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Abstract: In clinical practice, colon cancer is a prevalent malignant tumor of the digestive system, char-
acterized by a complex and progressive process involving multiple genes and molecular pathways.
Historically, research efforts have primarily focused on investigating individual genes; however,
our current study aims to explore the collective impact of multiple genes on colon cancer and to
identify potential therapeutic targets associated with these genes. For this research, we acquired the
gene expression profiles and RNA sequencing data of colon cancer from TCGA. Subsequently, we
conducted differential gene expression analysis using R, followed by GO and KEGG pathway enrich-
ment analyses. To construct a protein–protein interaction (PPI) network, we selected survival-related
genes using the log-rank test and single-factor Cox regression analysis. Additionally, we performed
LASSO regression analysis, immune infiltration analysis, mutation analysis, and cMAP analysis, as
well as an investigation into ferroptosis. Our differential expression and survival analyses identified
47 hub genes, and subsequent LASSO regression analysis refined the focus to 23 key genes. These
genes are closely linked to cancer metastasis, proliferation, apoptosis, cell cycle regulation, signal
transduction, cancer microenvironment, immunotherapy, and neurodevelopment. Overall, the hub
genes discovered in our study are pivotal in colon cancer and are anticipated to serve as important
biological markers for the diagnosis and treatment of the disease.

Keywords: colon cancer; differentially expressed genes (DEGs); survival analysis; LASSO regression
analysis; tumor microenvironment

1. Introduction

Colon cancer (CC) ranks as the fourth deadliest cancer globally [1]. The accumulation
of diverse genetic and epigenetic alterations in colonic epithelial cells is a fundamental pro-
cess underlying the onset and advancement of CC [2]. Colon cancer (CC) is a multifaceted
and progressive condition that implicates numerous genes and stages. Several biomark-
ers associated with the survival and prognosis of CC have been investigated previously.
Nonetheless, individual genes or biomarkers alone are insufficient for accurately predicting
the outcomes of cancer patients [3,4].

The study involved analyzing the transcriptome sequencing data from TCGA-COAD
and normal samples. Various methods were employed to analyze differentially expressed
genes in CC, such as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis, survival analysis, protein–protein interaction (PPI) network
construction, LASSO regression analysis, tumor microenvironment analysis, Connectivity
Map (cMAP) analysis, and ferroptosis analysis. These identified factors and pathways
can function as biomarkers for cancer development and potential targets for the clinical
treatment of CC.
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2. Results
2.1. DEGs Identification

In this study, we conducted principal component analysis (PCA) on the TCGA-COAD
dataset to differentiate between cancerous and normal tissues. The PCA plot displayed
a clear separation between the two groups, suggesting distinct gene expression profiles
in cancer and normal tissues (Figure 1B). After preprocessing the raw dataset, we uti-
lized the three main R packages (DESeq2, edgeR, and limma) to identify differentially
expressed genes (DEGs) in the TCGA-COAD dataset independently and create volcano
plots (Figure 1A). The overlap of the DEGs identified by the three primary R packages
was determined. Next, Venn diagrams were created separately for the upregulated and
downregulated genes (Figure 1B). A heatmap was generated using the TCGA-COAD
dataset to compare gene expression profiles between cancerous and normal tissues. The
heatmap revealed distinct patterns of gene expression, emphasizing the discrepancies
between cancer and normal tissues (Figure 1C).
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 Figure 1. DEGs identification. (A) The three volcano plots were generated using the TCGA-COAD

dataset by the three major R packages (DESeq2, edgeR, and limma). In the plots, red represents the
significantly upregulated genes, and blue represents the significantly downregulated genes. (B) The
PCA analysis plot of the TCGA-COAD dataset and the Venn diagram of differentially expressed
genes (DEGs) from the three major R packages. (C) Heatmap of DEGs in the TCGA-COAD dataset.

2.2. Gene Set Enrichment Analysis

We performed GO enrichment and KEGG pathway analysis using the clusterProfiler
package in R version is R 4.3.2 with 746 upregulated DEGs and 1083 downregulated DEGs.
We visualizes the results using the ggplot2 package (Figure 2). Regarding biological process
(BP) enrichment, the results suggest that DEGs are primarily involved in the production of
molecular mediators of the immune response and immunoglobulin production (Figure 2A).
For cellular component (CC) enrichment, DEGs were predominantly enriched in the im-
munoglobulin complex, collagen-containing extracellular matrix, apical plasma membrane,
cell projection membrane, and monoatomic ion channel complex (Figure 2B). Regarding
molecular function (MF) enrichment, DEGs were predominantly enriched in metal ion
transmembrane transporter activity, monoatomic ion channel activity, glycosaminoglycan
binding, extracellular matrix structural constituent, serine-type peptidase activity, ser-
ine hydrolase activity, serine-type endopeptidase activity, and metallopeptidase activity
(Figure 2C). In the KEGG pathway analysis, the DEGs were grouped in the neuroactive
ligand–receptor interaction, cytokine–cytokine receptor interaction, cAMP signaling path-
way, calcium signaling pathway, and cell adhesion molecules (Figure 2D).
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Figure 2. Gene set enrichment analysis. Performing an enriched analysis of common differentially
expressed genes (DEGs) in terms of Gene Ontology (GO) for biological process (BP), cellular com-
ponent (CC), and molecular function (MF), as well as Kyoto Encyclopedia of Genes and Genomes
(KEGG) signaling pathways. (A) GO-BP. (B) GO-CC. (C) GO-MF. (D) KEGG.

2.3. Survival Curves of 47 Hub Genes and Their Expression Levels in COAD

The survival curves and differential expression profiles of the 47 hub genes are pre-
sented in the Supplementary Figures (Supplementary Figures S1–S3). Here, only the
Kaplan–Meier survival curves and differential expression profiles of the important genes
CDKN2A, CXCL1, CLCA1, MMP3, and MMP1 are shown (Figure 3). According to the
research results, we observed that in CC tissues, the expression level of the CDKN2A gene
exceeds the expression in normal tissues. However, the patients’ survival rates with low
expression outperform those of patients with high expression. Likewise, the expression of
the CXCL1 gene in CC exceeds that in normal tissues, and the patients’ survival rates with
high expression are markedly higher than those with low expression. On the other hand,
the expression level of the CLCA1 gene in CC tissues is lower than in normal tissues, but
the patients’ survival rates with high expression are markedly higher than those with low
expression. Additionally, the expression of the MMP3 and MMP1 genes is upregulated in
CC tissues, and the patients’ survival rates with high expression are markedly higher than
those with low expression.

2.4. PPI Network Construction

To explore the interactions among the 47 hub genes, we initially analyzed them using
the STRING database and subsequently visualized their interactions as a protein–protein
interaction (PPI) network in Cytoscape. The network comprises 29 nodes and 44 edges, as
depicted in Figure 4A. We utilized cytoHubba to analyze the top 15 central genes in the PPI
network (Figure 4B). Based on the findings from the protein–protein interaction network
(PPI) analysis, we have identified notable interactions among 15 genes (CDKN2A, CXCL1,
CLCA1, MMP3, MMP1, ITLN1, NME1, HEPACAM2, GRIK5, AOC3, ULBP2, ACSL6, STC2,
GABRD, and CA4) in CC. These findings suggest that these genes may perform critical
functions in the pathophysiological mechanisms of CC.
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Figure 3. Survival curves and differential expression profiles of important genes. (A) CDKN2A.
(B) CXCL1. (C) CLCA1. (D) MMP3. (E) MMP1.
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Figure 4. PPI network construction. (A) Protein–protein interaction (PPI) network of the 47 hub
genes. (B) cytoHubba was performed to screen the top 15 genes based on previous PPI networks.

