential cleavage site is shown in red.

2.3. Localization of the Early Cleavage Sites on the Three-Dimensional (3D) Structure of TSLP

Limited proteolysis experiments in combination with mass spectrometry represents
a strategy to investigate the protein regions that are solvent-exposed and/or flexible
enough to be accessible to proteases’ catalytic sites by identifying the early proteolytic
events [82,84,85]. Tryptase rapidly cleaves TSLP in correspondence to the peptide bond
Met97-Lys98, close to the C-terminus of the protein, whereas chymase specifically recog-
nizes Phe36, located near the N-terminus of TSLP. Verstraete and collaborators reported
that TSLP adopts a four-helix bundle with ‘up-up-down-down’ topology stabilized by
three disulfide bridges (Cys34-Cys110, Cys69-Cys75, and Cys90-Cys137), in which the
four α-helices—designated αA, αB, αC, and αD—are threaded via a BC loop and two long
overhand AB and CD loop regions, with the latter largely invisible in the electron density
maps [86]. According to their experimental data, Met97-Lys98 is located within the CD
loop, a very flexible and not ordered region, which allows Met97 to be easily accessible to
the tryptase catalytic site in controlled proteolysis conditions (Figure 5). Similarly, Phe36,
the chymase preferential cleavage site, is located within the AB loop linking α helices A
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and B (Figure 5). Both regions (CD and AB loops) are endowed with a high degree of con-
formational flexibility that allowed tryptase and chymase to cleave specific peptide bonds.
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Figure 4. MALDI-MS analysis of TSLP following incubation with chymase under strictly controlled
conditions (E:S 1:100 for 30 min at 37 ◦C). The signals marked with an asterisk correspond to the mono
and doubly charged ions of the intact protein. Peaks at m/z 4164.65 and 10,916.86 were assigned to
the complementary peptides 1-36 and 37-132, respectively (marked A and B in the figure) originating
from a single proteolytic cleavage at Phe36. The amino acid sequences of the two peptides (A and B)
are shown in the inset and are underlined in red (A) or in green (B) in the upper panel of the figure.
The chymase preferential cleavage site between Phe36-Asn37 is shown in red. All other peaks in the
spectrum were identified as sub-digestion products. Other fragments were observed at lower m/z,
indicating further proteolytic cleavage of the two main fragments 1-36 and 37-132.
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and chymase preferential cleavage sites are located within the CD and AB loops, highlighted in red
and green, respectively. This representation provides insights into the spatial arrangement of the
proteolytic sites within the mature form of TSLP.

2.4. Effects of TSLP and TSLP Fragments Generated by Tryptase and Chymase on Mediator
Release from Human Lung Macrophages (HLMs)

An important question to address was whether the early TSLP fragments generated by
tryptase and chymase possess a bioactivity comparable to the native TSLP. We compared
the effects of lfTSLP and the main cleavage products generated by tryptase and chymase
on the release of angiogenic factors from HLMs. Figure 6A shows that lfTSLP (30 ng/mL)
induced VEGF-A release from HLMs, whereas increasing concentrations (1-30 ng/mL)
of the two TSLP fragments generated by tryptase, TSLP1-97 and TSLP98-132, had no effect
on VEGF-A release from HLMs. Similarly, the two main TSLP fragments generated by
chymase, TSLP1–36 and TSLP37-132, did not induce VEGF-A release from HLMs (Figure 6B).
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and of increasing concentrations of the two TSLP fragments generated by tryptase (TSLP1-97 and
TSLP98-132) (blue bars) and (B) of the two fragments generated by chymase (TSLP1-36 and TSLP37-132)
(blue bars) on VEGF-A release from HLMs. The results show the mean ± SD of eight independent ex-
periments performed with highly purified (≥99%) HLMs from different donors. ** p < 0.01 compared
to control (CTR).

