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Abstract: Infant acute lymphoblastic leukemia (Infant ALL) is a kind of pediatric ALL, diagnosed
in children under 1 year of age and accounts for less than 5% of pediatric ALL. In the infant ALL
group, two subtypes can be distinguished: KMT2A-rearranged ALL, known as a more difficult to
cure form and KMT2A- non-rearranged ALL with better survival outcomes. As infants with ALL
have lesser treatment outcomes compared to older children, it is pivotal to provide novel treatment
approaches. Progress in the development of molecularly targeted therapies and immunotherapy
presents exciting opportunities for potential improvement. This comprehensive review synthesizes
the current literature on the epidemiology, clinical presentation, molecular genetics, and therapeutic
approaches specific to ALL in the infant population.

Keywords: acute lymphoblastic leukemia; infant; targeted therapies

1. Introduction

Infant acute lymphoblastic leukemia (ALL) constitutes a particular subgroup of ma-
lignancy referred to children younger than 1 year at the time of diagnosis. This group of
patients is assessed as having the worst survival rate and outcome factors determining
the prognosis. It constitutes 1% of all pediatric ALL. The majority of cases concern ALL B
lineage, while T lineage and mixed phenotype (MPAL) are only a small percentage. In the
survival prognosis of the infants’ leukemia, the age of the patients is not insignificant. ALL,
contrary to acute myeloblastic leukemia (AML), is characterized by lower infant outcomes
compared to older children with similar cytogenetic features. Moreover, infant leukemia
is distinguished by aggressive symptoms, high-risk cytogenetic features associated with
chemotherapy resistance, and high relapse rates as well as elevated rates of therapy-related
toxicities and long-term effects [1–3]. In particular, those types with KMT2A-rearranged
ALL are characterized by hyperleukocytosis, a relatively high incidence of central nervous
system (CNS) involvement, an aggressive course with early relapse, and early relapses
resulting in poor prognosis [4]. The researchers noticed that different types of rearrange-
ments in the KMT2A gene, very high white blood cell count, an age of younger than
6 months, and a poor response to the prednisone prophase were independently associated
with inferior outcomes [5]. Moreover, patients with congenital ALL (diagnosed in the first
month of life) have been found to have a significantly higher relapse rate [6]. Treatment is
based on multidrug chemotherapy consisting of found phases: cytoreductive prophase,
induction, consolidation of remission, and maintenance therapy commonly with the sub-
sequent hematopoietic cell transplantation (HCT). The use of HCT in infant leukemia is
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uncertain due to the fact that only a small minority of KMT2A-r patients at high risk of
relapse (very young age (<6 months old), very high WBCs (≥300,000/µL), and persistence
of minimal residual disease (MRD) appear to benefit from HCT in first remission. Currently,
innovative therapies with the modulation of epigenetic factors or signaling pathways and
immunotherapy are being tested [3,7]. In this publication, our focus centers on prognostic
factors, molecular basis, conventional and novel therapies with its aftereffects, as well as
future directions.

2. Subtypes of Infant ALL

Based on the molecular background, two subtypes of Infant ALL are distinguished:
KMT2A-rearranged (KMT2A-r) and non-rearranged KMT2A (wild type KMT2A) [1].

2.1. KMT2A-r Subtype

KMT2A-r is the most common subtype, present in up to 80% of Infant ALL cases [8] It
involves a rearrangement of the histone lysine methyltransferase 2A (KMT2A) gene, located
on the chromosome 11q23 [9]. Before the HUGO nomenclature change, KMT2A was named
the mixed lineage leukemia (MLL) gene [10]. The domain structure of wild-type KMT2A is
shown in Figure 1.
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(cysteine-rich type of zinc finger domain) region-specific for non-methylated DNA, subnuclear lo-
calization domains (SNL1, SNL 2), repression domain 2 (RD2), four plant homeodomain (PHD) fin-
gers, bromodomain (BRD) and F- phenylalanine, Y-tyrosine rich N-terminal (FYRN) domain. The 
KMT2AC subunit contains transactivation domain (TAD), a FY-rich C-terminal (FYRC) domain and 
C-terminal SET (Su(var)3-9, Enhancer-of-zest e and Trithorax) domain. CxxC and RD2 regions have 
intrinsic activity in transcriptional repression. PHD and BRD are essential for the post-translational 
regulation and mediation of protein–protein interactions. FYRN and FYRC are necessary for inter-
actions between the KMT2AN and KMT2AC subunits and subnuclear localization of this complex. 
The SET domain is required for KMT2A’s H3K4 methyltransferase activity. The breakpoint cluster 
region spans exons 9–14 and the KMT2A’s fusion breakpoints, where fusion partners are attached, 
are typically located within this area. The image was created with Canva Pro 
https://www.canva.com/pro/ (accessed on 29 January 2024). 