2.5. LASSO Regression Analysis

Following LASSO regression analysis, lasso.min identified 23 genes, whereas lasso.1se
identified 18 genes (Figure 5A,B). We generated distinct AUC curves for lasso.min and
lasso.1se (Figure 5C). We then plotted the AUC curves for the 23 selected genes by lasso.min
at one, three, and five years (Figure 5D). We conducted a Kaplan–Meier survival analysis
comparing high-risk and low-risk groups (Figure 5E). We generated a series of three
linked risk factor plots, each displaying unique information: (a) predicted values for each
patient sorted in ascending order, (b) patient survival time with color coding for living and
deceased patients, and (c) heatmap illustrating the gene expression levels for selected genes
in each sample (Figure 5F). Finally, we created a risk forest plot for the 23 selected genes
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(Figure 5G). After conducting LASSO regression, the AUC survival curve for the 23 selected
genes was determined to be 0.81. The AUC prediction for multi-year survival rates yielded
values of 0.8 at one year, 0.76 at three years, and 0.81 at five years. Upon stratifying the
samples into high- and low-risk groups, it became evident from the Kaplan–Meier survival
curves that the low-risk group exhibited notably higher survival rates than the high-risk
group. Furthermore, a three-way interactive visualization of risk factors was developed.
The reliability of the predictive model established by these 23 genes was assessed using a
random forest model, revealing a very small p-value and a concordance index value of 0.79.
These findings collectively indicate the high reliability of the predictive model.
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Figure 5. LASSO regression analysis. (A,B) LASSO regression analysis log lambda. (C) The AUC
curves for lasso.min and lasso.1se. (D) The AUC curves for lasso.min chose genes at one year, three
years, and five years. (E) Kaplan–Meier survival analysis between the high-risk and low-risk groups.
(F) A linked set of three risk factor plots. (G) Cox-forest. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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2.6. Immune Cell Infiltration Analysis

To explore immune infiltration in cancerous and normal tissues within TCGA-COAD,
we analyzed the processed expression matrix using the XCELL algorithm. We then created
differential boxplots for 64 immune cell types (Figure 6A). We further investigated the
relationship between the genes selected by lasso.min and the 64 immune cell types, gener-
ating a correlation heatmap (Figure 6B). Finally, we analyzed the differential expression of
immune checkpoint genes in cancerous and normal tissues of TCGA-COAD and visualized
the results with a corresponding lollipop chart (logFC ≥ 1, p < 0.05) (Figure 6C). According
to the research results, we observed a significant decrease in CD8+ and CD4+ T cells in the
adaptive immune cell population, while regulatory T cells (Tregs) significantly increased.
In the myeloid immune cell population, M1 macrophages showed a significant decrease,
whereas M2 macrophages exhibited a significant increase in CC. Furthermore, neutrophils,
monocytes, dendritic cells, and mast cells showed a significant decrease, while natural
killer (NK) cells showed an increase. In the analysis of the gene correlations selected by
the LASSO model among 64 immune cells, we found that CCBE1, ZBTB7C, TPSG1, and
CLDN23 were positively correlated with the majority of immune cells, whereas GABRE
and TSPEAR were negatively correlated. In the analysis of immune checkpoint expression,
we observed significant upregulation of TNFSF9, VTCN1, CD74, TDO2, TNFSF4, BTNL9,
and CTLA4 in CC cells, while BTNL3, CEACAM1, CD209, CD160, KIR2DL4, BTLA, CD27,
CD96, KIR3DL2, and CD40LG showed significant downregulation.

2.7. Mutation Analysis

To examine the gene mutation status in TCGA-COAD, we used the TCGAmutations
package to retrieve and analyze the data, followed by generating an overview of the gene
mutation landscape (Figure 7A). Additionally, we explored the mutation status of genes
selected by lasso.min and depicted their respective mutation spectrum plot (Figure 7B).
In the analysis of mutations, we found that missense mutations are the most prevalent in
colorectal cancer, with SNP being the most common mutation type. The primary mutated
genes comprise TTN, APC, MUC16, SYNE1, TP53, FAT4, and KRAS. Furthermore, ZBTB7C,
WDR78, CCBE1, WDR72, and MMP3 demonstrate the highest mutation frequencies among
the genes identified by the LASSO regression model.
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Figure 6. Immune cell infiltration analysis. (A) Differential boxplots of the 64 immune cell types
assessed by the XCELL algorithm. (B) Correlation heatmap between genes selected by lasso.min
and the 64 immune cell types. (C) Lollipop chart depicting the differential expression of immune
checkpoint genes.(* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

2.8. Connectivity Map (cMAP) Analysis

To explore potential small molecule drugs with therapeutic potential in colon cancer
patients, 150 upregulated and 150 downregulated differentially expressed genes (DEGs)
were separately entered into the Connectivity Map (cMAP) database to identify small
molecule compounds capable of reversing the expression changes linked to colorectal
cancer-related pathogenic genes. After thorough analysis, the top nine compounds with
the most negative scores, such as ISOX, vorinostat, NVP-AUY922, selumetinib, AS-703026,
THM-I-94, NVP-TAE684, trichostatin-a, and scriptaid, were recognized as potential thera-
peutic agents for colon cancer treatment (Figure 8A). The chemical structures of these nine
small molecule drugs are depicted in Figure 8B.

2.9. Ferroptosis Analysis

To explore the association between colon cancer and ferroptosis, we utilized FerrDB
to gather ferroptosis-related genes. The expression variances of ferroptosis driver genes
(Figure 9A) and suppressor genes (Figure 9B) in the TCGA-COAD dataset were visualized
(logFC ≥ 1, p < 0.05). Subsequently, the associated protein–protein interaction (PPI) network
was depicted (logFC ≥ 2, p < 0.05) (Figure 9C). CytoHubba was used to analyze the top
10 central genes in the PPI network (Figure 9D). In the ferroptosis-related analysis results,
we found that in the ferroptosis-driving genes, the expression of genes such as H19, MIOX,
ALOXE3, NOX4, PVT1, and CDKN2A was significantly upregulated, whereas LIFR, CPEB1,
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and MT1DP were significantly downregulated. In the ferroptosis-suppressing genes,
genes such as CA9, ETV4, LINC01833, HCAR1, TFAP2A, and GDF15 were significantly
upregulated, while MT1G and PDK4 genes were significantly downregulated. Additionally,
in the context of the interaction of ferroptosis genes (logFC > 2) in CC, the top 10 most
important genes were identified as CDKN2A, GDF15, MYCN, SCD, SLC7AL1, PDK4,
NOX4, LCN2, CP, and CA9. 

