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Abstract: Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset
of diseases adversely affecting the structure and function of the mitochondrial respiratory chain.
This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the
function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect
in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly
genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven
instrumental in testing the impact of mutations identified in patients with a specific COX deficiency.
The advent of accessible genome-wide sequencing capabilities has led to more patient mutations
being identified, with the subsequent identification of several new COX assembly factors. However,
the lack of genotype–phenotype correlations and the large number of genes involved in generating
a functional COX mean that functional studies must be undertaken to assign a genetic variant as
being causal. In this review, we provide a brief overview of the use of yeast as a model system and
briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies
in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the
pathogenicity of a subset of the mutations that have been identified in patients with inherited defects
in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to
contribute to progress in understanding disease arising from inherited COX deficiencies.

Keywords: mitochondrial disease; yeast model; COX assembly; copper transfer; heme A biosynthesis

1. Introduction

The generation of a functional mitochondrion requires the input of both the nuclear
genome and mitochondrial DNA (mtDNA) to generate the thousand-plus proteins that
must find their way to one of several mitochondrial destinations: two different membranes
and three different submitochondrial spaces. Not surprisingly, therefore, inherited diseases
affecting mitochondria, the primary producers of cellular energy, result in a bewildering
variety of different clinical phenotypes. Diseases of mitochondrial dysfunction have been
reported for more than four decades now, with a large number affecting the function of
the respiratory chain; a significant subset of these are characterized by specific deficien-
cies associated with cytochrome c oxidase (COX) [1]. COX is unique with regard to the
large number of proteins required for assembly of the holoenzyme, with numerous (~30)
proteins required to support synthesis and membrane insertion of the core subunits, as
well as providing the requisite copper atoms and heme A molecules [1]. The complex
genetics (i.e., contributions from both the mitochondrial and nuclear genomes) and large
number of genes required to form an active COX have made identifying and characterizing
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pathologies arising from defective COX assembly a challenging task. While advances in
sequencing technologies have vastly improved the ability to diagnose/identify genetic
defects associated with cases of COX deficiency, determining whether a molecular variant
is causative for disease can still greatly benefit from the use of a tractable model system.

Yeast as a Model System for Human Cell Biology

The yeast Saccharomyces cerevisiae is a commonly used model in cell biology for a
variety of reasons. Since the 1980s, there have been well-established approaches for genetic
manipulation, which, combined with a relatively inexpensive means of propagation, have
facilitated many advances in understanding human cell biology and enabled yeast to
become the eukaryotic single-celled workhorse of biotechnology. Equally important is the
fact that cellular processes such as endoplasmic reticulum-associated protein degradation,
heat shock, chaperone functions, autophagy, and protein translation, folding, and secretion
are all highly conserved between yeast and humans [2]. This high degree of conservation
also extends to signal transduction processes and implies that signal cross-talk, regulation
hierarchies, and protein–protein interactions are similar in these two evolutionarily distant
organisms [2]. One of the most profound examples of harnessing the power of yeast
genetics to improve our understanding of human disease is provided by the identification
and characterization of cell cycle proteins, which have directly informed our understanding
and further study of cancer in humans and for which Leland Hartwell and Paul Nurse
were awarded the Nobel Prize in Physiology or Medicine in 2001. Indeed, 47% of yeast
genes that have a single human orthologue and have been shown to be essential have been
successfully replaced by their human orthologue [3]. The high degree of similarity between
yeast and human genes, along with similarities in cellular processes, has rendered yeast an
incredibly powerful model for elucidating basic tenets of cell biology and allows it to remain
an indispensable model for understanding human disease. Even when yeasts do not share
a close orthologue for a protein present in mammalian cells, it is often feasible to create a
humanized homologue of the gene to study in yeast [4]. Indeed, expression of mammalian
disease-causing genes with a yeast orthologue often results in complementation of the
loss-of-function phenotype [5].

In the 1980s, a number of yeast respiratory mutant collections [6,7] were generated,
and these have served as the foundation for the incredibly fruitful identification of proteins
required for mitochondrial biogenesis and metabolism. The mitochondria in yeast are
remarkably similar to the human organelles, in both structure and function; human COX
activity assays are frequently carried out using yeast cytochrome c, while yeast COX activity
assays routinely use mammalian cytochrome c. In the context of studying COX assembly
and related defects, Saccharomyces cerevisiae has a few distinct advantages that have made it
a preferred model. First and foremost, S. cerevisiae is a facultative anaerobe, meaning the
organism can grow on both fermentable and non-fermentable carbon sources. When a yeast
strain is rendered respiration deficient by a mutation, growth is supported on fermentable
carbon sources, such as glucose or galactose [8]. As in humans, Saccharomyces cerevisiae
relies solely on COX for oxidative respiration, lacking the alternative ubiquinol oxidase
that is found in some species of yeasts and other eukaryotic organisms [9,10]. Furthermore,
S. cerevisiae is a well-suited model due to the high degree of similarity between the COX
assembly processes in mammalian and yeast cells [11]. For human disease research in
particular, S. cerevisiae allows compound heterozygous mutations to be studied separately
or together, given the ability of yeast to exist in either the haploid or diploid state. Studies
in yeast have contributed more than any other model organism to our understanding of
COX assembly and the genes that are implicated in diseases arising from assembly defects.
In this review, we highlight the inherited human COX deficiencies for which either prior
or subsequent modeling in yeast has provided a deeper understanding of the disease
phenotype in patients.
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2. The COX Assembly Pathways in Humans and Yeast

The assembly of a functional COX complex requires the carefully coordinated action
of at least 30 proteins, in addition to the 14 subunit constituents [12]. The exact roles for
many of these subunits remain unclear, and investigations into the mechanisms behind
the assembly of the holoenzyme are ongoing. The catalytic core of the complex is made
up of the three mitochondrial-encoded subunits—COX1, COX2, COX3. Each of these are
assembled into the mitochondrial inner membrane with the assistance of their distinct sets
of assembly factors that stabilize the assembling apoenzyme in the membrane and ensure
the appropriate insertion of essential cofactors [12]. Early research into COX assembly
described the process as being linear, with subunits being added onto COX1 one after
another [13]. The linear assembly model, which was supported by results that demonstrated
that COX1 acted as a seed to which other subunits could join, has been largely replaced by
the concept of modular COX assembly [14,15], wherein each of the three catalytic subunits
is formed separately with the assistance of its own dedicated set of assembly factors [16].
These modules are then added to a seed module of nuclear assembly factors in a linear
manner [12], with the distinct steps of the process referred to as S1–S4. S1 involves the
formation of the COX1 module, which then joins the nuclear seed module in S2. During the
S3 stage, the COX2 module, followed by the COX3 module, are added. With the addition
of the final auxiliary (i.e., non-catalytic core) subunits (S4), COX assembly is complete [17].
Many of the assembly processes are shared between yeast and humans, although human
cells have additional subunits and control mechanisms relative to yeast [17]. The main
steps are thought to occur in a similar manner in yeast and humans and are depicted in a
schematic format in Figure 1, with the proteins relevant to this review highlighted in bold.
Since a detailed description of the COX assembly pathway(s) is well beyond the scope of
this review, the reader is referred to several recent in-depth reviews on the subject [18–20].
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in human genes encoding bolded proteins in boxes have been studied directly in yeast. (Y) = found 
only in yeast; (H) = found only in humans. 
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Figure 1. Proteins involved in COX assembly in yeast and humans. The schematic illustrates the level
at which the assembly factors discussed in this review are involved, i.e., COX1 module, focusing
on the assembly factors discussed in this review. The placement of COA5/PET191 is arbitrary, as
its specific role has not yet been delineated. The essential prosthetic groups (heme A, Cu) found on
subunits 1 and 2 are indicated in spheres. Mutations in genes encoding proteins (human protein/yeast
protein) labeled in bold have been shown to cause inherited COX deficiencies; mutations in human
genes encoding bolded proteins in boxes have been studied directly in yeast. (Y) = found only in
yeast; (H) = found only in humans.
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In the context of human disease, it is intriguing that most COX deficiency-associated
mutations have been identified in the nuclear genes encoding COX assembly factors [21],
which is likely because loss of a COX subunit results in fatality during intra-uterine devel-
opment. Reduced or defective COX assembly was first identified more than three decades
ago as a cause of COX deficiencies [22], and, in the intervening years, more than half of
the known COX assembly proteins have been found to be defective in cases of human
mitochondrial disease. Indeed, mutations in genes encoding assembly factors were identi-
fied before mutations in the nuclear genes encoding COX subunits. For a comprehensive
discussion of inherited COX deficiencies, the reader is directed to the excellent recent review
by Brischigliaro and Zeviani [1]. In this review, we focus on the contributions of yeast
studies to our understanding of human COX deficiencies, since studies in Saccharomyces
cerevisiae have been used to identify and characterize many of the currently known COX
assembly factors.