2.5. Effect of PCSK3 on the Cleavage of TSLP

It has been reported that long-term (24 h) incubation of recombinant PCSK3, also
known as furin, with TSLP generated two peptides (TSLP1-103 and TSLP104-132) without af-
fecting the disulfide bonds of the protein [69]. PCSK3-treated TSLP induced the production
of CCL17 from mDCs [69].

Figure 7 shows that tryptase, after 1 h of incubation, partially cleaved TSLP inducing
the formation of several smaller peptides (F1 and F2). Moreover, we confirmed the findings
of Poposki and collaborators showing that long-term incubation of TSLP with PCSK3
completely cleaved TSLP generating two peptides of approximately 12 and 4 kDa (Figure 7).
In parallel experiments, we compared the biological activity of products derived from TSLP
upon treatment with PCSK3, tryptase, and untreated TSLP on HLMs. Figure 8 illustrates
the results of a typical experiment showing that TSLP induced the release of VEGF-A
from HLMs. By contrast, PCSK3-treated TSLP did not induce the release of VEGF-A
from HLMs. Similarly, tryptase-treated TSLP caused a marginal increase in the release of
VEGF-A from HLMs.
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24 h at 37 ◦C. Aliquots were inactivated by heating for 10 min at 99 ◦C to stop the cleavage reaction
and separated on 16.5% Tris-Tricine gel. The gel was stained with a colloidal Coomassie Brilliant
Blue solution.
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Figure 8. Effects of TSLP cleavage products generated by PCSK3 and tryptase on the release of
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mean ± SD of a typical experiment out of three. ** p < 0.01.

The results are representative of three independent experiments.

3. Discussion

We investigated whether TSLP may be a substrate for mast cell proteases (i.e., tryptase
and chymase) released by HLMCs. The cleavage of recombinant lfTSLP by tryptase
and chymase was studied in vitro by a limited proteolytic approach and the digestion
products were identified by MALDI-MS. Our results showed that tryptase in controlled
conditions cleaved TSLP, generating two major fragments corresponding to TSLP1-97 and
TSLP98-132. In parallel experiments, the MALDI-MS results indicate a chymase site located at
Phe36 generating TSLP1-36 and TSLP37-132. These findings demonstrate that the proteolytic
activities of two mast cell-derived enzymes are directed against different sites. Tryptase
cleaves TSLP in correspondence to the peptide bond Met97-Lys98, within the CD loop
connecting the C and D α helices, close to the C-terminus of the protein. Chymase cleaves
TSLP at the peptide bond Phe36-Asn37, placed within the AB loop linking α helices A
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and B, and located on the other side of the protein. Both regions are endowed with a high
degree of conformational flexibility that allowed the proteases to easily cleave the adjacent
peptide bonds.

Previous studies have demonstrated that mast cell-derived proteases can cleave several
alarmins. In particular, chymase has been shown to cleave HMGB1 and IL-33 [87,88].
A detailed study reported that chymase cleaved several cytokines but caused only minor
cleavage of TSLP as observed by using SDS-PAGE [70]. More recently, the same research
group presented evidence that TSLP is a substrate for tryptase, although the cleavage site
was not identified [60]. Poposki and collaborators reported that prolonged (24 h) incubation
of TSLP with mast cell proteases, including tryptase, chymase, and cathepsin G led to TSLP
digestion, as assessed by Western blot [69]. In our experiments, we used strictly controlled
conditions, including a short time of incubation and a relatively low enzyme/substrate
ratio, to mimic in vivo conditions and evaluate the physiological significance of the tryptase
and/or chymase proteolytic activity on TSLP. Reports showing cleavage under more
prolonged [69] or excessive conditions are clearly less relevant when considering the
in vivo scenario. Attempts to demonstrate substrate cleavage after 10 to 24 h are unlikely to
be biologically meaningful [70] since other proteases and protease inhibitors in vivo would
likely inactivate the enzyme within minutes or few hours. Thus, in vitro cleavage analysis
for extended periods is probably not biologically relevant. A similar incubation time of
chymase with VIP was appropriately taken in a previous study [89].