2 

 Figure 7. Mutation analysis. (A) Overview plot of gene mutations. (B) Mutation spectrum plot of
genes selected by lasso.min.
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3. Discussion

In this study, we obtained and analyzed the TCGA-COAD dataset. Utilizing the
differential analysis R packages DESeq2, edgeR, and limma, we identified 746 upregulated
genes and 1083 downregulated genes, which constitute a highly reliable set of differentially
expressed genes. Subsequently, we used these genes to address several questions through
bioinformatics analyses: What are the significant Gene Ontology (GO) terms and KEGG
signaling pathways in colon cancer (CC)? Which genes in these DEGs are linked to survival
and act as hub genes? How do these hub genes interact? How can they be used for cancer
prediction? What are the correlations between key genes from the prediction model and
tumor microenvironment and gene mutations? How can drug screening be conducted
based on these DEGs? Lastly, what is the relationship between CC and ferroptosis?

The analysis of biological process (BP) enrichment revealed that the differentially
expressed genes (DEGs) are mainly linked to the production of molecular mediators in-
volved in the immune response and immunoglobulin synthesis. These processes are closely
associated with immune evasion in cancer. Producing immune response molecules is a
crucial defense mechanism of the body against pathogens and cancer cells. Nevertheless,
cancer cells can manipulate the production of immune response molecules and the genera-
tion of immunoglobulins through various mechanisms, allowing them to evade immune
system attacks.

Within the cellular component (CC) enrichment analysis, the differentially expressed
genes (DEGs) showed notable enrichment in the immunoglobulin complex, collagen-
containing extracellular matrix, apical plasma membrane, cell projection membrane, and
monoatomic ion channel complex. Immunoglobulin, a crucial blood protein, plays a
significant role in the immune system by recognizing and eliminating pathogens and
abnormal cells. Collagen, a vital structural protein in the extracellular matrix, is crucial
for cell support and structure, and its abnormal accumulation may contribute to tumor
invasion and metastasis. The apical membrane, a cellular surface membrane, is responsible
for maintaining cell morphology and signal transduction, with its abnormal features
potentially linked to enhanced invasiveness in specific cancer cells. The cell projection
membrane, a cell surface structure, influences cell adhesion and movement, playing a
crucial role in tumor invasion and metastasis. Ion channels, protein channels located on the
cell membrane, control the ion balance within and outside the cell, with sodium channels
playing a crucial role in tumor development.

In terms of molecular function (MF) enrichment, the differentially expressed genes
(DEGs) exhibited significant enrichment in metal ion transmembrane transporter activ-
ity, monoatomic ion channel activity, glycosaminoglycan binding, extracellular matrix
structural constituent, serine-type peptidase activity, serine hydrolase activity, serine-type
endopeptidase activity, and metallopeptidase activity. Metal ions have a critical regulatory
function within cells, and dysregulated expression of specific metal ion channel proteins
may be linked to cancer development and progression through the modulation of intracel-
lular and extracellular ion balance, impacting processes like cell proliferation and apoptosis.
Monoatomic ion channel activity entails the specific transport of individual atomic ions (e.g.,
sodium, potassium, calcium) through channel proteins on the cell membrane. Aberrant ion
channel activity can disturb intracellular and extracellular ion balance, potentially foster-
ing cancer progression. Glycosaminoglycans are integral components of the extracellular
matrix, and aberrant glycosaminoglycan binding capacity may be associated with tumor
invasion and metastasis. Certain glycosaminoglycan receptors on cancer cell surfaces can
enhance tumor cell adhesion, invasion, and metastasis. The extracellular matrix provides
structural support outside cells, consisting of various proteins and polysaccharides. De-
fects in extracellular matrix components may promote tumor invasion and metastasis by
influencing cell–tissue interactions. With regard to serine protease activity, serine hydro-
lase activity, serine endopeptidase activity, and metallopeptidase activity, these enzymes
participate in protein degradation and modification. Dysregulated protease activities can
disrupt intracellular signaling pathways, promoting cancer progression.
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The KEGG pathway analysis indicated a significant association of the DEGs with
neuroactive ligand–receptor interaction, cytokine–cytokine receptor interaction, the cAMP
signaling pathway, the calcium signaling pathway, and cell adhesion molecules. The neu-
roactive ligand-receptor interaction and cytokine-cytokine receptor interaction pathways
are vital in cell signaling, governing growth factors, neurotransmitters, and hormones.
Dysregulated signaling may result in uncontrolled cell proliferation, inhibited apopto-
sis, and tumor formation. The cAMP signaling pathway and calcium signaling pathway
regulate intracellular signal transduction and modulate intracellular calcium ion levels.
Abnormal cAMP and calcium signaling are closely associated with cancer initiation and
progression. Cell adhesion molecules are crucial for cell–cell adhesion and interaction,
influencing processes such as cell migration, invasion, and metastasis. These processes
play a crucial role in tumor development and dissemination.

After conducting the log-rank test and single-factor Cox regression analysis (with log
rank p < 0.05 and Cox results p < 0.05), a total of 47 survival-related genes were identified
from the highly credible DEGs. By analyzing the protein–protein interaction (PPI) network,
15 central genes were identified among the 47 hub genes.

The onset of CC involves numerous factors and genes. Processes such as cell growth,
apoptosis, DNA repair, and signal transduction can be impacted by abnormal gene expres-
sion and mutations, resulting in different molecular mechanisms that influence the onset
of CC. The CDKN2A gene encodes two tumor suppressor proteins, p16 and p14, which
play crucial roles in regulating the cell cycle and metabolism in melanoma. Furthermore,
these proteins are closely linked to immune infiltration in the tumor microenvironment [5].
Elevated CDKN2A expression in CC is linked to an unfavorable prognosis. CXCL1 can
promote the migration and invasiveness of breast cancer by activating the transcription of
SOX4 via the NF-κB pathway, resulting in the subsequent epithelial-mesenchymal transi-
tion (EMT) process [6]. CXCL1 expression is increased in CC. Elevated CLCA1 expression
levels can inhibit the invasiveness of colorectal cancer (CRC). CLCA1 may function as a
tumor suppressor by inhibiting the Wnt/β-catenin signaling pathway and the epithelial-
mesenchymal transition (EMT) process [7]. Reduced CLCA1 expression in CC is linked
to a favorable prognosis. MMP1 plays a crucial role in promoting tumor progression in
large cell carcinoma of the lung by inducing fibroblast senescence [8]. MMP3 initially
collaborates with oncogenic KRAS to drive tumorigenesis in pancreatic cancer and activate
the stromal microenvironment. Subsequently, it becomes a key driver in promoting tumor
invasion and progression [9]. Ovarian cancer (OC) cells have been observed to modify
mesothelial cells in visceral adipose tissue by downregulating ITLN1, thereby enhancing
the invasion potential and proliferation of OC cells in the omental microenvironment [10].
These genes collectively influence the onset of CC through their involvement in the cell
cycle, inflammatory response, intercellular signaling, and the tumor microenvironment.
Their abnormal expression and regulatory relationships constitute the complex mecha-
nisms underlying the occurrence, development, and metastasis of CC. In-depth exploration
of these mechanisms is essential for understanding the onset process of CC, identifying
potential therapeutic targets, and developing personalized treatment strategies.