3. Defects Affecting Synthesis and Assembly of COX1

Much of our current understanding of COX assembly in humans has arisen through
the combination of studies in yeast and various human cell types. Because the nomenclature
of the genes and their encoded products were assigned in a ‘non-linear’ fashion, Table 1
provides an overview of the proteins involved in COX assembly in yeast and humans that
are discussed in this review. In accordance with nomenclature conventions, human and
yeast gene names are italicized and capitalized (COX10), while yeast mutant strains are
italicized in lower case (cox10). We have chosen to capitalize yeast protein names, (COX10)
as is the case for human proteins, although the reader will see that the convention in the
older yeast literature uses Cox10p or Cox10 for protein names.

Table 1. Overview of human disease-associated COX assembly factors and their yeast homologues.

Human Protein Yeast Homologue Role(s)

COX1 Module-Associated

LRPPRC PET309 COX1 mRNA stabilization, activation of transcription

TACO1 DPC29 Translational activator for COX1, other mtDNA transcripts

C12ORF62 COX14 Regulates COX1 expression, part of MITRAC

MITRAC12 COA3 Regulates translation of COX1; modulates binding to COX2 module via COX16

COX10 COX10 Farnesyl transferase (heme O synthase)—converts heme B to heme O

COX15 COX15 Heme A synthase—converts heme O intermediate to heme A

PET117 PET117 Required for oligomerization of COX15, hemylation of COX1

SURF1 SHY1 Involved in the final hemylation of COX1

COX11 COX11 Delivers copper to COX1

COX2 Module-Associated

OXA1L OXA1 Insertion of mitochondrially encoded subunits into IMM

COX16 COX16 Chaperone for COX2, recruits SCO proteins; helps COX2 module associate with S2;
brings COX1 and COX2 modules together

COX18 COX18 Insertion of the C-terminus of COX2 in the IMM

COX20 COX20 Binds to COX2 before and after cleavage; stabilizes complex with SCO proteins

PET100 PET100 Interacts with MR-1S, PET117 in late stages of biogenesis;
essential to assembly in humans; stabilizes S3 intermediate

hSCO1 SCO1 Insertion of copper into CuA site;
hSCO1 associates with PET191 prior to copper delivery by COX17, passes one Cu to COX2.

hSCO2 SCO1 hSCO2 undergoes disulfide exchange with COX2 and delivers Cu;
yeast SCO2 function unknown

COA6 COA6 Thiol reductase activity, CuA site assembly; perhaps overlapping role with hSCO2

Unspecified Role

COA5 PET191 Essential to human assembly; associates with SCO1 until Cu is delivered
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COX assembly in humans begins with the COX1 module during the S1 stage, in which
the mtDNA-encoded COX1 mRNA is stabilized by LRPPRC (leucine-rich pentatricopeptide
repeat containing) [23], a function that is carried out by the homologous PET309 in
yeast [24,25]. The translation of COX1 is stimulated by the nuclear-encoded protein TACO1
(transcriptional activator for cytochrome oxidase; DPC29 is the yeast homolog) [26]. Trans-
lational regulation of human COX1 expression also involves the MITRAC (mitochondrial
translation regulation assembly intermediate of COX) complex [27], which includes the
assembly factors C12ORF62 (COX14 in yeast) [28,29] and MITRAC12 (COA3 in yeast) [30].
Together with a number of other proteins not yet found to be involved in human disease,
these assembly factors form a dynamic complex with OXA1L in the mitochondrial inner
membrane [27,31,32]. Interestingly, early COX assembly in humans also requires the for-
mation of a seed module made up of nuclear-encoded subunits COX4 and COX5A, which
interact with the COX1 module via C12ORF62 [33].

3.1. Defects Associated with COX1 Expression
3.1.1. LRPPRC/PET309

In 2003, in a tour-de-force of integrative genomics, Mootha et al. [23] showed that
mutations in LRPPRC underlay the Saguenay-Lac St. Jean form of Leigh syndrome (Leigh
Syndrome, French Canadian; LSFC) [34], which results in a COX deficiency due to impaired
assembly. LRPPRC had originally been identified on the basis of an affinity for lectins,
suggesting it might be a carbohydrate-binding protein, which would not immediately
be suggestive of mitochondrial involvement. However, the innovative genomics-based
approach used by Mootha and colleagues was supported by their subsequent identification
of homozygous A354V mutations in the French-Canadian patient cohort, which further
supported the founder effect identified previously [34]. Interestingly, contemporaneous
studies with LRPPRC (also referred to as LRP130) suggested the protein localized to both
the nucleus and mitochondria and bound to mRNAs of both nuclear and mitochondrial
origin [35], with subsequent work demonstrating that LRPPRC also interacts with other
transcripts, including the COX3 mRNA [36]. The identification of different homozygous
and compound heterozygous mutations in non-French-Canadian Leigh Syndrome patients
demonstrated the relevance of LRPPRC mutations to patients with COX deficiencies and
further broadened the potential impact of these mutations by documenting an associated
Complex I deficiency as well [37].

During their initial investigations, Mootha et al. identified a weakly homologous yeast
protein, PET309, which was first identified in yeast as an integral inner mitochondrial mem-
brane protein responsible either for stabilizing primary transcripts of COX1 or in initiating
their translation [24,38]. Given that biochemical analyses in yeast demonstrated a physical
interaction between PET309 and COX1 transcripts [25], with a direct role for the PPR motifs
in that activity, the suggestion that PET309 and LRPPRC are not true orthologues [39] does
not appear to hold true. The ‘proof of the pudding’ for orthologues has typically been func-
tional complementation, although there are no reports that expression of human LRPPRC
can functionally complement a pet309 mutant. However, the function that the human and
yeast proteins have in common, namely binding and stabilizing of COX1 transcripts, is
significant and, given the evolutionary distance between the two species, potential broader
functionality of the protein in humans would not preclude there being orthologues.