KMT2A-r is caused by multiple genomic lesions, including internal deletions, tandem 
duplications, and amplifications, yet predominantly, it is a result of a chromosomal trans-
location that leads to fusion of the KMT2AN subunit with the C-terminal subunit from 
one of more than 90 identified partner genes [4,11]. The structure of a fusion protein is 
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Figure 1. Wild-type KMT2A domain structure. Proteolytic cleavage of the KMT2A molecule by
enzyme TASPASE1 at the cleavage site (indicated by the orange dashed line) results in the for-
mation of two subunits, bigger KMT2AN and smaller KMT2AC. The KMT2AN subunit includes
menin-binding motif (MBM), lens epithelium-derived growth factor (LEDGF)-binding domain (LBD),
adenosine–thymidine hook (AT hooks), which nonspecifically bind the minor groove of DNA, CxxC
(cysteine-rich type of zinc finger domain) region-specific for non-methylated DNA, subnuclear lo-
calization domains (SNL1, SNL 2), repression domain 2 (RD2), four plant homeodomain (PHD)
fingers, bromodomain (BRD) and F- phenylalanine, Y-tyrosine rich N-terminal (FYRN) domain. The
KMT2AC subunit contains transactivation domain (TAD), a FY-rich C-terminal (FYRC) domain and
C-terminal SET (Su(var)3-9, Enhancer-of-zest e and Trithorax) domain. CxxC and RD2 regions have
intrinsic activity in transcriptional repression. PHD and BRD are essential for the post-translational
regulation and mediation of protein–protein interactions. FYRN and FYRC are necessary for interac-
tions between the KMT2AN and KMT2AC subunits and subnuclear localization of this complex. The
SET domain is required for KMT2A’s H3K4 methyltransferase activity. The breakpoint cluster region
spans exons 9–14 and the KMT2A’s fusion breakpoints, where fusion partners are attached, are typi-
cally located within this area. The image was created with Canva Pro https://www.canva.com/pro/
(accessed on 29 January 2024).

KMT2A-r is caused by multiple genomic lesions, including internal deletions, tandem
duplications, and amplifications, yet predominantly, it is a result of a chromosomal translo-
cation that leads to fusion of the KMT2AN subunit with the C-terminal subunit from one of
more than 90 identified partner genes [4,11]. The structure of a fusion protein is presented
in Figure 2.

https://www.canva.com/pro/
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The most commonly identified KMT2A fusion partners and frequency of their occur-
rence in Infant ALL are shown in Table 1 [10,11].

Table 1. KMT2A fusion partners.

KMT2A Fusion
Partner Former Terminology Frequency in

Infant ALL

Type and
Localization of
Abnormality

AFF1 AF4 48% t(4;11) (q21;q23)
MLLT1 ENL 24% t(11;19) (q23;p13.3)
MLLT3 AF9 16% t(9;11) (p21;q23)
MLLT10 AF10 6% t(10;11) (p12;q23)

Other - 6% -

The KMT2A gene encodes a protein which is a transcriptional coactivator playing an
essential role in the regulation of gene expression during normal hematopoiesis and stem
cell differentiation [12]. Regulation of gene transcription involves histone 3 lysine 4 (H3K4)
methyltransferase activity, which is controlled by the C-terminal SET domain (Figure 1).
The KMT2A fusion protein preserves the ability to bind DNA and proteins as the MBM, AT
hook, and CxxC domains are retained. Nevertheless, the fusion protein does not include,
partially or completely, the regulatory BRD and PHD, repressive RD2 domains, and loses
the entire KMT2AC subunit with the SET domain (Figure 2), which leads to epigenetic
dysregulation and potentially initiates leukemogenesis [9,13].

