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Abstract: Microglial cells, the immune cells of the central nervous system, are key elements regulating
brain development and brain health. These cells are fully responsive to stressors, microenvironmental
alterations and are actively involved in the construction of neural circuits in children and the ability
to undergo full experience-dependent plasticity in adults. Since neuroinflammation is a known
key element in the pathogenesis of COVID-19, one might expect the dysregulation of microglial
function to severely impact both functional and structural plasticity, leading to the cognitive sequelae
that appear in the pathogenesis of Long COVID. Therefore, understanding this complex scenario
is mandatory for establishing the possible molecular mechanisms related to these symptoms. In
the present review, we will discuss Long COVID and its association with reduced levels of BDNF,
altered crosstalk between circulating immune cells and microglia, increased levels of inflammasomes,
cytokines and chemokines, as well as the alterations in signaling pathways that impact neural synaptic
remodeling and plasticity, such as fractalkines, the complement system, the expression of SIRPα and
CD47 molecules and altered matrix remodeling. Together, these complex mechanisms may help us
understand consequences of Long COVID for brain development and its association with altered
brain plasticity, impacting learning disabilities, neurodevelopmental disorders, as well as cognitive
decline in adults.

Keywords: neuroinflammation; neuroplasticity; microglial function; critical periods; neurodegenerative
diseases; SARS-CoV-2

1. Introduction

Neuroinflammation is mediated by reactive microglia and astrocytes in response
to peripheral immune cell trafficking and plays a significant role in pathophysiological
mechanisms of the acute phase of COVID-19 [1,2]. While astrocytes, but not microglia,
are identified as the primary target and viral reservoir during SARS-CoV-2 infection [3],
disruptions in cerebral homeostasis, including the potential of vascular damage, can alter
microglial functional properties. Microglia dysregulation has implications for development
and neuroplasticity across different life stages, including critical periods of neural circuitry
development and the maintenance of healthy synapses in adults (reviewed in [4]. Under-
standing the neural damage induced by viral infections during the acute phase is crucial
for unraveling the mechanisms behind ‘Long COVID’ that lead to abnormal conditions
including cognitive and neuropsychiatric disorders.

Long COVID, also termed Post-Acute Sequelae of COVID-19 (PASC), is a multisystem
syndrome that encompasses a variety of new, recurrent or continuous symptomatology that
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persist after an acute SARS-CoV-2 infection. Neurological symptoms may vary in duration,
from 30 days up to weeks or several months without an alternative diagnosis [5–8]. Approxi-
mately 80% of hospitalized COVID-19 patients exhibit neurological symptoms, correlating
with an increased risk of mortality. The extent of this association with late neurological
manifestations remains unclear [9].

Long-term neurological complications have been seen in other respiratory infections,
such as in cases of severe acute respiratory syndrome coronavirus (SARS) [10] and Middle
East respiratory syndrome coronavirus (MERS) [11]. A 4-year follow-up study revealed that,
despite physical recovery, certain psychiatric conditions, such as PTSD, depression, panic
disorder and obsessive–compulsive disorder, along with chronic fatigue, persisted in SARS
infection [12]. Furthermore, to this day, there is still no clear evidence regarding the cause
of post-encephalitic parkinsonism symptoms emerging from the lethargic encephalitis
(“the sleepy sickness”) that affected over one million people during the 1918 Spanish
flu pandemic caused by influenza A (H1N1) [13,14]. More recently in history, a similar
condition of parkinsonism was also reported in survivors of avian flu [15], and, more
recently, of COVID-19 [16–18]. Despite studies being limited to raising evidence of a direct
causal association, there is a clear need for more robust research on the matter.