3.1.2. TACO1/DPC29

There are significant differences in structure between mtDNA-encoded transcripts
in yeast and humans, meaning the vast majority of yeast mitochondrial translational
activators do not have human homologues. In contrast to the majority of COX assembly
factors, therefore, TACO1 is a mitochondrial translational activator that was first identified
in mammals. Weraarpachai et al. described a patient with early-onset, slowly progressive
Leigh syndrome resulting from an isolated COX deficiency, with a cytosine insertion
(472insC) causing a frameshift in TACO1 and a premature truncation of the protein [26].
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In a very clear example of the challenge of identifying genotype–phenotype correlations,
further reports of identical TACO1 were associated with a broader spectrum of disease
presentation, including ocular and cognitive impairments [40].

As with LRPPRC, TACO1 was found to have a yeast homolog, YGR021w, with the
translated proteins sharing only 29% identity at the amino acid level, but preliminary
experiments in yeast did not reveal any translation defects and apparently wild-type levels
of both growth on a non-fermentable carbon source and COX activity [26]. As is often
the case, YGR021w was initially annotated during the sequencing of the yeast genome as
encoding a protein of unknown function. In 2017, as part of defining the mitochondrial
proteome, YGR021w was re-named DPC29 (delta-psi-dependent mitochondrial import
and cleavage protein of ~29 kDa) [41]. There had been no further investigation of yeast
DPC29, likely due to the lack of a readily discernible phenotype in the dpc29 knock-out
(∆DPC29), until a recent paper by Hubble and Henry that has significantly advanced our
understanding of DPC29 [42]. These authors show that human TACO1 and S. cerevisiae
DPC29 are predicted to have very similar structures and that both proteins associate periph-
erally with the inner mitochondrial membrane on the matrix side. Most critically, however,
expression of human TACO1 can functionally complement ∆DPC29 yeast, indicating that
these proteins are indeed orthologs [42]. The experiments further suggest that DPC29 may
act as a general mitochondrial translation factor and that it may function post-initiation,
as mitoribosome profiling identified interactions with mRNA 3′-ends. Interestingly, the
relationship of TACO1 and DPC29 mirrors that of LRPPRC and PET309, with one of the
pair in each case being found to have a broader function in one of the species.

3.1.3. C12ORF62/COX14

Mutations in C12ORF62 have been reported for a single family in which the index
patient suffered from a severe lactic acidosis that resulted in neonatal death. The mutation,
which was identified through a combination of molecular genetic approaches, including
microcell-mediated chromosome transfer, results in a M19I replacement [33]. Biochemical
and cell biological analyses of this novel protein suggested a COX1-associated role in
holoenzyme assembly, but the authors did not identify a connection to any of the known
COX assembly factors.

Iterative orthology prediction through a program called Ortho-Profile, however, did
identify C12ORF62 as a divergent homologue of yeast COX14 [28]. COX14, originally
identified in yeast [29] and found to be associated with a high molecular weight complex,
functions as a translational regulator of COX1 that associates with SHY1 (surf homolog of
yeast, discussed further below) and MSS51 [31]. Indeed, further studies of the molecular
mechanisms of action for COX14 and MSS51 in yeast led to the discovery of COX25,
another previously undescribed COX assembly factor that appears to function similarly
to COX14 [43]. Only time—and further investigation—will tell whether either MSS51
or COX25 will eventually be found to have a human homolog and thereby potential
involvement in inherited COX deficiencies.

3.1.4. MITRAC12/COA3

As mentioned at the outset of this section, C12ORF62/COX14 and MITRAC12/COA3
function cooperatively to regulate the expression of COX1 [44]. In contrast to the C12ORF62
mutations described above, mutations associated with COA3 were identified in an adult
patient who presented with exercise intolerance and neuropathy, with a much milder
clinical presentation more commonly associated with some mtDNA-based mutations [45].
In general, mutations affecting proteins that interact in a complex give rise to similar clinical
phenotypes, but this case demonstrates the challenge in delineating genotype–phenotype
correlations in COX deficiencies. The patient in this report was a compound heterozygote,
with one allele encoding a truncated COA3 and the other generating a Y72C substitution
in a conserved region of the transmembrane domain, resulting in the loss of COX1 and
COX14 and an almost complete absence of assembled COX in fibroblasts [45].
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COA3 was originally identified as CCDC56 in Drosophila but was also known as MI-
TRAC12 through studies in HEK293 cells [27]. The connection between CCDC56/MITRAC12
and COA3 was, just as for C12ORF62 and COX14, identified through iterative orthology
prediction [28]. COA3 has been extensively studied in yeast and was first identified through
a genome-wide deletion screen [46] and found to encode an integral membrane protein that
negatively regulates the expression of COX1 [44]. COA3 was also shown to interact with
COX14 to stabilize COX1 intermediates [30] and to be a constituent of the MITRAC [27].

3.2. Defects Associated with Heme A Biosynthesis and Insertion

The catalytic core of COX requires the insertion of multiple prosthetic groups, includ-
ing a high-spin heme A (a3) and a low-spin heme A (a), onto the nascent COX1 polypeptide,
where the heme a3, together with CuB, forms the oxygen-binding site of the enzyme. Heme
A synthesis takes place in mitochondria and involves assembly factors COX10 [47,48] and
COX15 [49–51], which function in a two-step process to convert protoheme (also known as
heme B) to heme A. COX15 was additionally found to require the mitochondrial matrix
protein, PET117 [52], which appears to be responsible for connecting the heme A biosyn-
thetic pathway to the COX assembly pathway [53]. Ultimately, SURF1 (SHY1 in yeast) is
believed to be the chaperone responsible for transferring heme A to the apoCOX1 during
COX assembly [54–56].

3.2.1. COX10

COX deficiencies resulting from mutations in COX10 have been reported to be present
in patients displaying a wide variety of different symptoms, including isolated COX
deficiency; presentations varied from classical Leigh syndrome and anemia to fatal hyper-
trophic cardiomyopathy and sensorineural hearing loss [57,58]. The mutations described
in the literature thus far document a combination of homozygous and compound heterozy-
gous missense mutations, from both consanguineous and non-consanguineous pedigrees.
Interestingly, a patient with a homozygous point mutation in the start codon presented
with a Leigh-like disorder that proved fatal in infancy, as might be anticipated given a
mutation that would effectively result in a COX10 knock-out [59].

COX10 was originally discovered in yeast and shown to encode a heme, A:farnesyltransferase,
that catalyzes the conversion of heme B to heme O, which is the intermediate in the biosyn-
thesis of heme A [47,49]. The human COX10 orthologue was identified through a functional
complementation screen of a human cDNA library in a yeast strain harboring a partial dele-
tion of the COX10 gene [48], directly identifying the human COX10 as being orthologous
to the yeast gene. This knowledge subsequently facilitated the direct corroboration of the
negative impact of the mutations identified in patients on COX10 function. More recent
studies in yeast identified another novel COX assembly factor, COA2, which stabilizes
the COX10 complex and was identified through a yeast genetic suppressor screen [60,61].
Suppressor screens are an example of harnessing the power of yeast genetics, using mutant
yeast strains that are either mutagenized or exposed to a selective pressure (i.e., forced
to grow on a non-fermentable carbon source) to identify genetic changes that result in
amelioration or changes to a mutant phenotype. Over the years, this powerful approach
has identified many biologically relevant protein–protein interactions and improved our
understanding of numerous fundamental cell biology pathways in both yeast and humans.