It has been shown that KMT2A rearrangements are acquired in hematopoietic pre-
cursors during prenatal development [14]. Maternal exposure to environmental DNA
topoisomerase II (DNAt2) inhibitors during pregnancy may increase the risk of KMT2A-r
leukemia in infants [15].

In approximately 50% of cases of infant KMT2A-r ALL, PI3K-RAS mutation can be
detected. It is assumed that this may be an independent adverse prognostic factor, however,
the exact significance of this mutation is unclear [9,16].

The typical KMT2A-r ALL immunophenotype has the CD19- positive, CD10-negative
B-lymphoblastic cells, often co-expressed with myeloid-related antigens (for example,
CD15, CD33, and CD68 antigens). This suggests a highly immature lymphoid progenitor
origin [4,17].

2.2. Non-Rearranged KMT2A Subtype

The second Infant ALL subtype, known as non-rearranged KMT2A, accounts for
approximately 20% of all cases of infant ALL. This variant typically occurs in late in-
fancy, presents a more mature CD10-positive B-cell precursor phenotype, shares similar
cytogenetic abnormalities with ALL in older children, and is associated with better out-
comes [18,19].

In 20% of cases of infant wild type KMT2A ALL, rearrangement of the PAX5 gene
is found and is related with adverse outcomes. On the contrary, NUTM1 rearrangement,
present in around 20–30% of cases, has been shown to relate with a better prognosis [20,21].

The majority, over 90% of the wild-type KMT2A ALL cases, occur as CD10-positive
B-lymphoblastic leukemia [21] and 4–10% as T-lymphoblastic leukemia [22].

https://www.canva.com/pro/
https://www.canva.com/pro/
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3. The Past and the Present of Infant ALL Treatment
3.1. First Infant-Specific Trials

The therapeutic approach in infant ALL is a major challenge and differs from the
childhood ALL treatment [23].

The first clinical trials associated with childhood ALL commenced in the 1950s and
have expeditiously shown that infants less than 1 year of age are associated with unfavor-
able prognosis. Hence, the intensification of a conventional chemotherapy in this age group
has been required [24,25]. Consecutive intensification of a conventional chemotherapy in
infant ALL patients resulted in drug-related toxicities and led to equalization in survival
rate [26].

Thus, new clinical trials on infants based on childhood ALL protocols have begun.
Researchers demonstrated that the inferior outcomes are related with features, such as the
presence of KMT2A rearrangement, hyperleukocytosis at presentation, absence of CD10
antigen, age < 6 months at diagnosis, and poor response to initial prednisone therapy [25].

3.2. Current Collaborative Groups

At present, there are three large groups focused on performing clinical trials specific
to infant ALL: the Children’s Oncology Group (COG), the Japanese Pediatric Leukemia/
Lymphoma Study Group (JPLSG), and the Interfant Study Group [25].

As early relapse within 6–9 months of diagnosis is common in infant ALL patients,
the COG P9407 trial was designed to deliver shortened, intensified therapy with the
elimination of age- and weight-related dose reductions for most chemotherapy agents
aiming to improve the event-free survival rate (EFS). P9407 was also modified three times
for induction toxicity resulting in three cohorts of therapy. Age ≤ 90 days at diagnosis
resulted the most important prognostic factor with the 5-year EFS of 15.5%, compared to
48.5% for those >90 days. Despite the novel approach, EFS remained less than 50% overall
in KMT2A-r ALL patients [27].

The Japanese Pediatric Leukemia/Lymphoma Study Group conducted two consec-
utive studies on infant ALL, named MLL96 and MLL98. Patients with KMT2A-r ALL
were supposed to receive allogeneic HCT (allo-HCT) at their first remission after intense
chemotherapy. A high rate of early relapse before the HCT resulted in unsatisfactory
outcomes. Nevertheless, infants who received HCT at their first remission reached 3-year
post-transplantation EFS of 64.4% [28,29].