A recent cohort assessed the increased risk of neurological, cognitive and mental health
complications up to 1-year post-acute COVID-19, even in non-hospitalized patients. These
included cerebrovascular issues, cognitive disorders like brain fog and Alzheimer’s disease,
drowsiness, peripheral nervous system disorders, migraines, seizures, sensory alterations
(persistent anosmia and/or ageusia, tinnitus, vision impairments), musculoskeletal dis-
orders, Guillain–Barré syndrome, encephalitis, anxiety, depression, psychotic disorders
and PTSD [19,20]. Such complications have been associated with signs of neurodegener-
ation [21], neuroinflammation [22], and demyelination [23], but little is discussed about
the impairments associated with the abnormal neuroplasticity mechanisms that may be
also involved.

In children, late manifestations of SARS-CoV-2 and its variants can induce symptoms
such as headaches, fatigue, palpitations, anosmia, difficulty concentrating and insomnia.
These symptoms may persist even in silent or mild cases of an acute COVID-19 infec-
tion [24], and may contribute to the neglect of potential risks of sequelae, particularly
neurological/psychiatric sequelae, associated with Long COVID. Besides the nonspecific
viral symptoms, the increased vulnerability to stressors induced by the pandemic (undernu-
trition, social isolation, sick family members) during the early stages of brain development
may worsen cases of pediatric Long COVID, amplifying neuropsychiatric impacts [25].
Hence, establishing the prevalence of pediatric ‘Long COVID’ is essential for assessing risks
related to delays in childhood neurodevelopment, academic performance and potential
long-term medical and neuropsychiatric outcomes.

The present non-systematic review intends to discuss the central role of microglia in
orchestrating the long-term outcomes resulting from the acute phase of COVID-19, focusing
on mechanisms associated with neuroplasticity and abnormal synaptic pruning. These
impairments may pose a greater risk and increase vulnerability to the development of neu-
rological and neuropsychiatric symptoms of Long COVID, especially during childhood. We
will also review the key mechanisms involved in microglial-dependent neuroplasticity that
might be useful for establishing strategies for the rehabilitation of Long COVID symptoms.

2. Neuroinflammation Mechanism during the Pathogenesis of COVID-19

During COVID-19 pathogenesis, much of the mechanisms involved in neuroinflam-
mation result from systemic inflammation that blunts monoamine neurotransmission,
decreases trophic factors and activates both astrocytes and microglia. Beyond the phagocy-
tosis of damaged cells, activated glia release inflammatory mediators result in an excess
of glutamate, the activation of the quinolinic acid pathway, pro-inflammatory cytokines
expression, such as TNF-α and interleukins, and abnormal complement cascade activa-
tion [26,27]. Elevated levels of glutamate and NMDA receptors impact neuronal activity
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and excitotoxicity, potentially causing alterations in learning, memory and neuroplasticity,
along with hallucinations and nightmares that could exacerbate or establish a new onset of
Long COVID neurological symptoms (reviewed in [28,29]).

In the case of COVID-19, the pathophysiological process is initiated by three main fac-
tors inherent to this disease: peripheral cytokine storm, vascular hyperpermeability and the
dysregulation of the renin–angiotensin system in the CNS (discussed in [30]. In summary,
the pathobiological process begins with the virus reaching the ACE-2 enzyme receptors
that are widely distributed in all organs, including neural tissue. The downregulation of
ACE2 and recognition of the viral Spike glycoprotein by cells of the innate immune system
establish local inflammation through the cytokine storm, and this varies according to the
viral entry route (respiratory, gastrointestinal, etc.). This, in turn, is amplified by other
immune cells (neutrophils, effector T cells, monocytes and macrophages), adding cytokines
such as interleukin-6 (IL-6), interleukin-1b (IL-1β) and tumor necrosis factor-alpha (TNF-α)
to the inflammatory process [31,32].

Among the two debated routes of SARS-CoV-2 entry into the brain, we have the
hematogenous route [33], including a transcellular pathway by which SARS-CoV-2 can
cross the BBB [34], and the axonal transport from olfactory sensory neurons [35]. In an
attempt to investigate the cause of anosmia, researchers failed to find evidence of viral
infection in these neurons. Clinical studies revealed that support cells, not neurons, are
the primary targets of SARS-CoV-2 in the upper airways, based on post-mortem tissue
analyses of individuals who died from COVID-19 complications [36].