3.2.2. COX15

Similar to the spectrum of different clinical phenotypes associated with mutations
in COX10, COX-deficient patients bearing mutations in COX15 also present with a wide
variety of symptoms, resulting in cardiomyopathy or Leigh syndrome [62–65]. The pa-
tients comprised both homozygotes and compound heterozygotes, bearing a variety of
missense mutations as well as a nonsense mutation that causes a premature truncation of
the COX15 protein.
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COX15 was originally identified in yeast [50], and loss of COX15 was shown to result
in lack/loss of heme A and increased levels of the heme O intermediate [51]. Because the
human and yeast COX15 are not orthologous, testing human mutations cannot use the
functional complementation approach. However, an HPLC-based assay that was used
to identify and quantify mitochondrial hemes in yeast mitochondria was adapted for
heart and fibroblast mitochondria and used to demonstrate a decrease in heme A levels
in a patient with COX15 mutations [62]. There are significant challenges associated with
studying compounds, like hemes A and O, that are extremely hydrophobic; likewise,
both COX10 and COX15 are integral mitochondrial inner membrane proteins that are
challenging with regard to expression and structural determination [66]. Early strides
in understanding the heme A biosynthetic pathway were made through experiments in
E. coli [67], which showed the cyoE gene is responsible for heme O synthesis. Further
study of other bacterial cytochrome oxidases then expanded the pallet of known COX
assembly factors [68], with COX15 being homologous to Bacillus subtilis CtaA [51]. These
homologies have lent themselves to heterologous expression of different COX10 and COX15
homologues in a number of different bacteria and have shown that the COX10 and COX15
proteins interact in a complex to achieve the synthesis of heme A [69]. Interestingly, an
extension of the COA2 work mentioned above suggests that this small (<10 kDa) soluble
mitochondrial matrix protein is also involved in the multimerization of both COX10 and
COX15 [70]. Surprisingly, given that the COX15 homologues were proposed to use a
monooxygenase reaction for heme A biosynthesis, it was found that the oxygen occupying
the C8 formyl group was derived from water rather than molecular oxygen [71]. The
challenges in working with highly hydrophobic compounds and proteins have precluded
the elucidation of the precise mechanisms of action for both COX10 and COX15, but recent
advances in structural modeling [66] should expedite future work in this direction.

3.2.3. PET117

Mutations in PET117 have only been reported in two siblings, from a second degree
consanguineous family, both of whom were homozygous for a mutation that results in a pre-
mature truncation (termination of translation at position 58 of 81 codons) [72] of the PET117
protein. The siblings both presented with developmental delay and lesions of the medulla
oblongata, with an isolated COX deficiency detected in both muscle and fibroblasts.

While originally identified in yeast several decades ago [52], PET117 has only recently
become the subject of further investigation, likely because of its involvement in human
disease. Taylor et al. have shown that yeast PET117 interacts with the heme A synthase
and is necessary for the requisite oligomerization of COX15 [53]. The physical interaction
of these two proteins further involves MSS51, a yeast-specific COX assembly factor that
associates with COX14 but does not depend on SHY1 [53], which is discussed further below.
A recent study using human cells suggests that PET117 stabilizes TACO1 through a direct
interaction and thereby plays a role in regulating the expression of COX1 [73]. Interestingly,
PET117 has also been identified as interacting with MR-1S (myofibrillogenesis regulator 1),
a human-specific COX assembly factor with no apparent yeast homologue, and PET100 [74],
another COX assembly factor first identified in yeast [75]. This triumvirate of proteins
associates to a greater extent with the nascent COX2 intermediate than with the COX1
module, suggesting a role in stabilization or coordination of the COX1 and COX2 assembly
module intermediates [75].

3.2.4. SURF1/SHY1

Mutations in SURF1 were the first to be identified in association with any COX assem-
bly factor [76]—and, in fact, in any nuclear gene encoding proteins associated with structure,
function, or assembly of COX—in a series of patients with Leigh disease, otherwise known
as subacute necrotizing encephalomyopathy [77], which is often accompanied by systemic
COX deficiency. This discovery was made at a time when we did not yet have a complete
human genome and provides an elegant example of combining cutting-edge technology
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with available yeast genetic information to zero in on a candidate gene. Using a combina-
tion of microcell-mediated chromosome transfer and gene mapping, Zhu and colleagues
used a functional complementation approach to pinpoint the SURF1 gene, whose yeast
homologue, SHY1, had only recently been identified and characterized [54]. Knockouts of
SHY1 in S. cerevisiae result in a pronounced decrease in COX complexes, but a curious in-
crease in cytochrome c content, as well as inability to grow on nonfermentable medium [54],
while SURF1 mutations in humans give rise to a COX-specific defect [76]. Indeed, muta-
tions in SURF1 appear to be the most common cause of the classical presentation of Leigh
syndrome [78–81], although they have also been identified in a case of leukodystrophy [82],
a mild encephalopathy without the typical MRI-identifiable lesions [83], and several cases
of Charcot–Marie–Tooth disease [84]. There has been some characterization work carried
out with the human SURF1 demonstrating that it is a mitochondrial membrane protein [85]
and further suggesting involvement of SURF1 in facilitating the association of COX2 with
the COX1 module [86] during assembly.

During this time, work in yeast has continued to provide further insights into the role
of SHY1 in COX assembly, with early suggestions that the protein has a role in assembling
the COX1 module [87], perhaps involving the CuB-heme a3 center [88]. Modeling of the
Leigh syndrome patient mutations in yeast demonstrated that SHY1 appears to have a
role at the crucial intersection of COX assembly and regulation of COX1 synthesis [89].
Interestingly enough, the accepted role for SHY1, that of providing heme A to the nascent
COX1 polypeptide, came from studies with prokaryotic oxidases, in which ablation of the
SURF1 homologue in Rhodobacter spaeroides resulted in about half of the COX complexes
assembling incorrectly, as visualized by both mitochondrial cytochrome spectra and EPR
analysis [55], which supported the yeast findings that SURF1/SHY1 may be required for
assembly of the binuclear CuB-heme a3 center. However, experiments involving heterol-
ogous expression of Paracoccus denitrificans SURF1 homologs in E. coli show that SURF1
binds heme A, providing the most direct evidence to date that this protein delivers heme A
to the assembling COX1 module [90].