Based on these findings, the MLL03 trial was performed. Intensification of the pre-
transplantation chemotherapy with high-dose cytarabine and assignment of patients to
receive HCT in the early post-remission phase resulted in a high rate (90%) of patients
able to undergo HCT in their first remission. However, high induction toxicity, and the
relevant number of patients who still relapsed after HCT resulted in a 4-year EFS rate
of 43.2% [30]. The latest MLL-10 trial of the JPLSG showed a remarkable improvement.
Treatment included intensive chemotherapy and the limited indication for HCT to only
those from the high-risk group (according to KMT2A status, age, and presence of central
nervous system leukemia). The EFS rate for patients with KMT2A-r ALL from intermediate
and high-risk groups was 66.2% [18].

The Interfant Study Group conducted a crucial multicenter randomized clinical trial
named Interfant-99. A total of 482 infant patients aged 0–12 months were enrolled between
the years of 1999 and 2005. Consequently, they were classified into standard- and high-risk
groups based on their response to 1 week of daily systemic prednisone and one intrathecal
dose of methotrexate. The treatment hybrid 2-year protocol was based on a framework of
a standard ALL treatment approach, including phases of a four-drug induction with the
addition of variable doses of cytarabine and methotrexate, consolidation chemotherapy
(MARAM), a reinduction phase (OCTADD), an intensification phase (VIMARAM), and
three maintenance phases. High-risk patients could also receive, if a donor was available,
allo-HCT after the reinduction phase. The aims of the study were to assess the outcome
of a hybrid treatment schedule in infants with ALL and to assess the efficacy of a late
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intensification course with high doses of both cytarabine and methotrexate between the
reinduction and maintenance phases. The study demonstrated that people treated with
the hybrid protocol had higher event-free survival (EFS) than most reported outcomes
for the treatment of infants. It also resulted in showing that the late intensification of
chemotherapy did not benefit patients [5]. The overall 5-year EFS rate was 46.1% and the
survival was 55.2% for the whole study cohort. Large cohort of infants with a presence of
KMT2A rearrangement showed that only patients with additional unfavorable prognostic
features (age less than 6 month, either white blood cells (WBC) counts ≥ 300 g/L or poor
response to steroids at day 8) appeared to benefit from allogenic HCT [31].

In another study, 99 infants treated with the Interfant-99 protocol were comprised
to prognose the significance of minimal residual disease (MRD) in infants with acute
lymphoblastic leukemia. MRD was analyzed by PCR technique analyzing different data:
rearranged immunoglobulin genes, T-cell receptor genes, and KMT2A genes at various time
points (TP) during therapy. Higher MRD levels at the end of induction and consolidation
(TP2 and TP3) were significantly associated with lower disease-free survival. Further
analysis of TP2 and TP3 allowed the determination of three patients’ groups with different
research results, as follows: all MRD-high-risk patients (MRD levels > or = 10(−4) at TP3;
26% of patients) relapsed, MRD-low-risk patients (MRD level < 10(−4) at both TP2 and TP3)
constituted 44% of patients and showed a relapse rate of only 13%, whereas the remaining
patients (MRD-medium-risk patients; 30% of patients) had a relapse rate of 31%. This
analysis proved that MRD is an important prognostic factor and its diagnostics has added
value for recognition of risk groups in infant ALL and that MRD analysis can be useful in
establishing treatment interventions in infant ALL as well [32].

Based on an Interfant-99 study, researchers performed another Interfant-06 trial. A
total of 651 infants with ALL were enrolled and divided into low risk (non-rearranged
KMT2A), high risk (presence of a KMT2A-rearrangement and age < 6 months at diagnosis,
with a WBC count 300 × 109/L or more at diagnosis or a poor prednisone response), and
medium risk (all other patients with KMT2A-r ALL). Patients in the medium and high-
risk groups were randomly assigned to receive the lymphoid course low-dose cytosine
arabinoside [araC], 6-mercaptopurine, cyclophosphamide (IB) or experimental myeloid
cycles, namely araC, daunorubicin, etoposide (ADE), and mitoxantrone, araC, etoposide
(MAE). The principal aims were to assess early intensification with post-induction myeloid-
type chemotherapy to improve outcomes and prevent early relapse and to compare the
results with Interfant-99, where the late intensification was performed. The study also
differs from Interfant-99 due to the removal of dexamethasone and vincristine during
maintenance. The new treatment approach did not significantly improve outcomes for
infant ALL compared with the lymphoid-type course IB. There was also no significant
difference in the 6-year EFS when comparing Interfant-06 to Interfant-99 (46.1% in both
trials) [33].