An important aspect to consider is the presence of several proteases (e.g., tryptase,
chymase, and carboxypeptidase A3) in the mast cell granules [50,90]. These proteases
are presumably released together [56], which could impact the cumulative effects on
target molecules. The initial cleavage by one enzyme could potentially alter the struc-
ture and make the target molecule more susceptible to proteolysis by other enzymes.
To better understand the TSLP sensitivity to cleavage by mast cell proteases, further studies
investigating the combined effects of multiple proteases should be carried out.

A relevant question to address was whether tryptase and chymase could alter the
bioactivity of TSLP. To this end, we compared the effects of TSLP and the main cleav-
age fragments generated by tryptase and chymase on HLM activation. The proteolytic
activity of tryptase can lead to three completely different biological effects [91]. This en-
zyme can cleave the proteinase-activated receptor 2 (PAR-2), inducing its activation [92],
and it can also cleave the EGF-Like Module-Containing Mucin-Like Hormone Receptor-
Like 2 (EMR2) subunit α (EMR2α), weakening the association of EMR2α/EMR2β to
potentiate vibration-dependent mast cell degranulation [93]. Alternatively, tryptase can
cleave IL-33, potentiating its bioactivity [63]. Finally, this protease can degrade the neu-
ropeptide vasoactive intestinal peptide (VIP) [94,95] and counteract the smooth muscle
relaxant effect of VIP [96]. On the other hand, there is evidence that chymase can also
modulate the biological activity of several cytokines. In particular, this chymotrypsin-like
enzyme can activate TGF-β [61,62], IL-33 [63,87,88], stem cell factor (SCF) [64], IL-1β [65],
and IL-18 [66]. By contrast, chymase can inactivate TNF-α [67], IL-6 [68], and IL-13 [68].

It has been demonstrated that prolonged incubation of nasal polyp (NP) extracts with
TSLP generated two main fragments corresponding to TSLP1-97 and TSLP98-132, which
remained linked through disulfide bonds as a dimerized form [69]. Although the synthetic
peptides and their mixture did not induce the production of CCL17 from peripheral blood
mononuclear cells (PBMCs), TSLP peptides generated by furin (PCSK3) were dimerized
through a disulfide bond and induced CCL17 from mDCs [69]. We have confirmed the
findings by Poposki and collaborators, showing that long-term (24 h) incubation of TSLP
with furin generated two peptides of approximately 12 and 4 kDa. In our experimental
model, the TSLP peptides generated by long-term incubation with PCSK3 did not induce
VEGF-A release from HLMs. The different experimental system for detecting the biological
effects of TSLP and its fragments could explain these latter differences. We cannot exclude
the possibility that TSLP peptides generated in vivo by tryptase, chymase and other pro-
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teolytic enzymes might remain linked through disulfide bonds as a dimerized form and
could activate HLMs.

Mast cells are strategically located in different compartments of the lung in asthmatic
patients [47,49], and are canonically viewed as central effectors in different asthma phe-
notypes [31,97]. In particular, mast cells are implicated in early and late inflammatory
responses in bronchial asthma [97,98]. Moreover, there is evidence that mast cells and
their mediators play a critical role in several aspects of airway remodeling in asthma [31].
The above considerations have led to the development of biological therapies targeting
mast cells or their receptors/mediators for the treatment of severe asthma [31]. There is
overwhelming evidence that TSLP is a master orchestrator of the immune response in
asthma pathobiology [5,32,33,43]. Our results unveil an intricate interplay between mast
cell-derived proteases and TSLP with possible implications in asthma pathobiology.