In the field of CC research, accurately predicting the survival prognosis of patients is
crucial for developing personalized treatment plans and providing appropriate medical
care. The objective of this study is to utilize the LASSO regression model to establish a
multi-gene prediction model for predicting the survival prognosis of CC patients. Through
the analysis and integration of multiple genes related to the survival prognosis of CC
patients, we aim to provide a reliable prediction tool for clinical practice, in order to better
understand the disease progression of patients and support medical decision-making,
with the goal of early detection leading to early treatment. In this study, we used the
LASSO regression model to select and evaluate CC-related genes to identify those with
significant predictive capabilities for patient survival prognosis. Compared to traditional
prediction models, the LASSO regression model is highly favored for its ability to effectively
handle high-dimensional data and reduce model complexity. Through this model, we
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successfully identified a set of key genes closely associated with the survival prognosis
of CC patients, providing important gene markers for the construction of the prediction
model. Furthermore, our research revealed that, compared to previous studies, our analysis
not only clarified the key genes related to the survival prognosis of CC but also uncovered
the underlying potential mechanisms behind CC survival prognosis, providing valuable
clues for further in-depth research. Our findings not only expanded the understanding of
CC survival prognosis but also offered a new perspective for personalized treatment of CC
in terms of potential drug targets or diagnostic markers.

The tumor microenvironment (TME) is the origin and residence of tumor cells, compris-
ing not only the tumor cells themselves but also neighboring cells like fibroblasts, immune
cells, inflammatory cells, and vascular cells collectively known as cancer-associated stromal
and immune cells. Moreover, it includes the secretory products of these cells, such as
cytokines, chemokines, and non-cellular components of the extracellular matrix (ECM).
Tumor growth and metastasis are intricately linked to the surrounding environment. Key
features of the tumor microenvironment include hypoxia, chronic inflammation, and im-
mune suppression, which collaboratively enhance the development and growth of tumor
cells. During tumor development, local immune cells play a pivotal role in shaping the com-
position of the tumor microenvironment. Different cell types in the TME can display either
tumor-suppressive or tumor-supportive properties. The diverse immune and stromal cells
in the TME, along with their secretory products and the extracellular matrix, collectively
impact tumor development [11].

There is a notable decrease in CD8+ and CD4+ T cells, along with a significant increase
in regulatory T cells (Tregs), in the adaptive immune cell population in CC. In the myeloid
immune cell population, M1 macrophages show significant downregulation, whereas M2
macrophages exhibit significant upregulation in CC. Moreover, neutrophils, monocytes,
dendritic cells, and mast cells demonstrate significant downregulation, while natural killer
(NK) cells show upregulation in CC across both adaptive and innate immune cell popu-
lations (Figure 6A). These findings illuminate the immune cell composition in the tumor
microenvironment and its potential influence on tumor progression. The alterations in
the immune cell composition documented in CC suggest a complex interplay between
the tumor and the immune system, which may contribute to the immunosuppressive
characteristics of the tumor microenvironment in CC. Moreover, these insights may have
implications for the development of targeted immunotherapies to modulate the immune
landscape in CC. We can target the disparities in immune cell infiltration between colon
cancer and normal intestinal tissue by developing targeted drugs that enhance the activ-
ity of specific immune cells, such as NK cells, CD8 T cells, etc., amplifying the activity
and quantity of these immune cells and consequently eradicating cancer cells to achieve
effective cancer treatment. Immune checkpoint genes (ICGs) are vital in evading self-
reaction and serve as novel targets for developing cancer treatment methods [12]. We
can observe significant up-regulation of TNFSF9 and VTCN1, while BTNL3, CEACAM1,
CD209, CD160, and KIR2DL4 are significantly down-regulated (Figure 6C). TNFSF9 is
significantly up-regulated in pancreatic cancer (PC) and may promote the growth and
metastasis of PC in vivo and in vitro through the Wnt/Snail signaling pathway. Addi-
tionally, TNFSF9 can induce the M2 polarization of macrophages by activating the Wnt
signaling in pancreatic cancer cells, thereby promoting the metastasis of PC [13]. VTCN1
(B7-H4) is highly expressed in many tumor tissues. The biological activity of B7-H4 is
associated with a reduced inflammatory CD4 T cell response, and the correlation between
tumor-associated macrophages expressing B7-H4 and regulatory T cells (Tregs) expressing
FoxP3 in the tumor microenvironment [14]. The human intestinal epithelial cells express
BTNL3, which induces a selective TCR-dependent response in human colonic Vγ4 cells [15].
CEACAM1 serving as an allosteric ligand of TIM-3, is essential for its ability to mediate T
cell suppression. This interaction plays a crucial role in regulating both self-immunity and
anti-tumor immunity [16]. In small cell lung cancer, M1 macrophages are up-regulated in
the CD209-High group. The activation of the CD209 signaling pathway is associated with
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increased infiltration of CD8 T cells, and the activation of the CD209 signaling pathway is
also associated with increased neutrophil infiltration [17]. In patients with hepatocellular
carcinoma (HCC), the intra-tumoral expression of CD160 is decreased in NK cells, but
not in CD8+ T cells [18]. Knocking down KIR2DL4 in human NK cells in vitro can inhibit
their cytotoxicity and also suppress the secretion of tumor necrosis factor α and interferon
γ. Conversely, upregulation of KIR2DL4 can activate the MEK/ERK signaling pathway,
which constitutes an activation pathway for NK cells [19]. Human intestinal epithelial
cells express BTNL3, which triggers a selective TCR-dependent response in human colonic
Vγ4 cells. CEACAM1 acts as an allosteric ligand of TIM-3, essential for mediating T cell
suppression. Conversely, upregulation of KIR2DL4 can activate the MEK/ERK signaling
pathway, an activation pathway for NK cells. Immune checkpoint (ICG) therapy is an
emerging cancer treatment method that modulates the immune system to suppress tumor
growth. This form of treatment involves the use of medications to block tumor cells from
evading immune recognition, enabling the immune system to identify and combat the
tumor cells. The approach has been widely implemented across various cancer types and
has demonstrated promising therapeutic effects. The underlying principle of immune
checkpoint therapy is that the immune system is capable of recognizing and eliminating
abnormal cells, including tumor cells, under normal circumstances. However, tumor cells
often employ immune checkpoints to evade immune system attacks. Immune checkpoints
represent a molecular signaling system that regulates immune system activity, preventing
it from targeting normal tissues. Through interaction with these checkpoints on immune
cells, tumor cells can evade immune recognition and subsequent attack. The key to im-
mune checkpoint therapy lies in blocking these signals, thus reversing immune system
suppression and reinstating its ability to target and attack tumor cells. An important
advantage of immune checkpoint therapy is its lasting therapeutic effects. In comparison
to conventional treatments such as radiotherapy and chemotherapy, this approach not only
diminishes tumor volume but also triggers sustained immune responses against the tumor.
This strategy can lead to the development of targeted therapeutic drugs for alterations in
immune checkpoint expression in colon cancer, offering newfound hope and opportunities
for numerous CC patients, alleviating their suffering.