4. Novel Therapies

The challenges in treating ALL in infants are multifaceted. Delivering effective
chemotherapy requires dose modification due to developmental factors impacting drug
pharmacokinetics differently than other age groups. Treatment-related toxicities, such as
perineal irritation, mucositis, and skin breakdown, are dose-limiting issues. These pose
serious infection risks, requiring aggressive preventive measures like antibiotic prophy-
laxis and surveillance for viral or fungal infections. Infant ALL survivors face significant
long-term complications, with growth failure being the most common. This emphasizes
the need to explore innovative therapies to mitigate toxicities associated with traditional
chemotherapy and hematopoietic stem cell transplantation [34,35].

4.1. Blinatumomab

Blinatumomab, a CD3-CD19 bispecific T-cell engager (BiTE), comprises two recombi-
nant single-chain variable fragments. By connecting CD19-positive B cells to CD3-positive
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T cells, blinatumomab activates T cells, releasing granzymes and perforins, which triggers
a signaling pathway. Ultimately, leukemic B cells undergo destruction through caspase
activation and apoptosis [36–39].

Examining blinatumomab in children under 18 with relapsed/refractory B-cell ALL,
an open-label study conducted a phase 1 dosage escalation followed by a phase 2 part
with 6-week treatment cycles. The established recommended dosage of 5/15 µg/m2/d
revealed notable outcomes, also among 10 infants (8 with MLL translocations). Within
two cycles, 60% of them achieved complete remission, and 40% proceeded to allo-HCT in
remission [40,41].

In a different set of clinical reports, blinatumomab was administered to children with
MRD-positive ALL, serving as a transitional strategy before undergoing transplantation.
This included two infants with ALL who successfully attained a complete MRD response
but experienced a relapse after the transplant [42].

A retrospective analysis examined 11 infants diagnosed with B-ALL who were treated
with blinatumomab for MRD reduction before allo-HCT. All patients had KMT2A rear-
rangement. The results showed a 100% partial or complete MRD response rate, with nine
patients becoming MRD negative. The median time from commencing blinatumomab to
HCT was 51 days. The 3-year EFS and OS post-transplant were 47% and 81%, respectively.
Four patients relapsed post-transplant, and one patient with a myeloid lineage switch died
of progressive leukemia [43].

The potential efficiency of blinatumomab therapy for infants with ALL, alongside the
less-than-optimal outcomes observed in Interfant-06 trial (six-year OS 58.2%) [33], highlight
an urgent need for new studies to investigate the possible benefits of a combined approach.

This has led to the initiation of a prospective, single-arm, phase 2 study recruiting
infants with KMT2A-r ALL. Patients were treated according to the standard Interfant-06
protocol and those with post-induction M1/M2 marrow received one cycle of blinatu-
momab. The complete course of blinatumomab was administered to all 28 patients without
any treatment interruptions. A complete response with negative MRD was observed in
54%, indicating a tendency towards a higher rate compared to the end of consolidation in
the Interfant-06 study (40%). After a 26.3 months follow-up period, the two-year EFS was
81.6%, whereas the two-year OS reached 93%. According to Interfant-06, the same criteria
were 49.4% and 65.8%, respectively. Despite the study’s limited patient population and a
relatively short observation period, its outcomes can be deemed a significant success in the
treatment of infants with ALL using blinatumomab [44]. These findings will be utilized
in the Interfant-21 study, where patients will undergo two cycles of blinatumomab before
HCT [45].

In another phase 3 clinical trial, infants with ALL are being categorized into three
groups: low risk with no KMT2A rearrangements, intermediate risk KMT2-ALL without
central nervous system damage, and high risk with central nervous system lesions. For
high-risk patients, a combination of blinatumomab and allo-HCT in the first remission has
been selected. No results have been posted yet [46].