3.3. Defects of Copper Acquisition at the CuB Site

In addition to two heme A molecules, the COX catalytic core contains a copper atom
(CuB) located in COX1, with the delivery of copper also requiring a series of chaperones
and assembly factors. A full description of intracellular copper transport is far beyond
the scope of this review, but the disposition of copper and copper-binding proteins found
within mitochondria is relevant to our understanding of copper provision to the COX
apo-enzyme. As depicted in Figure 2, copper is transported, via a series of transporters
and chaperones, into the matrix via PIC2 and MRS3 [91,92], which provide the metal
to the copper ligand, CuL, that has been identified as a source of copper in both the
mitochondrial matrix and the cytoplasm [93,94]; CuL is an anionic, non-proteinaceous
ligand that provides copper for mitochondrial cuproproteins. Through an as-yet unknown
pathway, mitochondrial matrix copper is then exported to the intermembrane space for use
by COX17 [95,96], which delivers the copper to either COX11 or SCO1, both of which reside
in the inner mitochondrial membrane [96–99], with their functional domains residing on the
intermembrane space side of the membrane. COX11 then transfers copper to the active site
of COX1 [100,101], while SCO1 delivers its copper for the CuA site to COX2 [102] (discussed
in Section 4). COX19 is a small COX17-like copper-binding protein [103,104] that interacts
with COX11 in a redox-based manner and is essential for copper transfer [56,105]. PET191,
which was also first identified in yeast [52], also appears to be involved in supporting the
generation of the CuB site, possibly acting as a placeholder bound to COX11 prior to the
delivery of copper by COX17 [56]. Mutations affecting copper trafficking to the CuB site of
COX in patients were unknown until several recent reports of COX11 mutations; to date,
there have been no mutations identified in any of COX17, COX19, or PET191.
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Figure 2. Copper trafficking within the mitochondrion. The schematic depicts the movement of
copper from the extracellular space, via CTR1, and to the mitochondrial matrix via PIC2 and MRS3.
COX11 and COX19 are depicted in a single box because they have been shown to act together to
transfer copper to COX1. The two major cupro-proteins acquiring copper from the matrix CuL are
COX and SOD1, the copper-zinc superoxide dismutase, with CCS serving as the copper chaperone
for SOD1. The hatched arrow (----) indicates that the mechanism for copper export to the IMS
remains unknown. We have shown the yeast proteins and pathways and not included other copper
transporters and chaperones, as they are not as directly relevant to inherited defects of the COX
assembly pathway and hence, to human COX deficiencies. OMM = outer mitochondrial membrane,
IMS = intermembrane space, IMM = inner mitochondrial membrane, CuL = copper ligand.

COX11

Mutations in COX11 were first reported in 2022 in two unrelated patients—one with a
homozygous missense (A244P) mutation that resulted in death within the first year, while a
second patient had a milder disease course but was homozygous for a frame-shift mutation
that results in a V12G substitution and a premature truncation of COX11 [106]. We recently
reported the case of a patient with Leigh-like features who was compound heterozygous
for a P247T substitution and T256Nfs*8, which results in a premature truncation in the
C-terminal region of COX11 [107].

As COX11 was originally identified in yeast, much of the functional characterization
of the COX11 protein has occurred in yeast. This can be attributed to the lack of amenable
genome modification approaches in human cells, as well as the (relative) ease of working
with yeast when COX11 was first identified. As with most COX assembly mutants in
yeast, the cox11 null allele is characterized by a loss of the mtDNA-encoded subunits,
mostly affecting COX1, a loss of the characteristic aa3 peak at 605 nm (detected through
cytochrome spectral analysis), and retention of the nuclear-encoded subunits [97,108].
The protein was shown to bind copper in the Cu(I) state [109], and mutational analysis
identified a number of essential residues, including the three conserved Cys residues and
the amino acid residues found at the ends of β-strands and in the surface pocket behind the
copper-binding loop [101]. Studies in yeast have also shown that loss of COX11 leads to
a sensitivity to millimolar levels of exogenous hydrogen peroxide (H2O2) [101], although
a copper transfer-competent COX11 is not needed, given that we identified several cox11
mutants that were capable of partial COX assembly and yet were highly sensitive to
peroxide and vice versa [110]. In spite of sustained efforts [110,111], we and others have
not yet identified the specific role for COX11 in H2O2 metabolism.
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4. Defects Affecting Synthesis and Assembly of COX2

The second module to form in the COX assembly pathway involves COX2, the mtDNA-
encoded subunit that bears the binuclear copper site (CuA) to which cytochrome c transfers
electrons as part of the mitochondrial electron transport chain. The construction of the
COX2 module begins with the co-translational insertion of COX2 into the mitochondrial
membrane by OXA1L (OXA1 in yeast; oxidase assembly 1) [112–115], with the assistance
of assembly factors COX16 [116,117], COX18 [118–120], and COX20 [121–123]. COX16 has
a role in the recruitment of the metallochaperone proteins, the so-called SCO (synthesis
of cytochrome oxidase) proteins, which transfer copper ions to the CuA site [99,117]; the
copper transfer process also requires the thiol reductase COA6 [124–126]. Mammalian
COX20 stabilizes the transient larger complex resulting from COX2 interacting with the
metallochaperone complex [123], along with scaffold protein TMEM177 (which has no
known yeast homologue) [127]. Although their roles in COX2 module assembly are less well
understood, the process also involves assembly factors MR-1S, PET100, and PET117 [75].
Once the COX2 module is fully assembled with a completed CuA site, COX16 acts to
bridge the COX2 and COX1 modules via interactions with MITRAC12 [117]. PET100 is
also thought to act at this stage by stabilizing the combined COX1 and COX2 modules (S3
stage) prior to the addition of the COX3 module [75].

4.1. Defects Associated with COX2 Expression
4.1.1. OXA1L/OXA1

There has been only a single report in the literature regarding OXA1L mutations un-
derlying a mitochondrial disease presentation. The patient was a compound heterozygote
with a nonsense mutation that generates a premature stop in the N-terminal half of the
protein and a missense mutation that leads to an amino acid substitution (C207F) and exon
skipping [32]. The patient presented with severe developmental delay and encephalopa-
thy and was shown to have reduced assembly and activity of both COX and Complex
III [32]. This finding was in contrast to an earlier study that used a knock-down approach in
HEK293 cells to show that loss of OXA1L resulted in reduced complexes I and V, rather than
COX (Complex IV) [128]. The contradictory results likely reflect not only the complexity
of OXA1L function in human cells but also the inherent variability of different cell lines
and tissues.

The majority of work on OXA1 has been carried out in yeast, in which OXA1 was
originally identified and shown to be required for respiratory competence [129]. Early
studies of oxa1 null mutants revealed an impairment of the processing and insertion of
COX2 into the mitochondrial inner membrane [112,130], with OXA1 being required for the
proper export of both the N- and C-termini of COX2. While initial observations suggested
OXA1 was specific to COX assembly, further work in both yeast and humans has revealed
a broader role for OXA1 in mitochondrial membrane insertion processes [12], including
the import of the members of the mitochondrial metabolite carrier family of proteins [131].
Indeed, OXA1 has been shown to be a member of the YidC/Oxa1/Alb3 protein family, with
roles in membranes from bacteria to thylakoids and mitochondria [132]. In the last decade,
using a bioinformatics-driven approach, OXA1 homologues were also identified in the en-
doplasmic reticulum, demonstrating the existence of an OXA1 superfamily whose members
are involved in evolutionarily conserved membrane biogenesis processes [133,134]. With
the very recent identification of a novel OXA1L-interacting protein, TMEM126A [135], the
scope of OXA1/OXA1L actions in mitochondrial membrane protein biogenesis is becoming
clearer. With increased use of technological advances, combining results from experiments
in yeast and humans should lead to a complete understanding of the role of OXA1 in
mitochondrial respiratory chain enzyme biogenesis.

4.1.2. COX16

In a report of two unrelated patients, a homozygous nonsense mutation in COX16
was found to underlie a clinical presentation of lactic acidosis with encephalopathy and
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hypertrophic cardiomyopathy [136]. Both patients had an isolated COX deficiency that was
rescued through functional complementation with the wild-type COX16, using lentiviral
transduction of fibroblasts.