Effective drug therapies for CC treatment are currently insufficient. Thus, there is
an urgent need to investigate potential drugs for this purpose. Our study offers a fresh
perspective by utilizing cMAP analysis to link CC-related pathogenic genes in the search
for potential compounds for CC treatment. Through cMAP analysis, we have identified
candidate drugs, including ISOX, vorinostat, NVP-AUY922, selumetinib, AS-703026, THM-
I-94, NVP-TAE684, trichostatin-a, and scriptaid. It is worth noting that ISOX exhibits the
highest negative enrichment scores in the cMap analysis, indicating its strong potential in
reversing the expression of relevant pathogenic genes in CC.

Notably, in cMap analysis, ISOX shows the highest negative enrichment scores, sug-
gesting a significant reversal of the expression of pathogenic genes in CC. ISOX, also known
as CAY10603, is a selective inhibitor of histone deacetylase 6 (HDAC6) [20]. ISOX signif-
icantly inhibits the survival of osteosarcoma cells in a dose-dependent manner. It also
dose-dependently inhibits proliferation, colony formation, migration, and invasion. Further
in vivo experiments using animal models demonstrate that ISOX treatment significantly
suppresses tumor growth. Flow cytometry analysis indicates that ISOX treatment induces
increased infiltration of CD8+ T cells into the tumor [21]. ISOX inhibits HDAC6, leading to
a significant reduction in c-Jun N-terminal kinase (JNK) and c-Jun phosphorylation, pre-
ceding its inhibitory effect on the growth of glioma cells. These effects are attributed to the
HDAC6 inhibitor-induced inhibition of mitogen-activated protein kinase 7 (MKK7), which
has been identified as crucial in JNK activation and carcinogenesis in glioma cells [22].
Thus, it is speculated that early administration of ISOX in CC patients may inhibit the
onset and advancement of the disease, consequently leading to a substantial extension of
patients’ lifespans.
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Ferroptosis, an iron-dependent regulated cell death pathway induced by the toxic
buildup of lipid peroxides on cell membranes, shows significant promise in cancer treat-
ment. Our study revealed the critical involvement of CDKN2A in CC. Elevated CDKN2A
expression in CC is notably linked to a poor prognosis (Figure 3). Furthermore, we ob-
served a close association between CDKN2A and ferroptosis (Figure 9D). The CDKN2A
gene encodes two proteins, p14 and p16. p14 determines cell fate by indirectly stabilizing
p53, while p16 suppresses tumor formation by inhibiting CDK4/6 [23,24]. The expression
of the CDKN2A gene can result in cell cycle arrest at the G1 phase, leading to the inhi-
bition of cell proliferation and the promotion of tumor cell apoptosis [25]. Research has
indicated that the loss of the CDKN2A gene alters the lipid composition of glioblastoma
multiforme (GBM), rendering GBM cells sensitive to lipid peroxidation and ferroptosis.
This loss also reduces the storage of oxidative polyunsaturated fatty acids (PUFAs) in lipid
droplets. Furthermore, the loss of P16 alone is sufficient to make GBM cells sensitive to
ferroptosis [26]. We can consider developing targeted drugs against the CDKN2A gene,
which could promote the development of cancer cells towards the ferroptosis pathway.
This novel treatment approach has the potential to lead the way in revolutionizing the field
of cancer treatment, bringing new hope and possibilities for patients. This cutting-edge
research will not only drive innovation in treatment methods but also pave the way for the
application of ferroptosis in cancer treatment, offering patients more possibilities and hope.

4. Materials and Methods
4.1. Data Collection

The mRNA expression profiles of 471 Colon Adenocarcinoma (COAD) and 41 normal
tissues were obtained from the TCGA Genomic Data Commons (GDC) database (https:
//portal.gdc.cancer.gov/, accessed on 17 December 2023). To retrieve and organize data,
the R package TCGAbiolinks can be employed. However, detailed clinical and pathological
information was available for only 424 colon cancer samples, and the comprehensive
clinical characteristics of these patients are presented in Table 1. Patients with missing
or incomplete follow-up data were excluded from the survival analysis. Subsequently,
survival analysis for 424 COAD patients was further performed to investigate the relevant
differentially expressed genes.

Table 1. Clinical features in COAD patients.

Variables Patients Percentages (%)

gender
male 298 52.19

female 271 47.46

A/D
Alive 442 77.41

Dead 127 22.24

Age, years
≦69 272 47.80

>69 297 52.20

T stage

T1 11 1.93

T2 95 16.64

T3 390 68.30

T4 39 6.83

N stage

N0 335 58.67

N1 129 22.59

N2 105 18.39

M stage

M0 416 72.85

M1 81 14.19

MX 64 11.21

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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4.2. Performing Differential Gene Expression Analysis Using the Three Major R Packages,
DESeq2, edgeR, and Limma

DESeq2, edgeR, and limma are different R packages for downstream differential gene
expression analysis. DESeq2 (differential expression analysis of RNA-Seq data) is based on
a negative binomial distribution model. It considers differences between samples and the
variability of gene expression using the Bayesian method. edgeR (Empirical Analysis of
Digital Gene Expression Data in R) is also based on a negative binomial distribution model.
It uses a Bayesian method to improve stability of estimates by adapting the estimation
of within-group variability. Limma (linear models for microarray analysis) is based on
a linear model and uses the Bayesian method to estimate differential variances for each
gene. Utilizing three distinct R packages for the screening of differentially expressed genes
is intended to improve the credibility and robustness of the findings, thereby facilitating
more accurate subsequent analyses, including enrichment and survival analyses, thus
yielding more precise results. Genes exhibiting a Log2-fold change ≥ 2 were categorized
as differentially expressed genes (DEGs), with statistical significance in gene expression
determined by a p value < 0.05. We classified the differential analysis results from the three
major R packages into upregulated and downregulated genes and took the intersection.
The genes from this intersection were used for subsequent analyses.

4.3. Functional Enrichment Analysis

We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses to ascertain the biological functions of the differ-
entially expressed genes (DEGs). Visualizations were conducted using R packages such
as clusterProfiler and ggplot2, with a significance threshold set at p < 0.05, FDR < 0.01
(Table 2).

4.4. Survival Analysis

We performed survival analysis using two different methods, the log-rank test and
single-factor Cox regression analysis, to select survival-related genes (log_rank_p < 0.05
and cox_results_p < 0.05). We conducted KM analysis and drew survival curves using
the R packages survival and survminer. We then took the intersection of the selected
survival-related genes and the previously identified DEGs to obtain 47 hub genes. We
utilized the ggplot2 package to illustrate the KM plots of these 47 hub genes and visualized
the expression levels of these genes in the TCGA-COAD dataset. The enrichment status of
each entry in the GO analysis of these 47 hub genes has been summarized (Table 3).