Nevertheless, anatomically, the olfactory bulb could be a convenient route for the virus
to reach the hippocampus, a structure associated with cognitive processing, learning and
short-term memory, which potentially justifies the possibility of an accelerated cognitive
decline in individuals who are more susceptible to respiratory infections [37]. For instance,
studies in hamsters that analyzed the impact of SARS-CoV-2 infection on the olfactory
pathway observed an incomplete recovery of sensory neurons, prolonged glial activation in
the olfactory bulb and a reduced dendritic spine density in the hippocampus after the acute
phase of infection, supporting the long-lasting olfactory and cognitive effects observed in
Long COVID [38].

Despite the existence of a selective blood–brain barrier (BBB), the central nervous
system (CNS) is in constant interaction with the peripheral immune system through the
choroid plexus and circumventricular organs/regions, which are also possible entry routes
for the virus into the CNS, along with the olfactory epithelium and the BBB itself, damaged
by systemic inflammation (reviewed in [30]. BBB damage is correlated with the neurological
sequelae of COVID-19 due to the downregulation of endothelial ACE2 receptors. BBB
disruption, in association with hyperinflammation, results in endothelins that promote the
extravasation of pro-inflammatory cells and activate cytokine cascades and complement
activation in the brain parenchyma, contributing to vascular fragility and a hypercoagulable
state [39–41].

The association between neuroinflammation and the neurological sequelae of Long
COVID has been supported by the work of Yang and colleagues, demonstrating that
subpopulations of microglia and astrocytes associated with COVID-19 share character-
istics with pathological states previously observed in human neurodegenerative dis-
eases [2,42,43]. The molecular disruption related to COVID-19 overlaps with those found
in chronic neurological diseases, where genetic variants associated with cognitive de-
cline, schizophrenia and depression reside [2]. A longitudinal study detected that certain
cytokines, such as IL-1β, IL-4 and IL-6, and markers of neuronal dysfunction, such as
beta-amyloid protein, total tau, p-T181-tau, light chain neurofilament and neurogranin,
a marker of neuronal extracellular vesicles, remain elevated in the plasma of patients
recovering from COVID-19 who self-reported neurological issues around 1 to 3 months
after the initial infection [44]. TNF-α has also been shown with increased plasma levels in
Long COVID patients [45]. This suggests that the neuroinflammatory processes during
initial SARS-CoV-2 virus infection induce sustained reprogramming in the phenotype of
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CNS cells contributing to peripheral inflammation, neuroinflammation, neurodegeneration
and persistent systemic effects after COVID-19 and determine the neurological symptoms
observed in Long COVID.

Besides this, much evidence indicates that human neurons are less susceptible to
SARS-CoV-2 infection compared to astrocytes, recognized as a primary target for secondary
CNS infection and a viral reservoir [3,46]. While microglia are key players in inflammatory
processes in neurological diseases [26], there is limited evidence of direct SARS-CoV-2
infection in these cells.

Nevertheless, microglia remain crucial in the broader context of neuroinflammatory re-
sponses in Long COVID, alongside neuroimmune and neuroplastic reactions. For instance,
the NLRP3 inflammasome, implicated in neuroinflammation, modulates neuroplasticity.
Studies in mice show that the pharmacological inhibition of the NLRP3 inflammasome
prevents synaptic failure and promotes long-term potentiation (LTP) [47]. Moreover, its
inactivation also promotes antidepressant effects by neuroplasticity enhancement [48].
Preclinical evidence suggests that SARS-CoV-2 activates the NLRP3 inflammasome, po-
tentially contributing to the emergence or persistence of neurological and psychiatric
symptoms through altered neuroplastic mechanisms [49]. Additionally, the elevated ATP
levels induced by SARS-CoV-2 may also stimulate the NLRP3 inflammasome through P2X7
receptor hyperactivation, primarily expressed in microglia and astrocytes and associated
with neuroinvasive and neuroinflammatory processes in psychiatric and neurodegenera-
tive diseases [50]. Therefore, P2X7 and NLRP3 present promising therapeutic avenues to
be explored for the treatment of neurological complications in COVID-19 patients.