4.2. CAR-T Cells

CAR-T cell therapy has demonstrated remarkable success in treating pediatric re-
fractory/relapsed B-ALL, significantly improving outcomes for children who may not
have responded well to conventional treatments [47]. Infants were initially excluded from
studies involving CAR-T cell therapy due to concerns about the heightened risk of toxicity
in this age group. Additionally, they have a low circulating blood volume, which poses a
challenge for effective apheresis. Problems also include obtaining a sufficient number of T
lymphocytes and the potential impairment of their function [48]. Furthermore, reports of
lineage switch in KMT2A-r leukemia after CD19-targeted therapy raise concerns about an
elevated risk of myeloid leukemia relapse following B-lineage CAR-T cell therapy in this
group [49,50].
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Quasim et al. created untypical, universal CAR19 (UCART19) cells by using lentiviral
transduction of donor cells matched to non-human leukocyte antigens. They simultane-
ously edited the genes of the T cell receptor’s alpha chain and the CD52 gene loci using
an effector nuclease-like transcription activator (TALEN). This bridging therapy was ap-
plied to two infants, allowing for a 28-day remission before a subsequent and successful
HCT [51,52].

PLAT-02 and PLAT-05 are clinical trials investigating feasibility and efficiency of
CD-19 and CD-22 specific CAR-T cells in infants with relapsed/refractory KMT2A-r B-
ALL following lymphodepleting chemotherapy. The primary inclusion criterion was
a lymphocyte absolute count exceeding ≥100 cells/µL. Among 18 infants, CAR-T cell
products were successfully manufactured in 17/18 subjects. Of these, 16/17 were infused,
with a median follow-up of 26.9 months. The highest CRS grade observed was 3, affecting
2 out of 15 assessable subjects (13%), while neurotoxicity was restricted to a maximum
grade of 2. The majority achieved MRD-negative complete remission (93.3%) by day 21,
and estimated the one-year LFS was 66.7%, while the one-year OS was 71.4% Outcomes are
favorable due to the comparable toxicity and MRD-CR rates observed in non-infant ALL
cases [53].

In another study, 13 infants treated with tisagenlecleucel achieved a two-year RFS of
67% and OS of 65%. Nevertheless, it has been shown to have a higher risk of relapses due
to myeloid leukemia switch [54,55].

Results from a retrospective study of 14 infants suggest that patients who were in
morphologic remission with or without MRD at the time of infusion were able to achieve
and largely maintain MRD-free remission after CAR-T. In turn, those children who at the
time of infusion were in an advanced stage of the disease (bone marrow > M1) did not
respond to this therapy [56].

4.3. Menin Inhibitors

Menin inhibitors are designed to bind KMT2A pocket on menin, preventing the
formation of the menin-KMT2A fusion protein complex leading to a rapid inhibition of its
expression. This interaction is critical for the abnormal gene patterns observed in leukemia
with KMT2A rearrangements [57,58].

Spectacular results of menin inhibitors were shown in mouse models with KMT2A-r
ALL xenografts, wherein leukemia burden was dramatically reduced offering the potential
for prolonged remission even with the use of a single agent [59]. This led to the development
of a clinical trial aimed at assessing the efficacy of SNDX-5613. They are recruiting patients,
including infants, with relapsed/refractory ALL, particularly those with KMT2A gene
rearrangements, or NPM1 mutations [60]. Another clinical study utilizing the SNDX-5613
is currently in development, specifically recruiting infants and children under the age
of 6 [61].

4.4. BCL-2 Inhibitors

BCL-2 is a protein that plays a crucial role in regulating apoptosis processes. Studies
have shown that KMT2A-r ALL blasts exhibit an overexpression of BCL-2, potentially lead-
ing to the heightened resistance of cancer cells against programmed death [62]. Therefore,
targeting BCL-2 proves to be an appealing strategy, as evidenced by significant responses
observed in infant patient-derived xenografts with KMT2A rearrangements following
treatment with venetoclax [63,64].

Based on this evidence, a phase 1, open-label clinical trial was conducted to eval-
uate the safety and pharmacokinetics of venetoclax in monotherapy or combined with
chemotherapy in pediatric and young adult patients. Among the 11 children with ALL
enrolled in the study, there were also infants included. The ORR was 27% in both parts.
The most common treatment emergent adverse events (TEAEs) were vomiting, diarrhea,
hypokalemia, increased ALT, febrile neutropenia, and anemia. Notably, two patients
achieved complete remission with incomplete marrow recovery (CRi) after adding 1 or
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2 cycles of venetoclax in combination with dexamethasone-vincristine-peg-asparaginase.
Additionally, three patients demonstrated MRD negativity, indicating a positive treatment
outcome [65,66].