4.5. PPI Network Construction

After inputting 47 hub genes into STRING (https://string-db.org/, accessed on 30
January 2024) (version 12.0), a protein–protein interaction (PPI) network was predicted. The
minimum required interaction score was based on 0.15. Then, Cytoscape (version 3.10.0)
was used to visualize the PPI network. We adjusted the node sizes in the PPI network
based on their degrees, using log2FC to change node colors (red for upregulation and
blue for downregulation), and employed the combined_score to regulate the thickness
and color gradient of the edges. To identify crucial nodes in a biological network, the
cytoHubba plugin can implement the degree algorithm to assess the connectivity of network
nodes. This method aids in the identification of highly connected nodes that often possess
significant influence within the network. Leveraging cytoHubba and the degree algorithm,
we can gain vital insights into the structural and functional attributes of biological networks,
thereby contributing to the discovery of potential biomarkers, drug targets, and disease-
associated genes.

https://string-db.org/
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Table 2. Important terms in GO and KEGG enrichment results.

Name Count % p-Value Genes

GO-BP

production of molecular
mediator of immune

response
62 5.09 9.13 × 10−13

CD22, PGC, SLC7A5, AICDA, CD160, CCR2, TREM1, VPREB3, CD36, APOA2, SLAMF9, TLR3, KLK7, MZB1, KIR2DL4, ELANE,
IGKV4-1, IGKV6-21, IGKV3D-20, IGKV3D-11, IGKV1D-42, IGLV4-69, IGLV8-61, IGLV4-60, IGLV10-54, IGLV1-50, IGLV5-48,

IGLV7-46, IGLV5-45, IGLV1-44, IGLV7-43, IGLV2-33, IGLV2-14, IGLV3-10, IGLV3-9, IGLV4-3, TRDV1, IGKV3D-15, IGKV6D-21,
IGKV2D-30, IGKV1-6, IGKV3-20, IGKV1D-33, IGKV1-17, IGKV1-8, IGKV1-16, MIF, IGKV2-24, IGKV2D-24, IGKV1-9, IGKV1-39,
IGKV2D-28, IGKV1D-17, IGKV3-7, IGKV2-30, IGKV2D-29, IGKV1-12, IGKV2-28, IGKV1-27, IGKV1D-39, IGLV2-8, IGKV1D-12

immunoglobulin
production 49 4.03 1.29 × 10−17

CD22, AICDA, VPREB3, MZB1, IGKV4-1, IGKV6-21, IGKV3D-20, IGKV3D-11, IGKV1D-42, IGLV4-69, IGLV8-61, IGLV4-60,
IGLV10-54, IGLV1-50, IGLV5-48, IGLV7-46, IGLV5-45, IGLV1-44, IGLV7-43, IGLV2-33, IGLV2-14, IGLV3-10, IGLV3-9, IGLV4-3,
TRDV1, IGKV3D-15, IGKV6D-21, IGKV2D-30, IGKV1-6, IGKV3-20, IGKV1D-33, IGKV1-17, IGKV1-8, IGKV1-16, IGKV2-24,

IGKV2D-24, IGKV1-9, IGKV1-39, IGKV2D-28, IGKV1D-17, IGKV3-7, IGKV2-30, IGKV2D-29, IGKV1-12, IGKV2-28, IGKV1-27,
IGKV1D-39, IGLV2-8, IGKV1D-12

GO-CC

immunoglobulin complex 72 5.58 5.46696 × 10−49

CD79A, JCHAIN, IGKV4-1, IGKV6-21, IGKV3D-20, IGKV3D-11, IGKV1D-42, IGLV4-69, IGLV8-61, IGLV4-60, IGLV10-54, IGLV1-50,
IGLV5-48, IGLV7-46, IGLV5-45, IGLV1-44, IGLV7-43, IGLV2-33, IGLV2-14, IGLV3-10, IGLV3-9, IGLV4-3, IGLC7, IGHA2, IGHA1,

IGHV6-1, IGHV2-5, IGHV3-7, IGHV3-11, IGHV3-13, IGHV3-15, IGHV3-21, IGHV3-23, IGHV3-35, IGHV4-39, IGHV3-48, IGHV3-49,
IGHV5-51, IGHV3-53, IGHV1-58, IGHV3-66, IGHV3-73, IGKV3D-15, IGHV4-59, IGHV3-74, IGKV6D-21, IGHV3-72, IGKV2D-30,

IGKV1-6, IGKV3-20, IGKV1D-33, IGKV1-17, IGKV1-8, IGKV1-16, IGKV2-24, IGKV2D-24, IGKV1-9, IGKV1-39, IGKV2D-28,
IGKV1D-17, IGKV3-7, IGKV2-30, IGKV2D-29, IGKV1-12, IGKV2-28, IGKV1-27, IGKV1D-39, IGLL5, IGLV2-8, IGKV1D-12,

IGHV7-4-1, IGHV3-64D

collagen-containing
extracellular matrix 69 5.35 3.37778 × 10−13

COL11A1, NTN1, FGFR2, COL19A1, ADAMTS2, CMA1, CTSG, BMP7, LAMA1, SRPX, SRPX2, SFRP1, COMP, WNT2, PTPRZ1,
SERPINE1, OGN, CXCL12, COL1A1, COL7A1, ANGPTL1, MFAP2, MMP8, TGFBI, CLU, ITIH5, COL10A1, F13A1, AMELX, FGL2,

GDF15, MATN3, ADAMDEC1, CILP, MMRN1, INHBE, DPT, AHSG, HAPLN1, HMCN2, NCAM1, SPARCL1, ABI3BP, ACAN,
AZGP1, CLEC3B, EDIL3, SHH, CTHRC1, VWA2, MFAP4, KRT1, TNXB, FGB, ANGPTL7, COL6A5, ZG16, F2, BGN, EMILIN3,

ANGPTL5, VWC2, PRELP, ELANE, COL4A6, MFAP5, EGFL6, VIT, MMP28

apical plasma membrane 68 5.28 9.77371 × 10−14

SLC13A2, CEACAM7, DPEP1, CLCA4, CASR, SLC9A3, CYBRD1, ABCB11, CDHR2, CA12, CEACAM1, PTPRH, KCNK2, SLC15A1,
SLC4A11, SI, SLC26A3, CDHR5, SLC7A5, AQP8, FOLR1, CLIC5, SLC9A2, PAPPA2, ABCG2, TRPM6, ECRG4, CNTFR, SLC17A1,

ATP1B2, SLC6A6, SLC14A2, CBLIF, CD36, PRKG2, SLC4A10, ANK2, SLC17A4, ATP6V0D2, SLC26A2, KCNMA1, KCNB1,
SLC5A11, STC1, IL6R, PTH1R, CD300LG, AQP5, CLDN1, SCNN1G, MYO1A, CA4, NAALADL1, SLC22A11, SCNN1B, P2RY1,

SLC23A1, KISS1, MAL, SPTBN2, SLC6A19, SLC26A9, OXTR, SAPCD2, P2RY4, P2RX2, SLC6A14, GPIHBP1

cell projection membrane 51 3.95 6.88773 × 10−8

DPEP1, PHLPP2, PSD, SLC9A3, CNGB1, CYBRD1, CDHR2, ITGA8, FAP, CEACAM1, PTPRH, EPB41L3, TESC, SLC26A3, CDHR5,
BMX, GABRE, SLC7A5, AQP8, CA9, FOLR1, BVES, GABRG2, ABCG2, TRPM6, ATP1B2, SLC6A6, PDE6A, CD36, SLC17A4,