3. Microglial and Neuroplasticity: Impact on Neurological Outcomes of Long COVID

Microglia play a fundamental role in CNS plasticity. They are actively enrolled in
synaptic selection and the activity-dependent reorganization of neural circuits throughout
development [4]. Among various physiological functions, microglia promote the forma-
tion [51], maturation [52] and selective elimination of immature synapses [53], a basic
requirement for proper brain development. Microglia are actively involved in neuroplas-
ticity; they have been shown to regulate extracellular matrix remodeling [54] and to be
necessary for use-dependent cortical plasticity [55,56].

As the CNS matures, microglia monitor any threats to brain homeostasis through their
“sensome” and processes and are capable of sensing molecular changes in the microen-
vironment and neuronal activity [57,58]. When the environment challenges the nervous
system (e.g., brain injury, infection, alcohol exposure or dietary restrictions), microglia
transit between dynamic reactive phenotypes and modify their density, morphology and
molecular signature, which results in the proper tuning of their function [59]. For instance,
early malnutrition [60], early life stress or maternal immune activation alter the microglial
role in synaptic pruning and, thus, plasticity, impacting social behavior [61] and sensory
neural processing [62].

Thus, as a primary strategy for homeostasis maintenance, microglia permanently
assume the role of making any necessary adjustments for the construction or restora-
tion of neural function. In environmental CNS imbalance, microglia respond through an
extensive system of molecular recognition (chemokines, cytokines, trophic factors) and
interact bidirectionally with neural and immune cells to influence their response. There-
fore, microglial dysfunction, marked by a loss of physiological functions or an excessive
inflammatory response, implies a higher risk of neurodevelopmental disorders such as
autism and schizophrenia [4].

In humans, a comprehensive longitudinal study using the UK Biobank dataset detected
significant gray matter loss within approximately 6 months between imaging sessions,
with a reduction in the thickness and cortical volume of the left hemisphere [63]. This loss
occurred in areas such as the anterior parahippocampal gyrus (episodic memory), lateral
orbitofrontal cortex (secondary olfactory cortex) and superior insula (anxiety behavior).
Additionally, when hospitalization was considered as a variable, alterations were detected
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in areas associated with smell, emotion, memory and learning, such as the left cingulate
cortex, right hippocampus and right amygdala, related to anxiety behavior. Interestingly,
most of the participants experienced only mild symptoms of COVID-19, even though the
authors detected an accelerated reduction in whole-brain volume and more pronounced
cognitive declines associated with heightened atrophy of a cognitive lobule in the cerebel-
lum (crus II), among other long-lasting deleterious effects on brain structure and function,
when compared to the control group [63]. This study provides a distinctive perspective on
COVID-19-related changes in the brain structure, shedding light on the interplay between
neuroplasticity and the potential for neurocognitive outcomes.

In the adult brain, microglia play a crucial role in long-term plasticity and neurogenesis
and are essential for learning and memory formation. Traditional neurogenic sites, like the
olfactory bulb and the hippocampal dentate gyrus, continuously generate new neurons
throughout life [64]. The microglia function on this matter was demonstrated when the
microglial depletion led to less functional neurons in the olfactory bulb, affecting olfactory
responsiveness [65]. The proper integration of new neurons into hippocampal circuits,
both structurally and functionally, also relies on microglial function [66]. In homeostatic
conditions, microglia interact with synapses, synchronizing local neuronal activity and
influencing behavioral and cognitive functions [67]. These processes are regulated by the
physiological production of inflammatory cytokines, such as interleukins and TNF-α, which
contribute to adult neurogenesis and efficient axonal plasticity in response to peripheral
inflammation [68,69].