4.5. FLT3 Inihibitors

FLT3 is a gene encoding a tyrosine kinase receptor that regulates the growth and
differentiation of hematopoietic cells. In the context of ALL development, this results in
uncontrolled proliferation and survival of leukemic cells. FLT3 mutations are more typical
for AML, but they can manifest in a specific subset of ALL cases [67]. While activating
mutations in FLT3 are relatively rare in infants suffering from ALL, the overexpression of
wild-type FLT3, causing autoactivation, is a notable characteristic and high-risk factor in
KMT2A-r leukemias [68].

A phase 3 clinical trial conducted by the Children’s Oncology Group recruited patients
with ALL under 366 days of age. The influence of the integrating FLT3 inhibitor lestaurtinib
following previous post-induction chemotherapy on EFS was examined. However, the
results showed no significant difference in the 3-year EFS between infants treated with
chemotherapy plus lestaurtinib (n = 67.36 ± 6%) and those receiving chemotherapy alone
(n = 54.39 ± 7%, p = 0.67). Subsequent pharmacodynamic assays proved that patients
achieving strong FLT3 inhibition in plasma and those with leukemic cells sensitive to
the ex vivo FLT3-inhibition assay achieved a better EFS. A total of 17 patients exhibited
both inhibition and sensitivity, resulting in a 3-year EFS of 88 ± 8%. Overall, the study
showed that along with optimal patient selection, lestaurtinib added to chemotherapy led
to favorable outcomes in the subgroup of infants suffering from KMT2A-r ALL [69].

4.6. Nucleoside Analogues

Clofarabine as a second-generation, purine nucleoside analogue is responsible for or-
chestrated DNA disruption processes and the promotion of apoptosis in neoplasm cells [70].
A preclinical study investigating the efficiency of nucleoside analogues in infantile, KMT2A-
r ALL line cells demonstrated the highest activity of clofarabine. Synergistic cytotoxicity
in combination with cytarabine has also been proven. Moreover, clofarabine induced the
demethylation of the promoter region in the tumor suppressor gene FHIT (Fragile Histidine
Triad), which is typically hypermethylated in infant KMT2A-r ALL [71].

Subsequently, among the 12 infants with ALL enrolled in the phase 3 clinical study,
9 had the KMT2A-r subtype and received a regimen containing clofarabine. The 5-year
EFS and OS were estimated at 44.4% and 55.6%, respectively. Six infants initially tested
positive for MRD, and four of them attained MRD negativity, while the remaining two
exhibited a reduction in MRD levels. At the time of publication, five patients stayed alive
and four died due to infection (three) and pulmonary hypertension (one). The results
of the study showed that while clofarabine demonstrated efficacy in reducing MRD in
infants with KMT2A-r ALL, caution in its upfront use due to significant treatment-related
mortality, primarily attributed to grade 5 infections. It suggests contemplating clofarabine
as a salvage alternative in case other immunotherapeutic strategies prove ineffective [72].
Novel approaches for infant ALL treatment are visualized in Figure 3. Next generation
clinical trials based on new therapeutic strategies are summarized in Table 2.
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Table 2. Novel clinical trials for infant ALL treatment.

Drug Class Drug ClinicalTrials.Gov
Identifier Phase Completed/Ongoing Responsible Party Key

Results References

BiTE Blinatumomab

NCT01471782 1/2 Completed Amgen Research
(Munich) GmbH

OS 40% at the
24-month follow-up [40,41]

NCT05327894
(Interfant-21) 3 Ongoing

Princess Maxima
Center for Pediatric

Oncology
N/A [45]

NCT05029531 3 Ongoing

Federal Research
Institute of Pediatric

Hematology, Oncology
and Immunology

N/A [46]

CAR-T cells

CTL019 NCT02435849 2 Completed Novartis
Pharmaceuticals 1-year EFS 50% [48]