4. Materials and Methods
4.1. Reagents

The following were purchased: recombinant human TSLP (SRP4896, Sigma-Aldrich,
St. Louis, MO, USA and BT-NBP2-35083, Novus Biologicals, Centennial, CO, USA) ex-
pressed in E. coli (protein without glycosylation), recombinant human β-tryptase (G563A,
Promega Biotech, Madison, WI, USA), and recombinant human chymase (S-C8118,
Merck Life Science, Milan, Italy). TSLP1-36, TSLP37-132, TSLP1-97, and TSLP98-132 were syn-
thetized by ProteoGenix SAS (Schiltigheim, France) and their purity was >98% evaluated
by mass spectrometry. Recombinant human furin (PCSK3) (1503-SE, R&D System, Min-
neapolis, MN, USA), bovine serum albumin, L-glutamine, antibiotic–antimycotic solution
(10,000 IU/mL penicillin, 10 mg/mL streptomycin, and 25 µg/mL amphotericin B), RPMI 1640,
fetal calf serum (FCS) (endotoxin level < 0.1 EU/mL), 1,4-Piperazinediethanesulfonic acid
(PIPES), PBS (14200067, GibcoTM, ThermoFisher Scientific, Waltham, MA, USA), Percoll®

and Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA), detoxified lipopolysaccharide (LPS)
(from E. coli serotype 0111:B4), IL-4 (Miltenyi Biotec, Bologna, Italy), heparin (PharmaTex
Italia, Milan, Italy), and rabbit polyclonal antibody anti-human TSLP (ab109229, Abcam,
Milan, Italy) were also obtained.

4.2. In Vitro TSLP Proteolysis by Tryptase, Chymase and PCSK3

Recombinant human non-glycosylated TSLP expressed in E. coli (BT-NBP2-35083,
Novus Biologicals, Milan, Italy or SRP4896, Sigma-Aldrich, St. Louis, MO, USA) was
treated with recombinant human β-tryptase (G563A, Promega Biotech, Madison, WI, USA)
or chymase (S-C8118, Sigma-Aldrich, Milan, Italy) in limited proteolysis conditions. The
reactions with tryptase or chymase were carried out in PBS using an enzyme:substrate ratio
of 1:10. For each condition, the reactions were performed at different times at 37 ◦C. The
hydrolysis with tryptase was carried out in the presence of a tryptase:heparin ratio 1:10 [81].
Tryptase, a tetrameric serine protease, in which the active sites face a narrow central
pore, is stabilized by interaction with heparin [81]. The reactions were examined for
different time intervals (from 0 to 240 min) and stopped by heating for 10 min at 99 ◦C.
In other experiments, we evaluated the cleavage of TSLP by tryptase and PCSK3 (furin).
Recombinant human TSLP (SRP4896, Sigma-Aldrich) (2 µg) was treated with tryptase
(0.2 µg at 37 ◦C) for 1 h or with PCSK3 (0.88 µg at 37 ◦C) for 24 h at 37 ◦C. In all experiments,
the reaction products were separated on 16.5% Tris-Tricine gels and visualized by staining
with colloidal Coomassie Brilliant Blue.

4.3. Limited Proteolysis and MALDI-MS Analysis

Recombinant human TSLP (SRP4896, Sigma-Aldrich) was treated with β-tryptase
(G563A, Promega) or chymase (S-C8118, Sigma-Aldrich) in limited proteolysis condi-
tions and analyzed by Matrix Assisted Laser Desorption/Ionization-Mass spectrometry
(MALDI-MS) in linear mode. The reactions were carried out on 1 µg of TSLP. Tryptase
was added with an enzyme:substrate ratio of 1:1000 (w/w) for 30 min, while chymase
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was used at an enzyme:substrate ratio of 1:100 (w/w) for 30 min. These experimental
conditions were set up based on optimal hydrolysis conditions for each protease [82].
For MALDI-MS analyses, 0.5 µL of each peptide mixture was mixed with an equal volume
of α-cyano-4-hydroxycinnamic acid as matrix (10 mg/mL) in 0.2% trifluoroacetic acid
(TFA) in 70% acetonitrile, loaded onto the metallic sample plate, and air-dried. The peptide
mixture was analyzed in linear mode by a 4800 plus MALDI TOF-TOF mass spectrome-
ter (AB SCIEX, Toronto, ON, Canada) and using the 4000 Series Explorer (TM) software
(AB SCIEX, Toronto, ON, Canada) (version 3.5) to detect the released fragments, in order to
identify the cleavage sites on TSLP. Mass calibration was performed using the MH+ and
MH2

2+ ions of a protein mixture containing insulin and apomyoglobin to ensure accurate
mass determination and calibration [99].