COX16 was first identified in Saccharomyces cerevisiae as encoding a small (118 amino
acid residues) single-pass mitochondrial membrane protein [116]. While a human COX16
homologue was identified, it did not functionally complement the yeast cox16 knock-
out strain and not much progress was made until recently, likely because no COX16
mutations were identified in the intervening years [137]. A study in yeast had suggested
an association for COX16 with both COX1 and the assembled COX holoenzyme [138], and
these findings were then corroborated by further experiments with human COX16, which
was found in association with both newly synthesized COX2 as well as COX1 assembly
modules [117,139]. Interestingly, one of these studies also found that COX16 knock-out
cells retained significant COX activity [139], suggesting some level of redundancy with
respect to COX16 function in human cells that is not the case in yeast cells. The overlap
between the interactions within—and with—the COX1 and COX2 modules is increasingly
being reported, and it seems likely that studies in yeast, with its lower degree of genomic
and proteomic complexity, will be critical for further delineating the molecular mechanisms
at play.

4.1.3. COX18

A patient presenting with encephalo-cardiomyopathy in the neonatal period was
reported to be homozygous for a COX18 mutation that results in an D223H substitution,
at a residue that is highly conserved, even in the distantly related OXA1L [140]; thus
far, this is the only reported case of mutations in COX18 underlying a mitochondrial
disease phenotype.

COX18 was originally identified in yeast as a mitochondrial membrane protein re-
quired to maintain steady-state levels of COX2 [118], with subsequent studies demon-
strating that COX18 is responsible for exporting the C-terminal tail of COX2 across the
mitochondrial inner membrane [119,141,142]. In keeping with the relationship to OXA1(L),
yeast COX18 expressed heterologously in E. coli can complement the Sec-independent func-
tion of YidC [143]. Not surprisingly, studies in human cells showed that COX18 functions
as membrane insertase for nascent COX2 [120]. Given that the human COX18 homologue
has a similar structure and subcellular localization to the yeast protein [144], results from
studies in yeast will help to deepen our understanding of the molecular basis for disease
arising from mutations in COX18.

4.1.4. COX20

Mutations in COX20 have been reported in more than 20 patients in a large number of
different families from across the globe. In general, all the patients suffer from a neuropathy
that varies in intensity, from mild to severe infantile forms [145]. The first report of
mutations came from a patient with a moderate COX deficiency (about 40% of control
levels in fibroblasts) who was homozygous for a mutation leading to a T52P substitution.
The authors were able to show that COX assembly in the patient’s fibroblasts was blocked
before the S3 stage, when the COX2 module should join with the COX1 module [146]. In
the interim, there have been a number of different mutations identified, some of which are
suggestive of founder effects [145,147,148].

COX20 was identified in yeast [121], but the link to its human orthologue (FAM36A)
was made through the use of the Ortho-Profile program, as the homology between COX20
and FAM36A is not immediately obvious [28]. The yeast COX20 was shown to be a
mitochondrial inner membrane protein, and the loss of COX20 resulted in the accumulation
of the COX2 precursor [121]. Further experiments then verified a role for COX20 in
processing of the COX2 leader peptide, export of the C-terminal tail of the polypeptide, as
well as stabilization of COX2 by protecting it from proteolytic degradation [122]. In a good
example of work in human cells building on work in yeast, a similar biochemical phenotype
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was observed in COX20 knock-down human cells, with the additional observation that
COX20 interacts with both SCO1 and SCO2, which are the metallochaperones for the CuA
site on COX2 and are discussed in detail below. Interestingly, studies undertaken in yeast
from an industrial bioethanol production perspective have recently found that COX20
confers improved resistance to oxidative stress and apoptosis [149,150], which may have
implications for the COX20 role in COX assembly.

4.1.5. PET100

Several patients with severe lactic acidosis as a result of a COX deficiency, some
presenting with Leigh syndrome, were found to harbor mutations in PET100. The first
report presented eight patients, from six families, who were all homozygous for a null allele,
with a mutation in the start codon [151]. A second mutation that results in a premature
truncation of the protein was identified in a consanguineous family of different ethnic
origin from that in the first report, demonstrating that PET100 is also a potential mutational
target in COX-deficient patients [152].

As with so many other COX assembly factors, PET100 was first identified in yeast [74]
as being required for COX assembly. PET100 was found to be associated with two different
subassembly complexes, specifically one that contains the smallest nuclear-encoded sub-
units, COX7, COX8, and COX9, and another that contains subunits 5 and 6 [153], which are
equivalent to COX4 and COX6 in the human COX. Further experiments should reveal the
molecular mechanism(s) of action for PET100.

4.2. Defects in Copper Provision to the CuA Site

The SCO proteins are two sets of paralogues that arose independently in the yeast and
human lineages [154], and consideration of the functions of the SCO proteins must be made
separately. Nevertheless, as we will discuss below, human SCO1 and SCO2 mutations have
successfully been modeled in yeast. The mitochondrial copper distribution network was
described briefly in Section 3.2 (and Figure 2), with the delivery pathway to subunit 2 of
COX in both yeast and humans involving the transfer of copper from COX17 [95] to the
SCO proteins, which then transfer the copper to the CuA site. In yeast, copper is transferred
to SCO1 [96,102,155,156], which then transfers Cu(I) to the CuA site through either direct
or indirect means [157–160]. In humans, SCO1 (hSCO1, for the purpose of this review) and
SCO2 (hSCO2) have differentiated, non-overlapping roles in the transfer of copper from
COX17 to the CuA site [158], with the two SCO proteins forming a ternary complex with
apo-COX2 and each subsequently transferring a single copper ion to COX2 [161]. In both
yeast and humans, the copper transfer process also involves the thiol reductase COA6 [162],
which reduces disulfide bonds in both SCO1 and SCO2 to keep them functional in copper
transfer to COX2 [125,126].

4.2.1. hSCO1

hSCO1 mutations have not been reported in the numbers seen in genes encoding some
other COX assembly factors, such as SURF1 and SCO2 [163]. The first report came from
a neonate with hepatic failure and lactic acidosis and a COX deficiency identified in both
muscle and liver [164]. The patient was a compound heterozygote, with a small deletion
leading to premature truncation on one allele and a missense mutation leading to a P174L
substitution (adjacent to the copper-binding domain) on the other allele [164]. A second
patient with hypertrophic cardiomyopathy and a homozygous G132S mutation, who died
in the neonatal period, was also reported [165]. Interestingly, another SCO1 missense
mutation, which leads to a M294V substitution, was identified in a case of encephalopathy
that was not as severe as those described previously and led the authors to propose a
genotype–phenotype correlation with respect to SCO1 mutations [166].