SLC7A11, SLC26A2, KCNB1, PDE9A, S100P, HHIP, GPER1, PRKCB, CA4, FAM107A, P2RY12, DRD5, GAP43, SLC6A19, TSPEAR,
ITLN1, DDN, MAPT, CYS1, NME1, SSTR3

monoatomic ion channel
complex 45 3.49 4.70643 × 10−8

BEST2, TRPC7, CNGB1, KCNK2, GABRE, SLC17A7, GRIN2D, GRIK5, CLIC5, GABRG2, CASQ2, OLFM3, BEST3, DPP6, SCN7A,
CACNG8, BEST4, CNGA3, KCNMB1, SCN2B, KCNA6, GRIA4, SCN3A, KCNJ16, KCNMA1, KCNB1, GRIK3, HTR3A, SCNN1G,
SCN11A, SCNN1B, SCN9A, LRRC8E, KCNG3, SCN4B, KCNA3, SLC17A8, GRIN2A, CLCNKB, KCNIP4, HTR3E, GABRD, VWC2,

TMEM249, GRIN2B
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Table 2. Cont.

Name Count % p-Value Genes

GO-MF

metal ion transmembrane
transporter activity 57 4.73 8.3773 × 10−8

SLC13A2, SLC11A1, ATP1A2, SLC9A3, ATP2B3, TRPC7, SLC4A4, KCNK2, SLC4A11, SLC17A7, GRIN2D, GRIK5, CLDN16,
SLC9A2, SLC5A7, SLC8A2, TRPM6, SLC17A1, SLC6A6, SNAP25, SCN7A, CACNG8, KCNN3, SLC4A10, KCNMB1, SLC17A4,

SCN2B, GPM6A, KCNA6, SCN3A, KCNJ16, KCNMA1, SLC13A3, KCNB1, SLC5A11, GRIK3, SLC30A8, PKD1L2, SCNN1G, TRPV3,
SCN11A, SCNN1B, SCN9A, SLC23A1, KCNG3, TMEM37, KCNK3, SCN4B, KCNA3, SLC17A8, SLC9A9, GRIN2A, KCNH8,

KCNIP4, SLC30A10, SLC6A14, GRIN2B

monoatomic ion channel
activity 57 4.73 1.48449 × 10−7

CLCA1, CLCA4, BEST2, TRPC7, CNGB1, KCNK2, SLC4A11, GABRE, SLC17A7, GRIN2D, GRIK5, P2RX1, CLIC5, GABRG2, TRPM6,
BEST3, SNAP25, SCN7A, CACNG8, BEST4, KCNN3, CNGA3, KCNMB1, SCN2B, GPM6A, KCNA6, GRIA4, SCN3A, KCNJ16,

KCNMA1, KCNB1, GRIK3, PKD1L2, HTR3A, SCNN1G, TRPV3, SCN11A, SCNN1B, SCN9A, LRRC8E, KCNG3, TMEM37, KCNK3,
ANO5, SLC26A9, SCN4B, KCNA3, SLC17A8, OTOP2, GRIN2A, KCNH8, CLCNKB, KCNIP4, HTR3E, GABRD, P2RX2, GRIN2B

glycosaminoglycan
binding 41 3.41 1.40577 × 10−8

ANOS1, COL11A1, CCN5, FGFR2, EPYC, SERPIND1, CTSG, BMP7, CEMIP, SFRP1, CCN4, COMP, PTN, CCL8, CCN6, JCHAIN,
LYVE1, STAB2, HAPLN1, RSPO2, HABP2, ACAN, PCOLCE2, CLEC3B, SHH, TNXB, RSPO1, CXCL11, CXCL8, CEL, REG3A, ZG16,

F2, GREM2, BGN, SLIT3, PRELP, SPOCK3, ELANE, VIT, CCL23

extracellular matrix
structural constituent 37 3.07 9.57517 × 10−11

ANOS1, COL11A1, COL19A1, LAMA1, SRPX, SRPX2, COMP, OGN, COL1A1, COL7A1, MFAP2, TGFBI, COL10A1, AMELX, FGL2,
MATN3, CHI3L1, CILP, MMRN1, DPT, HAPLN1, HMCN2, ABI3BP, ACAN, EDIL3, CTHRC1, MFAP4, TNXB, FGB, COL6A5, BGN,

EMILIN3, MUC6, PRELP, COL4A6, MFAP5, MUC5AC

serine-type peptidase
activity 36 2.99 1.1059 × 10−8

PRSS22, TLL1, FAP, CMA1, PCSK5, MMP11, CTSG, PRSS33, TPSG1, MMP8, PLAU, PCSK2, MASP1, KLK10, KLK8, DPP6, MMP7,
MMP13, TMPRSS13, CORIN, HABP2, MMP3, TMPRSS3, MMP10, TMPRSS5, KLK6, KLK7, PCSK9, F2, RELN, MMP1, ELANE,

CFD, PRSS41, PRSS56, PRSS2

serine hydrolase activity 36 2.99 1.79471 × 10−8
PRSS22, TLL1, FAP, CMA1, PCSK5, MMP11, CTSG, PRSS33, TPSG1, MMP8, PLAU, PCSK2, MASP1, KLK10, KLK8, DPP6, MMP7,

MMP13, TMPRSS13, CORIN, HABP2, MMP3, TMPRSS3, MMP10, TMPRSS5, KLK6, KLK7, PCSK9, F2, RELN, MMP1, ELANE,
CFD, PRSS41, PRSS56, PRSS2

serine-type endopeptidase
activity 34 2.82 1.19537 × 10−8

PRSS22, TLL1, FAP, CMA1, PCSK5, MMP11, CTSG, PRSS33, TPSG1, MMP8, PLAU, PCSK2, MASP1, KLK10, KLK8, MMP7, MMP13,
TMPRSS13, CORIN, HABP2, MMP3, TMPRSS3, MMP10, TMPRSS5, KLK6, KLK7, PCSK9, F2, MMP1, ELANE, CFD, PRSS41,

PRSS56, PRSS2

metallopeptidase activity 32 2.66 1.54386 × 10−7
PDPEP1, CLCA1, CLCA4, TLL1, ADAMTS6, TRHDE, ADAMTS2, MMP11, MEP1A, PAPPA2, MMP8, CPXM2, XPNPEP2, CPA4,
ADAMDEC1, CPM, MMP7, MMP13, MEP1B, ADAM12, ADAM33, MMP3, ADAMTS12, CPB1, MMP10, ANPEP, NAALADL1,

KLK7, LVRN, MMP1, MMP28, PRSS2
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Table 2. Cont.