Another crucial player under investigation, due its role in neuronal regulation, survival
and neural plasticity, is the brain-derived neurotrophic factor (BDNF). Reductions in plasma
and brain BDNF levels are common in patients with psychiatric and neurodegenerative
diseases, possibly secondary to a state of chronic inflammation affecting the brain [70].
Considering that BDNF is downstream in the ACE2-Mas axis [71], the current literature
discusses the potential of the SARS-CoV-2-ACE2 interaction to reduce its levels, with
implications for the pathogenesis of Neuro-COVID [72]. Indeed, microglial BDNF is
essential for motor learning improvement in structural, behavioral and electrophysiological
impairments in animals with the conditioned depletion of this molecule [73]. Besides this,
Gonzalez and colleagues have previously shown that the intrahippocampal stimulation
of the immune system with pro-inflammatory cytokines decreases BDNF expression and
potentially compromises the brain’s neuroplastic functions, such as neurogenesis, LTP and
dendritic sprouting [74]. Moreover, longitudinal studies to delve into the investigation of
the association between trophic support that imbalances and structural changes leading
to neurological or neuropsychiatric manifestations in Long COVID patients are scarce.
Recently, a meta-analysis assessed relevant studies that identified lower BDNF levels in
patients with COVID-19 when compared to healthy controls; this dysregulation was also
related to the severity of the disease and reported in a unique study that assessed Long
COVID patients, possibly linking this mechanism to neurological outcomes [75].

Despite the importance of microglia in CNS homeostasis, other immune cells also seem
to contribute to its physiological role [76]. In addition to the immune response and neural
activity, memory and learning tasks and social behavior are modulated by the secretion of
cytokines by CD4+ T lymphocytes in the meningeal spaces, the latter being associated with
IFN-γ [77]. The release of IFN-γ by T lymphocytes is also implicated in synaptic elimination
by microglia and cognitive sequelae, as illustrated by spatial learning deficits in an animal
model of flavivirus infection [78]. Also, a subset of innate lymphocytes is involved in
cortical inhibitory synapse formation with impacts on social behavior development [79].
This may have important implications in the recent context of COVID-19, where the
mechanisms associated with the long-term cognitive sequelae of Long COVID are still
under investigation.
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4. Molecular Signals That Regulate Microglia-Dependent Neuroplasticity

Molecular cues, identified as “find-me”, eat-me” and “do not eat me” signals, regulate
the proper guidance of microglia/macrophages towards phagocytosis, which is relevant for
sculpting neural connections during development and, more recently, has been implicated
in many neurocognitive and neuropsychiatric conditions (reviewed in [80].

In different CNS areas, it has been well established that synaptic pruning mediated by
microglia is complement-dependent during postnatal development [81–83], with microglia
being responsive to the fractalkine primarily released by neurons and endothelium [84].
Evidence in the adult brain indicates how fractalkine-mediated neuroplasticity can mod-
ulate cognitive function. The absence of Cx3CR1, the fractalkine receptor in microglia,
impacts neurogenesis, weakening learning tasks [83,85]. Abnormal levels of TGF-β or
CX3CR1 have also been shown to result in aberrant neuroplasticity in adulthood [85–87].
The immune role in cognitive function has been demonstrated in CX3CR1 KO animals,
where microglia’s function in hippocampal synaptic maturation was analyzed, showing
significant delays associated with the number of microglia. Subsequent studies revealed
alterations in social interaction and neural connectivity in adulthood [83,88,89].

