
Citation: Yasuma, T.; Gabazza, E.C.

Cell Death in Acute Organ Injury and

Fibrosis. Int. J. Mol. Sci. 2024, 25,

3930. https://doi.org/10.3390/

ijms25073930

Received: 9 March 2024

Accepted: 25 March 2024

Published: 1 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Editorial

Cell Death in Acute Organ Injury and Fibrosis
Taro Yasuma 1,2 and Esteban C. Gabazza 1,*

1 Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174,
Tsu 514-8507, Japan; t-yasuma0630@clin.medic.mie-u.ac.jp

2 Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine,
Edobashi 2-174, Tsu 514-8507, Japan

* Correspondence: gabazza@doc.medic.mie-u.ac.jp

Tissue fibrosis is characterized by the excessive accumulation of extracellular matrix
in various organs, including the lungs, liver, skin, kidneys, pancreas, and heart, ulti-
mately leading to organ failure [1,2]. This fibrotic process may be triggered by tissue
injury resulting from diverse mechanisms such as infection, trauma, metabolic disorders,
wounds, acute or chronic inflammation, autoimmune disorders, cancer, or unknown mech-
anisms [1]. Following injury, an abnormal tissue repair mechanism ensues, marked by the
enhanced accumulation of fibroblasts and/or myofibroblasts within the affected organ,
which overproduce extracellular matrix proteins [3]. Various cell types, including parenchy-
mal epithelial cells, vascular endothelial cells, and cells from the innate or acquired immune
systems, participate in this fibrotic process by secreting factors that recruit and activate
fibroblasts to produce extracellular matrix proteins [4].

Importantly, during tissue injury and fibrosis, parenchymal cells undergo cell death,
leading to their replacement by collagen-producing cells, thereby exacerbating the fibrotic
process [5–8]. Profibrotic cytokines such as transforming growth factor-β1 (TGF-β1) pro-
mote the production and secretion of extracellular matrix proteins and may also cause
parenchymal cell apoptosis, further contributing to tissue sclerosis [9]. TGF-β1 has been
reported to induce alveolar epithelial cell apoptosis in lung fibrosis and hepatocytes in liver
cirrhosis [10]. Increased levels of TGF-β1 have also been implicated in the pathogenesis of
fibrosis in several organs in patients with diabetes mellitus [11,12]. TGF-β1 may induce
the apoptosis of insulin-producing β-cells, increase insulin resistance contributing to the
acceleration of diabetes mellitus, or induce the apoptosis of podocytes and renal tubular
epithelial cells contributing to the pathogenesis of diabetic nephropathy [9,11].

Cell death is indispensable for numerous physiological processes, including embryonic
development, tissue homeostasis, and immune responses [13]. During embryogenesis,
apoptosis eliminates superfluous cells, shapes developing tissues, and regulates organ
morphogenesis [13,14]. In adult organisms, programmed cell death maintains tissue
integrity by eliminating damaged or senescent cells, thereby preventing the accumulation
of potentially harmful cellular debris. Moreover, cell death serves as a defense mechanism
against pathogens, facilitating the clearance of infected cells and promoting immune
surveillance [14]. Cell death can occur through several mechanisms including apoptosis,
pyroptosis, necrosis, and autophagy [13].

The death of parenchymal cells has been implicated in the pathogenesis of organ
fibrosis [5,15]. Dead cells are replaced by fibroblasts, which perpetuate fibrosis by producing
and releasing extracellular matrix proteins [5]. Furthermore, the progression of fibrosis
is often preceded by acute tissue injury crises, such as acute exacerbation of interstitial
lung disease and acute kidney injury, which are associated with an increased death of
parenchymal and vascular endothelial cells [16–18].

The amelioration of organ injury/fibrosis by inhibitors of apoptosis or pyroptosis further
supports the implication of cell death in the pathogenesis of tissue injury/fibrosis [19,20]. For
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example, the inhibition of pyroptosis of bladder epithelial cells improves neurogenic blad-
der fibrosis, lung overexpression of matrix metalloproteinase-2 has been shown to mitigate
lung fibrosis by blocking apoptosis of lung epithelial cells, and selective cannabinoid type
II receptors, which are known to block apoptosis, protect against inflammatory response in
endotoxin-induced acute lung injury and hepatic ischemic/reperfusion injury [21–25].

The resistance of fibroblasts or myofibroblasts to cell death has also been reported
to contribute to the progression of fibrosis [26]. Some drugs undergoing clinical trials
accelerate the apoptosis of myofibroblasts [27–29]. However, it is worth noting that the
injury or apoptosis of fibroblasts/myofibroblasts may also be detrimental under certain
environmental or pathological conditions. For example, excessive mechanical stress, aging,
or hypoxia can cause sublethal injury or the apoptosis of anterior cruciate ligament fibrob-
lasts, hindering fibroblast cell motility and ligament regeneration [30]. An improvement
in fibroblast motility or survival has been shown to protect and accelerate the healing of
the anterior cruciate ligament [31–33]. In addition, components of extracellular matrix
proteins may also be important to protect some organ normal resident cells from injury
and apoptosis. For example, a previous study has shown that the presence of elastin in the
skin may be important to protect against the loss of melanocytes in vitiligo [34]. Apoptosis
caused by immune cells is involved in the loss of melanocytes in vitiligo conditions [35].

In summary, tissue fibrosis, triggered by various insults, involves excessive extracellu-
lar matrix accumulation leading to organ dysfunction. Profibrotic cytokines such as TGF-β1
promote matrix production and the apoptosis of parenchymal cells, worsening fibrosis.
Cell death, vital for development and immunity, contributes to fibrosis progression by
replacing dead cells with collagen-producing fibroblasts. Strategies targeting cell death
pathways offer potential in mitigating fibrosis, but caution is needed due to its dual role in
tissue repair and pathology.
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