Name Count % p-Value Genes

KEGG

Neuroactive
ligand-receptor interaction 61 3.87 1.61 × 10−11

CHRM2, OXTR, THRB, NPFFR1, GRIK5, CHRM4, GRIK3, PTH1R, HTR4, ADRA1A, GHR, HTR7, UCN2, ADORA3, CTSG, PRSS2,
INSL5, LYNX1, EDN2, AVPR1B, EDN3, GLP2R, NPY1R, TACR2, SSTR2, F2, SSTR3, GABRG2, SSTR5, ADRB3, AGTR1, NPSR1,

CALCA, ADCYAP1R1, GRP, LPAR1, GRIN2A, APELA, P2RY4, CNR2, CNR1, NPY, P2RY1, PENK, GABRE, GABRD, DRD5, GRIA4,
P2RY14, HTR1D, SCTR, GCG, GRIN2B, APLN, GRIN2D, KISS1, PYY, P2RX2, SST, P2RX1, VIP

Cytokine-cytokine receptor
interaction 41 2.60 7.87972 × 10−6

CCL13, CNTFR, CSF3, CSF2, CXCL8, TNFRSF13B, IL24, CXCR5, CXCL17, CXCL1, CXCL3, CXCL2, CXCL5, GHR, CCL8,
TNFRSF17, CCL19, AMH, IL6R, CCR2, IL11, CCL23, TNFRSF12A, CCL21, GDF15, OSM, LIFR, PPBP, INHBA, BMP7, BMP5,

INHBE, EDAR, BMP3, IL1A, CXCL11, CXCL12, IL23A, TNFSF9, CCL28, IL17C

cAMP signaling pathway 35 2.22 3.09924 × 10−6
CHRM2, OXTR, ADCYAP1R1, HHIP, ATP1A2, HTR4, ADCY5, GRIN2A, PLN, CREB3L3, NPY, PLCE1, TNNI3, CNGA3, AMH,

BVES, PRKACB, GRIA4, DRD5, EDN2, EDN3, HTR1D, NPY1R, ATP2B3, GCG, ATP1B2, SSTR2, GRIN2B, GRIN2D, SSTR5, SST, VIP,
KCNK2, MYL9, CNGB1

Calcium signaling
pathway 31 1.97 0.000983789

CHRM2, OXTR, HTR4, ADRA1A, SLC8A2, MYLK, GRIN2A, HTR7, PLN, FGF20, PLCE1, NOS1, PRKACB, DRD5, PRKCG,
AVPR1B, PRKCB, TACR2, ATP2B3, VEGFD, GRIN2B, GRIN2D, ADRB3, P2RX2, P2RX1, FGF19, CASQ2, AGTR1, PLCD4, PLCD1,

FGFR2

Cell adhesion molecules 25 1.59 8.07266 × 10−5 NLGN1, NRXN1, VTCN1, CLDN2, CLDN1, CDH3, SLITRK2, MPZ, SLITRK3, CLDN23, NCAM1, MADCAM1, JAM2, NTNG1,
CADM3, NEGR1, CLDN11, IGSF11, CLDN14, CLDN8, ITGA8, CNTN1, CNTN2, CLDN16, CD22



Int. J. Mol. Sci. 2024, 25, 3954 20 of 23

Table 3. The enrichment status of 47 hub genes in the (GO) analysis.

Name Genes

GO-BP
production of molecular mediator of immune response IGKV2-24, IGKV2D-29, IGLV7-43, IGLV8-61

immunoglobulin production IGKV2-24, IGKV2D-29, IGLV7-43, IGLV8-61

GO-CC

immunoglobulin complex IGKV2-24, IGKV2D-29, IGLV7-43, IGLV8-61

collagen-containing extracellular matrix PRELP

apical plasma membrane CA4

cell projection membrane CA4, GABRE, NME1, TSPEAR, ITLN1

monoatomic ion channel complex GABRD, GABRE, GRIK5

GO-MF

metal ion transmembrane transporter activity GRIK5

monoatomic ion channel activity GABRD, GABRE, GRIK5, CLCA1

glycosaminoglycan binding PRELP

extracellular matrix structural constituent PRELP

serine-type peptidase activity MMP1, MMP3, TPSG1

serine hydrolase activity MMP1, MMP3, TPSG1

serine-type endopeptidase activity MMP1, MMP3, TPSG1

metallopeptidase activity MMP1, MMP3, CLCA1

IGKV2-24, IGKV2D-29, IGLV7-43, IGLV8-61, PRELP, CA4, GABRE, NME1, TSPEAR, ITLN1, GABRD, GRIK5, CLCA1, MMP1,
MMP3, TPSG1 (Summarize: A total of 16 genes)

4.6. LASSO Regression Analysis

We performed LASSO (Least Absolute Shrinkage and Selection Operator) regression
analysis on the 47 hub genes. We used the glmnet package to build a LASSO model. We
then chose an appropriate lambda value to build the model, where the size of lambda
determines the number of genes selected for the model. Two dashed lines indicate two
special lambda values: lambda.min and lambda.1se. The lambda values between these
two are considered suitable. The model built with lambda.1se is the simplest, with fewer
genes used, while lambda.min has slightly higher accuracy and uses a greater number of
genes. We chose to use lambda.min to build the model. We used the pROC and ggplot2
packages to plot ROC curves for lambda.min and lambda.1se. The AUC value, ranging
from 0 to 1, reflects the model’s performance—closer to 1 indicates better performance. We
then utilized the survminer, survival, and timeROC packages to plot time-ROC curves. We
employed the ggrisk package to construct a linked three-panel plot of risk factors.

4.7. Immune Cell Infiltration Analysis

We utilized the IOBR package to perform immune infiltration analysis and employed
the xCell method to calculate immune cell infiltration, thereby exploring the immune
microenvironment of the disease [27]. The results of immune infiltration were visualized
using the ggplot2 package. We identified immune checkpoint genes through a literature
review and studied their differential expression in TCGA-COAD. We then utilized ggplot2
and ggpubr for visualization.

4.8. Mutation Analysis

We used the R package TCGAmutations from GitHub to retrieve the data and visual-
ized the data using the maftools package.

4.9. Connectivity Map (cMAP) Analysis

CMAP (https://clue.io) is a gene expression signature-based database that elucidates
relationships between diseases, genes, and small molecule compounds [28–31]. In this

https://clue.io
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study, 150 upregulated and 150 downregulated differentially expressed genes (DEGs) from
the TCGA-COAD dataset were separately incorporated into the cMAP online database to
identify potential small molecule drugs for the treatment of colon cancer. Ultimately, nine
compounds with an enrichment score less than −90 were identified.

4.10. Ferroptosis Analysis

Ferroptosis is an iron-dependent regulated cell death mechanism closely associated
with cancer. The process of ferroptosis is complex. In order to investigate the relationship
between colon cancer and ferroptosis, we downloaded the driver genes and suppressor
genes from the FerrDB (http://www.zhounan.org/ferrdb/current/) database for analysis
of the expression changes in these genes. We then used ggplot2 and ggpubr packages
for visualization.

5. Conclusions

In summary, we conducted differential gene expression (DEGs) and enrichment analy-
ses utilizing the TCGA-COAD dataset. We developed a survival-related gene risk model
through LASSO regression to accurately predict the prognosis of CC patients. Furthermore,
we investigated the immune microenvironment, predicted small molecule drugs, and
explored ferroptosis in CC. These results can significantly contribute to the development of
therapeutic drugs for CC.
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