In 2020, Scott-Hewitt and colleagues showed in vivo that the synaptic exposure of
phosphatidylserine (PS) in the hippocampus and retinogeniculate areas assumes a temporal
dynamics correspondence with synaptic pruning, while C1q-deficient mice failed to prop-
erly refine retinogeniculate connections, suggesting a functional interaction between the
complement system and PS-mediated synaptic pruning [90]. There are increasing studies
in the literature assessing the implications of C1q as an early driver of synaptic loss in
neurodegenerative and neuroinflammatory conditions [91,92] (reviewed in [93]). Microglial
depletion or the inhibition of its phagocytic function prevents forgetting, dissociation of
engram cells and complement-mediated synaptic loss, allowing mice to forget non-essential
environmental cues [94]. Deficits in hippocampal neurotransmission, as well as cognitive
and behavioral impairments, are also associated with a lack of C1q in adulthood [95].
Like SARS-CoV-2, residual cognitive sequelae are also present in other viruses. The West
Nile virus (WNV), a neurotropic RNA virus like SARS-CoV-2, can promote the elimina-
tion of presynaptic terminals after the viral infection of adult hippocampal neurons in a
complement-dependent manner, and it is associated with memory dysfunction in human
studies and animal models [27].

On the other hand, CD47 signaling and its SIRPα receptor constitute a well-known
example of a “don’t eat-me” signal that prevents aberrant microglia-mediated phagocytosis.
CD47 is localized in more active synapses, and disruptions to either CD47 or SIRPα in
knockout studies increased synaptic over-pruning in the retinogeniculate system during
early development [96]. Intriguingly, it appears that the proteolytic cleavage of SIRPα by
metalloproteinases (MMP) in response to neuronal activity releases an extracellular SIRPα
domain, which binds to presynaptic CD47 and promotes the maturation of presynaptic
terminals [97]. The regulatory role of SIRPα in synaptic pruning was evident in a model of
Alzheimer’s Disease, where the authors observed that the loss of microglial SIRPα increased
synaptic loss mediated by microglia engulfment and enhanced cognitive impairment,
while, in human tissue, microglial SIRPα expression declines alongside the progression of
Alzheimer’s disease [98]. Indeed, synaptic elimination mechanisms in adults, as evidenced
by microglial dysfunction in synaptic pruning, have been suggested in studies using post-
mortem tissue from COVID-19 patients [99] and neuroimaging studies showing signs of
synaptic loss [63].

Although the role of neuronal activity and microglia in synaptic refinement is well
established [82,100], we still do not know exactly how these two distinct mechanisms are
linked and how neural activity can be translated into local cues mediating the microglial
engulfment of synaptic elements. Most of the complement-based studies on Neuro COVID
or Long COVID studies have, so far, focused on these molecular signals as mechanisms
of virus resistance [101] and on the worsening of coagulopathies that enhances the risk of
Long COVID [102]. Up to this point, these findings underscore the need for a deeper un-
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derstanding of how viral infections can impact molecular aspects of microglial function on
synaptic selection and influence neural plasticity as an underlying cause in the neurological
symptoms found in Long COVID.

5. Critical Periods of Brain Development and the Risk of Long COVID in Children

The infant brain is under rapid development and is highly susceptible to environ-
mental stressors. Understanding the pathophysiological mechanisms behind the risks
associated with the acute effects of COVID-19 on the developing brain during critical
periods has been debated elsewhere [59], but little is known about the long-term cognitive,
behavioral and psychiatric implications related to Long COVID in children and adolescents.
Besides this, COVID-19 frequently presents mild acute clinical manifestations in children,
which could possibly mask the potential risks of sequelae and raise appropriate concerns
for public health.

Considering that microglia actively participate in brain plasticity by sculpting neural
circuits and selecting and eliminating synapses, inappropriate networks may arise as a
consequence of abnormal microglial performance during critical periods of development.
If not detected or reversed within this sensitive developmental window, this can lead to
long-term neurodevelopmental and psychiatric disorders [103]. A preliminary case–control
study in young patients detected a significant increase in microgliosis in younger COVID-19
patients compared to older ones [104]. This suggests a potentially primed, more reactive
microglia response in younger patients who, despite exhibiting mild acute symptoms,
might be prone to the onset of Long COVID sequelae.

Recently, a study using human organoids provided evidence that SARS-CoV-2 in-
fection may lead to excessive, disordered and premature synaptic elimination during the
course of the disease, similar to what is observed in other neurological disorders such as
schizophrenia, Alzheimer’s disease and Parkinson’s disease [105]. The disruption of neural
circuitry integrity through an abnormal microglia-mediated synaptic over-pruning emerges
as a potential mechanism in the onset of neurological, cognitive and psychiatric symptoms
in COVID-19 recovery patients.