UCART19 NCT02808442 1 Completed Institut de Recherches
Internationales Servier

MRD negativity
(2 pts) at the

18-month follow-up
[52]

CD19-CAR T Cells
also expressing an

EGFRt
NCT02028455 1/2 Ongoing Seattle Children’s

Hospital 1-year OS 71.4% [53]

CD19- and CD22
specific CAR-T cells NCT03330691 1 Ongoing Seattle Children’s

Hospital N/A [73]

Menin
Inhibitors

Revumenib
(SNDX-5613) NCT04065399 1/2 Ongoing Syndax

Pharmaceuticals N/A [60]

Revumenib
in NCT05761171 2 Ongoing Children’s Oncology

Group N/A [61]

BCL-2
inhibitors Venetoclax NCT03236857 1 Completed AbbVie

ORR 27%;
MRD negativity

(3 pts)
[65]

FLT3 Inhibitors Lestaurtinib NCT00557193 3 Ongoing Children’s Oncology
Group 3-year EFS 88 ± 8% [66,69]

https://www.canva.com/pro/
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Table 2. Cont.

Drug Class Drug ClinicalTrials.Gov
Identifier Phase Completed/Ongoing Responsible Party Key

Results References

Nucleoside
analogues Clofarabine NCT00549848 3 Completed St. Jude Children’s

Research Hospital
5-year EFS 44.4%;

OS 55.6% [72]

Epigenetic
modifiers

Azacitidine NCT02828358 3 Ongoing National Cancer
Institute

EFS 34.2%; OS
63.8% with median
follow-up 3.8 years

[74]

Bortezomib and
vorinostat NCT02553460 1/2 Ongoing St. Jude Children’s

Research Hospital N/A [75]

-

bortezomib,
vorinostat,

blinatumomab,
ziftomenib

NCT05848687 1/2 Ongoing Tanja Andrea Gruber,
Stanford University

3-year EFS 56.5%;
OS 70.5% [76]

OS—overall survival; EFS—event free survival; pts—patients; MRD—minimal residual disease; ORR—objective
response rate; N/A—not available.

4.7. Epigenetic Modifiers

KMT2A-r ALL infant cells exhibit abnormal DNA methylation patterns, as revealed
by genome-wide methylation studies. Studies suggest that leukemia-specific histone modi-
fications, like H3K79 dimethylation induced by a disruptor of telomeric silencing 1-Like
(DOT1L) recruitment in KMT2A fusion proteins, can be effectively controlled by histone
deacetylase (HDAC) inhibitors. These findings support the potential use of demethylating
agents or HDAC inhibitors to reverse inherent chemotherapy resistance in infant KMT2A-r
ALL [77–79].

COG created a phase 2, single-arm, pilot trial to assess the safety of incorporating azac-
itidine into the standard Interfant-06 protocol for infants newly diagnosed with KMT2A-r
ALL. A total of 53 infants treated with chemotherapy and at least one course of azacitidine,
with a median follow-up 3.8 years, achieved EFS and OS rates of 34.2% and 63.8%, respec-
tively. Treatment failure was observed in six infants. It was proven that EFS significantly
correlates with MRD. EFS among infants with any positive MRD was 20.6%, contrasting
with the 40.1% EFS for those without MRD. However, the results are not satisfactory,
highlighting the need for improvement and further research in new therapies for infants
suffering from ALL [74].

The TINI studies are currently testing the feasibility of adding bortezomib (a pro-
teasome inhibitor), and vorinostat (a histone deacetylase inhibitor) to the chemotherapy
regimen in infants newly diagnosed with ALL [75,76].

5. Summary

Treatment of infant ALL has faced numerous hurdles. In recent decades, intensification
of chemotherapy has improved overall survival outcomes in infant patients with ALL,
whereas inferior therapeutic results were strongly related with the KMT2A-r subtype.
Furthermore, future studies should consider managing with ALL treatment complications
to maximize efficacy and minimize toxicity of the therapy. Better understanding of the
infant ALL and worldwide development of immunotherapy led to an increased number of
novel treatment options and the next generation of promising clinical trials. Infant ALL still
remains a challenge; hence, it is pivotal to continue discovery of new targets and treatment
strategies.
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