4.4. Localization of the Early Cleavage Sites on the Three-Dimensional (3D) Structure of TSLP

The localization of the early cleavage sites on the three-dimensional (3D) structure of
TSLP was determined using the 3D structure described by Verstraete and collaborators [86].
The PyMOL software (DeLano Scientific LLC, Palo Alto, CA, USA) (2.5.4 version) was used
to visualize the 3D structure of the TSLP protein and to explore potential cleavage sites for
tryptase and chymase [100].

4.5. Isolation and Purification of Human Lung Macrophages (HLMs)

The study protocol was approved by the Ethics Committee of the University of Naples
Federico II (Prot. 09/22 of 4 August 2022), and informed consent was obtained from donors.
Macrophages were isolated and purified from macroscopically normal lung tissue obtained
from 27 patients (age range: 60–81 years) affected by lung adenocarcinoma undergoing
lobectomy [101]. Patients included in the study were negative for hepatitis C virus (HCV),
hepatitis B surface Ag (HBsAg) and HIV-1 infections. None of the patients had received
chemotherapy or radiotherapy prior to surgery. Freshly resected lung tissue was obtained
intraoperatively and finely minced with scissors. The minced tissue was then extensively
washed with PIPES buffer over Nytex cloth (120 µm pore size) (Tetko Elmsford, NY, USA).
After Percoll gradient centrifugation, the cells were suspended (106 cells/mL) in RPMI 1640
with 5% FCS, 2 mM L-glutamine, and 1% antibiotic–antimycotic solution and incubated at
22 ◦C in 24-well plates (Falcon, Becton Dickinson, Milan, Italy). After 12 h, the medium was
removed, and the plates were gently washed with RPMI 1640. More than 99% of adherent
cells were macrophages, as evaluated by flow-cytometric analysis [102].

4.6. Cell Incubations

HLMs were cultured in 24-well plates in RPMI 1640 medium supplemented with
5% FCS, 2 mM l-glutamine, and 1% antibiotic–antimycotic solution, as previously de-
scribed [17]. HLMs were treated with TSLP and its proteolytic fragments for 16 h at
37 ◦C. At the end of incubations, the supernatants were collected and stored at −80 ◦C
for subsequent ELISA quantification of VEGF-A. Cell lysis in the plates was carried out
using 0.1% Triton X-100 for total protein quantification by a Bradford-based assay (Bio-Rad,
Segrate, Milan, Italy).

4.7. ELISA Assays

Cytokine concentrations were measured using commercially available ELISA kits
for VEGF-A (31.3–2000 pg/mL) (R&D System, Minneapolis, MN, USA). The number of
adherent macrophages varies among wells and different experiments; therefore, the results
were normalized for the total protein content in each well, determined in the cell lysates
(0.1% Triton X-100) by the Bradford-based assay. The normalized cytokine release was
expressed as pg of specific cytokine/mg of total proteins.
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4.8. Statistical Analysis

Statistical analysis was performed by Prism 9 (GraphPad Software, San Diego, CA, USA).
The data are expressed as mean values ± standard deviation (SD) of the indicated number
of experiments. Statistical comparisons were performed by Student’s t-test or one-way
analysis of variance (ANOVA) followed by Dunnett’s test (when a comparison was made
against a control) or Bonferroni’s test (when a comparison was made between each pair of
groups). Values of p < 0.05 were considered statistically significant.
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