To investigate the impact of immune activation and microglial priming on vulnera-
bilities to neurodevelopmental disorders, microglial-like cells with a pro-inflammatory
phenotype were successfully generated from mononuclear cells derived from the umbilical
cord of both exposed and unexposed mothers [106]. This approach validates the search
for strategies that could help to identify neonates and children with vulnerabilities caused
by SARS-CoV-2, among other viral infections. Besides this, this highlights the importance
of microglial function and the risks posed by its priming in neural development and
subsequent disease emergence later in life.

Regarding synaptic maturation, at the end of critical periods, the perineuronal net-
works (PNNs), specialized reticular formations of the compact extracellular matrix that
envelop neuronal subsets and stabilize proximal synapses, can be modified by microglia
sculpting [107]. Furthermore, it has been shown that microglial depletion induces increased
cortical perineuronal nets and heightened neural activity in excitatory cortical neurons [108].
Also, it has been demonstrated that MMP-9 contributes to the stabilization of synapses dur-
ing critical periods of development and the inhibition of MMP-9 activity in vivo resulted in
an altered topographical refinement of retinocollicular connections [109]. Therefore, the
dysregulation of extracellular matrix dynamics due to neuroinflammation and microglial
dysfunction may disrupt critical periods and neural circuit formation, posing a risk for
cognitive and psychiatric sequelae following viral infection.

Also, it has been shown in the rodent visual system that synaptic plasticity and circuitry
responses to environmental modifications depend on microglial functional integrity [56].
Therefore, microglial homeostasis is a crucial issue during brain development, when
synaptic adjustments are necessary for the correct processing of neural information. Since
microglial homeostasis can be disrupted not only by viral infections but also by exposure
to nutritional stress, alcohol consumption during pregnancy, environmental stress and
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lack of appropriate care during infancy, ensuring plain conditions of neural development
during the first years of life seems to be necessary for the full development of cognitive
functions [4].

In conclusion, neuroplasticity alterations mediated by microglial dysfunction and ab-
normal synaptic pruning appear as key elements in Long COVID syndrome, affecting both
the developing and the adult brain (Figure 1). Therefore, future research should address
strategies to reestablish appropriate synaptic plasticity, including the comprehension of
molecular mechanisms involved in abnormal synaptic pruning, the signaling involved in
the interaction between the complement system and the expression of molecular signals in
synaptic selection as important issues for the resolution of cognitive deficits following Long
COVID syndrome found in infants and adults. While Long COVID causes important but
frequently time-limited alterations in adults, it is noteworthy that SARS-CoV-2 infections in
children may result in possible life alterations in neural circuitry development and plasticity,
impacting learning abilities and socialization throughout life.
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Figure 1. Neuroplasticity impairments due to microglial dysfunction as a central mechanism for
“Long COVID” neurological outcomes. Various mechanisms, including neuroimmune interactions,
lead to microglial dysfunction, which directly impairs neural functions, reproducing “Long COVID”
neurological and cognitive symptoms. Some mechanisms related to microglial regulation are being
explored, such as the decrease in microglial BDNF levels and involvement of NLRP3 inflamma-
some, linked to the decrease in LTP; the dysregulated expression of cytokines, chemokines and
complement system molecules that interfere with proper synaptic plasticity and induce insufficient
or excessive synaptic stripping; the lack of microglia influence on matrix remodeling that promotes
E/I imbalance and the impairment of neural circuit maturation; and the cross-talk between microglia
and other circulating immune cells, like CD4+ T lymphocytes, which further exacerbates these ef-
fects. These mechanisms illustrate how abnormal plasticity contributes to Long COVID neurological
complications, underscoring the importance of targeting them for therapeutic strategies to improve
neuroplasticity.
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