SCO1 was originally discovered in yeast through its respiratory-deficient phenotype,
typical of a pet strain [98,167], and found to function as a high copy suppressor of a
mitochondrial copper recruitment defect: the respiratory competence of a ∆COX17 strain
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could be restored by overexpression of SCO1 [99]. COX17 was suggested to function
upstream of SCO1, as overexpression of COX17 was not able to rescue the ∆SCO1 mutant,
while overexpression of SCO1 could rescue the cox17 null mutant. The SCO1 protein was
therefore proposed to shuttle copper from COX17 to COX2 [102]. Indeed, mutations in the
CxxxC motif, which was proposed to bind copper, render SCO1 incapable of supporting
COX assembly, resulting in respiration-deficient cells [157,168]. Further studies of yeast
SCO1 demonstrated that the protein binds Cu(I) [155] and has a structure similar to that of
hSCO1 [169]. Like COX11, SCO1 is a transmembrane protein with a short N-terminal tail
in the matrix and the bulk of the protein located on the intermembrane space side of the
mitochondrial inner membrane. Interestingly, SCO1 was proposed to have a secondary role,
in addition to that in copper transport, as structural analysis revealed a thioredoxin-like fold,
suggesting a possible redox activity for the protein [169,170]. In another similarity between
COX11 and SCO1, a sco1 null mutant was shown to be sensitive to millimolar quantities
of exogenous H2O2 [170], suggesting a role in metabolizing peroxide. The potential roles
of SCO1 and COX11 in metabolizing peroxide are thought to be distinct from their roles
in COX assembly and respiration, as some respiration-deficient sco1 mutants were able to
resist peroxide to a greater degree than the ∆SCO1 mutant; likewise, some sco1 mutants
displayed peroxide sensitivity but not a respiratory deficiency [110]. Interestingly, while
the disconnect between respiratory function and peroxide sensitivity has been supported
by others [171], there are conflicting reports as to whether or not the copper-binding ability
of SCO1 is required for its peroxide sensitivity [110,171], a result that could be due to
differences in strain background. There have been few SCO1 mutations reported in human
disease, but the P174L mutation was studied in yeast and shown to have defective copper
transfer from COX17 but normal copper-binding activity [172].

4.2.2. hSCO2

SCO2 mutations in human disease have been found in association with a wide variety
of clinical presentations. Mutations in hSCO2 were first identified in a series of unrelated in-
fants presenting with fatal cardioencephalomyopathy resulting from a COX deficiency [154].
All three probands were compound heterozygous, all bearing the missense variant E140K;
two of the patients further had a nonsense mutation that resulted in a premature truncation
(Gln52*), while the other patient bore a second missense mutation leading to a S225F
substitution [154]. Compound heterozygotes with COX deficiencies and SCO2 mutations
were also identified in several patients with lethal infantile cardioencephalomyopathy,
each of whom had the E140K substitution [173], which has also been found in other pa-
tients by different research groups [1]. Interestingly, there have been several reports of
hSCO2 mutations associated with spinal muscular atrophy presentations, both involving
compound heterozygous patients with the widely documented E140K mutation. In one
case, the second allele contained a nonsense mutation resulting in a premature truncation
(Trp36*) [174] and, in another report, the mutation on the second allele resulted in a C133Y
substitution in the copper-binding site [175].

As described above, the two SCO proteins in yeast are paralogues of the human SCO
proteins, hSCO1 and hSCO2, which precludes characterizing human SCO1 and SCO2
mutations directly through functional complementation in ∆SCO1 yeast. Nonetheless,
the functional consequences of human mutations have been studied by generating the
homologous mutations in yeast SCO1, which has proven to be a fruitful approach. The
first hSCO2 mutations were successfully modeled in yeast and led to several novel insights.
The E155K (E140K in humans) mutation did not result in a respiratory deficiency in yeast,
suggesting it might be a hypomorphic allele in compound heterozygous patients. This was
corroborated in a subsequent report in which a set of patients were found to be homozygous
for the E140K mutation and had a relatively later onset of clinical symptoms [176]. The
analysis of the yeast S240F (S225F in humans) mutation identified a blue shift in the
mitochondrial cytochrome spectrum, indicating that heme A was in an altered environment,
and showed that the mutant had almost wild-type levels of COX1 but no detectable
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COX2 [102]. These results provided the first suggestion that SCO1 might be providing
copper strictly to the CuA site on COX2, which has since been corroborated using multiple
approaches [177,178].

Unlike its human homologue, yeast SCO2 is not required for COX assembly, al-
though overexpression of SCO2 was found to partially complement a yeast SCO1 point
mutant [99,179]. While SCO2 and SCO1 in yeast share approximately 50% identity and
are both ~30 kDa integral components of the mitochondrial inner membrane, with a very
similar topology, to date, there has been no phenotype found in association with the sco2
null mutant, leaving the function for SCO2 in yeast unknown.

4.2.3. COA6

Through a next-generation sequencing-based approach, a single compound heterozy-
gote bearing mutations in COA6 was identified, with a combination of a missense muta-
tion and a nonsense mutation resulting in hypertrophic cardiomyopathy in the affected
individual [124,180].

COA6 was originally identified in yeast, not in the ‘classical’ approach with a comple-
mentation group in a mutant collection, but rather through the application of a proteomics-
based approach [162] that defined the proteome of the mitochondrial intermembrane space.
The authors then demonstrated a specific reduction in steady-state levels of both COX2
and COX3 in a coa6 null mutant, with the expected reduced growth on non-fermentable
carbon sources [162]. The fact that the respiration deficiency could be rescued by copper
supplementation further supports the involvement of COA6 in metalation of the CuA
site [124]. Further analysis showed that COA6 interacts with COX2, the SCO proteins, and
COX12, which is the yeast homologue of nuclear-encoded subunit 6B in human COX [181].
The human COA6 was also reported to be orthologous with the yeast COA6, although
the functional complementation required the use of a hybrid construct that contained
the N-terminal portion of the yeast protein and the C-terminal two-thirds of the human
protein [181].

5. ‘Other’ COX Assembly Factors

In this review, we have highlighted 18 proteins with a demonstrated role in the
COX assembly process, but there remain a number of COX assembly factors with poorly
defined or unspecified roles in the various or combined assembly pathways, some of which
have also been found to underlie inherited COX deficiencies. One such factor is COA5
(encoded by C2ORF64), which was identified by the iterative orthology approach that
has successfully identified the human homologues for a number of other COX assembly
factors [28]. Two siblings presenting with a fatal neonatal cardiomyopathy were found to
have a severe COX deficiency in heart muscle and fibroblasts and to be homozygous for
an A53P mutation [182]. Preliminary analyses of patient fibroblasts further suggested that
COX assembly was negatively affected at an early stage in the COX assembly pathway.
The yeast homologue of COA5 is PET191, which was isolated and identified from a large
COX mutant collection [52]. Biochemical and genetic characterization of PET191 suggests
it exists in a large oligomeric complex but that, unlike other twin Cx9C motif proteins,
the import of PET191 into the intermembrane space is not reliant on the MIA40 import
pathway [183]. There have been no other reports regarding PET191, and its role in COX
assembly remains largely uncharacterized.

In a similar vein, there are a number of well-characterized yeast COX assembly factors
with human homologues or orthologues for which mutations have not (yet) been identified
in association with human mitochondrial disease. Some of these, such as COX17 [95]
and COX19 [103], were identified more than 20 years ago from mutant collections and
have thus been widely investigated as candidate genes in patients with COX deficiency
of unknown etiology. Others, such as COA4, have been identified more recently using a
number of different genetic and proteomic approaches. COA4 was originally identified as
CMC3 [184] in a proteomic screen for twin Cx9C motif proteins found in the mitochondrial
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intermembrane space. Interestingly, COA4 was also isolated as a multi-copy suppressor of
a shy1 point mutant [185]. Characterization of the coa4 null mutant suggested a role for this
protein at a step following the assembly of S1, the COX1-containing module [185]; a more
recent study has identified COX11 as a multi-copy suppressor of a coa4 null mutant [186],
suggesting a role for COA4 in copper transfer to the CuB site. Clearly, further study is
required to clarify the role of COA4 in COX assembly; the available data support the
inclusion of human COA4 as a candidate gene in COX-deficient patients.

While we note that mutations have also been identified in cases of leukoencephalopa-
thy in both COA7 [187] and COA8/APOPT1 [188,189], neither of these human COX assembly
factors appear to have yeast homologues and were therefore not discussed in any depth.
Through a variety of different approaches, the identification of new COX assembly fac-
tors, as well as homologues and orthologues, in both yeast and humans is ongoing, and
orthologous proteins for these two COX assembly factors may well yet be uncovered.

6. A Future for Yeast in Studying Human COX Defects

For all the significant advances that have been achieved in improving our understand-
ing of COX assembly in health and disease, challenges and contradictions remain. As just
one example, we still do not fully understand the molecular underpinnings of heme A
biosynthesis and addition to COX1, strongly suggesting we will identify further players in
this essential part of the COX assembly process. The continued use of large-scale screens,
combined with targeted experimentation in both yeast and human cells, will undoubtedly
contribute to improving our understanding of the molecular pathways that underpin COX
assembly. A brief scan of information in several publicly accessible databases reveals
that many of the currently recognized COX assembly factors participate in a myriad of
protein–protein interactions and suggest there are further proteins involved in aspects of
COX assembly that are yet to be discovered. In addition, the presence of COX assembly
factors in interaction networks further supports the possibility of additional roles for these
proteins in other cellular functions and pathways, so called ‘moonlighting’, a concept that
is proving to be much more widely distributed than perhaps initially thought [190,191].
COX11 and SCO1, which have well-understood roles in copper transfer to the subunits of
the COX catalytic core, also have an as-yet poorly understood role in peroxide metabolism
and thereby serve as a relevant example of proteins engaged in ‘moonlighting’ activity.

As is evident from the descriptions of the clinical cases of COX deficiency we have
discussed, many of the patients are compound heterozygotes. An unresolved question is
that of hypomorphic alleles in these uniformly autosomal recessive disorders, especially
in those cases in which studies in haploid yeast have found that only one of two alleles
gives rise to a respiration-deficient phenotype [102,107]. A dominant-negative phenotype
has been described for overexpression of hSCO1 and hSCO2 [158], but how this relates to
the clinical outcomes for compound heterozygous patients remains unclear and requires
further study.

In addition to the importance of COX assembly factors in human mitochondrial
disease, there is an increasing interest in mitochondrial proteins, especially those with
redox functions, such as the twin Cx9C motif proteins, in the broader spectrum of human
disease, especially cancers and neurodegenerative diseases [21]. While involvement in the
disease presentations of multiple neurodegenerative diseases, such as Parkinson and ALS,
has long been known, the relevance of mitochondrial proteins to cancer is a more recent
phenomenon. While this is not surprising in light of the Warburg effect [192], the realization
that mitochondrial metabolism may serve as a treatment target is gaining traction, and
there have been numerous reports describing the involvement of COX assembly factors,
including COX16 [193] and COA4 [194], in breast cancer and COA1 [195] in bone cancer.
hSCO2 has long been known to be regulated by p53 [196], and down-regulation of COX17
has been proposed as a means to inhibit metastases in triple-negative breast cancer [197].
Indeed, loss of COX17 has been reported to impair DNA methylation and self-renewal of
leukemic stem cells in acute myeloid leukemia [198]. Clearly, more precise information
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regarding the functions of individual COX assembly factors, whether in yeast or humans,
will benefit our understanding of diseases, such as cancers, beyond the mitochondrial
disease arena.

For all the reasons enunciated at the outset, yeast is a tractable and fruitful model
system. In addition, the reduced complexity of yeast in terms of total numbers of genes
and proteins, along with the well-developed techniques in yeast genetics and molecular
and cellular biology that have stood the test of time, have allowed us to understand the
intricacies associated with mutations affecting COX assembly. Another advantage of yeast
is that this organism can help us cut through the confusion created by our inability to
draw genotype–phenotype conclusions for most human mitochondrial diseases. Table 2
presents a summary of clinical phenotypes associated with the COX deficiencies we have
described here, along with the very wide range of symptoms and systems impacted by
those mutations. When we consider that this constellation of clinical presentations arises
through mutations in a small subset of proteins dedicated to just one cellular pathway,
namely that of assembling the COX holoenzyme, the challenge of drawing genotype–
phenotype correlations for these devastating diseases is immense, and working within a
simplified model system has enormous advantages, especially given that COX defects result
in anomalies in cellular redox homeostasis that are replicated in yeast. The advantages of
the yeast model system also extend to broader mitochondrial defects affecting the other
components of the oxidative phosphorylation machinery, as well as mitochondrial protein
import, proteostasis, mitophagy, and oxidative stress responses [199].

Table 2. Clinical phenotypes for human COX assembly factor deficiencies.

Assembly Factor Phenotype Citations

Factors Associated with COX1 Module

LRPPRC French-Canadian Leigh syndrome [23,37]

TACO1 Leigh syndrome, ocular and cognitive impairments [26,40]

COX14 Fatal neonatal lactic acidosis [33]

COA3 Obesity, exercise intolerance, short stature, neuropathy [45]

COX10 Tubulopathy and leukodystrophy, Leigh syndrome and fatal infantile hypertrophic
cardiomyopathy, sensorineural hearing loss [57–59]

COX15 Fatal infantile hypertrophic cardiomyopathy, Leigh syndrome [62–65]

PET117 Neurodevelopmental regression, medulla oblongata lesions [72]

SURF1 Leigh syndrome, leukodystrophy, mild encephalopathy, Charcot–Marie–Tooth disease [76,77,82–84]

COX11 Infantile-onset mitochondrial encephalopathy, Leigh-like features [106,107]

Factors Associated with COX2 Module

OXA1L Mitochondrial encephalopathy and combined oxidative phosphorylation defect [32]

COX16 Hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis,
liver dysfunction [136]

COX18 Neonatal mitochondrial cardioencephalomyopathy and axonal sensory neuropathy [140]

COX20 Early-onset hypotonia, ataxia, areflexia, dystonia, dysarthria, and sensory neuropathy [145,146]

PET100 Leigh syndrome, Infantile lactic acidosis [151,152]

SCO1 Neonatal-onset hepatic failure and encephalopathy, hypertrophic cardiomyopathy [164–166]

SCO2 Fatal infantile cardioencephalomyopathy, hypertrophic cardiomyopathy, spinal
muscular atrophy [154,173–176]

COA6 Neonatal hypertrophic cardiomyopathy [180]

Unspecified Role

COA5 Fatal infantile cardioencephalomyopathy [182]
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One of the most powerful examples of how studies in yeast have [200] and continue
to have [201] a central role in understanding human disease is the identification of the
building blocks of the cell cycle. Yeast clearly has a rich history as a model system for better
understanding a wide variety of cell biological processes in higher eukaryotes, including
for the inherited COX deficiencies described in this review. It is clear that basic discoveries
in yeast have informed and facilitated the identification of mutations in patients with
defects in COX assembly. There are still no ‘proven’ therapies for the vast majority of COX
deficiencies and, given the ‘collateral damage’ that defects in oxidative phosphorylation
inflict on cellular function and homeostasis, the development of therapies is highly sought
after—but also a daunting task [202]. As seen over the history of science and medicine, a
better understanding of disease processes can lead to the development of appropriately
targeted (and thereby improved) treatment modalities. There is clearly still a future for
studies in yeast that will serve to complement experiments conducted with human cells
and tissues and thereby continue to make critical contributions to our understanding of
inherited COX deficiencies.
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