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Abstract: The plasma membrane forms the boundary between a living entity and its environment and
acts as a barrier to permeation and flow of substances. Several computational means of calculating
permeability have been implemented for molecular dynamics (MD) simulations-based approaches.
Except for double bilayer systems, most permeability studies have been performed under equilibrium
conditions, in large part due to the challenges associated with creating concentration gradients
in simulations utilizing periodic boundary conditions. To enhance the scientific understanding
of permeation and complement the existing computational means of characterizing membrane
permeability, we developed a non-equilibrium method that enables the generation and maintenance of
steady-state gradients in MD simulations. We utilize PBCs advantageously by imposing a directional
bias to the motion of permeants so that their crossing of the boundary replenishes the gradient, like a
previous study on ions. Under these conditions, a net flow of permeants across membranes may be
observed to determine bulk permeability by a direct application of J = P∆c. In the present study, we
explore the results of its application to an exemplary O2 and POPC bilayer system, demonstrating
accurate and precise permeability measurements. In addition, we illustrate the impact of permeant
concentration and the choice of thermostat on the permeability. Moreover, we demonstrate that
energetics of permeation can be closely examined by the dissipation of the gradient across the
membrane to gain nuanced insights into the thermodynamics of permeability.

Keywords: membranes; lipid bilayers; molecular dynamics; oxygen permeability; gradient simulations

1. Introduction

At the cellular level, the boundary between a living entity and its environment is the
plasma membrane. Composed of lipids [1], proteins, and glycans, the plasma membrane
acts as a barrier to permeation and enables the regulated flow of metabolites in homeosta-
sis [2]. Substances may traverse the membrane in several ways. They may be transported
via the vesicle-mediated endo- and exocytosis, which involve topological transformations
of the membrane [3]. Substrates may also cross membranes facilitated by integral mem-
brane proteins, either by passive diffusion through a channel, or by active transfer by
a transporter involving expenditure of energy [4,5]. ABC (ATP Binding Cassette) trans-
porters, for example, which constitute the largest class of transporters, use ATP binding and
hydrolysis to actively transport ions or other molecules in a particular direction (import or
export) across the membrane [6]. As an example of passive channels, aquaporins have been
shown to substantially increase the permeability of cell membranes to water [7,8]. Finally,
molecules can cross across membranes passively by just dissolving into the lipid phase and
back out into the solvent on the other side. Small, non-polar or amphiphilic molecules are
believed to traverse the membrane primarily by this mechanism [9].
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1.1. Existing Computational Methods for Characterizing Membrane Permeability

Much scientific effort has been dedicated to characterizing permeability [10–13]. Under
steady-state conditions, the permeability P of a boundary to a solute is described by the
equation [11–14],

J = P∆c, (1)

where J is the rate of permeant flux across the boundary per unit area, and ∆c is the
difference in permeant concentration across the boundary. This description of permeability
is derived from Fick’s first law of diffusion [15,16].

Several computational means of calculating permeability have been implemented
for molecular dynamics (MD) simulations. One approach uses the solubility-diffusion
model, which originates from Overton’s rule [9,17,18], to predict the permeability of a
membrane from the solubility and diffusivity of a permeant [19–21]. The inhomogeneous
solubility-diffusion (ISD) [11,22–24] model extends the idea by decomposing the resistance
to permeation, Rp, posed by, for example, a membrane into infinitesimal contributions:

Rp =
1
P
= c∗

∫ +L/2

−L/2

dz
c eq(z)D(z)

=
∫ +L/2

−L/2

dz
e−w(z)/kBT D(z)

(2)

where c∗ is the concentration of the permeant in solution, ceq(z) is the concentration of the
permeant at position z within the membrane, and w and D are the potential of mean force
(PMF) and diffusivity of the permeant at z, respectively, with the range between ±L/2
encompassing the width of the membrane. Many computationally derived predictions of
permeability have used the ISD model to yield reasonable estimates for a wide variety of
membranes and permeants [22,23,25–31].

Alternatively, counting-based approaches aim to predict membrane permeability in
a more consistent manner to the experiments and the theory, by observing the rate of
permeation events across a membrane to calculate permeability by a direct application
of J = P∆c (Equation (1)). This approach requires minimal theoretical assumptions and
has been applied to study various systems, recently for H2O, O2, and ethanol permeation
across POPC bilayers [12,31].

Despite their success, these methods are not without their shortcomings, perhaps the
most important being the absence of a concentration gradient, which is the way measure-
ments are taken in experiments. With the exception of double bilayer systems, the majority
of simulation permeability studies have been performed under equilibrium conditions,
in large part due to the challenges associated with creating concentration gradients in
simulations utilizing periodic boundary conditions (PBCs). The gradient is a crucial feature
since the presence of a permeant can modulate the properties of the membrane [31], even
impacting each leaflet of the lipid bilayer differently. In particular, for approaches using the
ISD model, calculations are commonly performed for a single permeation path, and as a
result, if the membrane is heterogeneous, even extensive sampling may not guarantee that
the variability in local solubilities and diffusivities will be fully represented. Moreover, com-
plexity arising from the permeant itself can add further degrees of freedom (i.e., rotational
and conformational), evident, for example, in a recent investigation of chloroquine [32].

Because the ISD model attempts to detail the permeation process by granularizing the
properties of the membrane and states of the permeant, the permeation path can become
prohibitively complex, not to mention the theoretical assumptions underlying the model
such as that of “small gradients” [23].

1.2. Need for Generating Concentration Gradients in MD Simulations

To enable studies of permeability under concentration gradient conditions and com-
plement the existing computational means, we developed a non-equilibrium method that
enables the generation and maintenance of steady-state gradients in MD simulations. Simi-
lar to a previous study [33], we aim to create a concentration gradient across the membrane.
In our method, however, we utilize PBCs advantageously to impose directional bias to the
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motion of permeants so that their crossing at the boundary replenishes the gradient. Under
these conditions, a net flow of permeants across membranes may be observed to determine
bulk permeability by a direct application of J = P∆c (Equation (1)).

In the present study, we explore the results of the method’s application to an ex-
emplary O2 and POPC bilayer system, demonstrating accurate and precise permeability
measurements under conditions typical of MD simulations. Because standard practice
in MD commonly involves some form of artificiality to acquire adequate sampling for
statistics, in our case, unphysiologically high concentrations of O2, special care must be
taken to make nuanced interpretations of results. We illustrate the impact on permeability
made by the permeant concentration choice of thermostat in simulation. Moreover, we
demonstrate that energetics of permeation can be closely examined by the dissipation
of the gradient across the membrane to gain nuanced insights into the thermodynamics
of permeability.

2. Results and Discussion
2.1. Generating Concentration Gradient in a Water Box

In a demonstrative application of our technique, one out of every hundred molecules
in a pure water box were randomly selected to be subjected to the directional bias, which
imposed a 1 kcal/mol energy ramp across the periodic boundary (Figure 1). The measure-
ment of the local concentrations of these water molecules, averaged over the course of a
600 ns simulation, revealed a linear gradient, indicating a steady state was achieved by
the method (Figure 1). Moreover, the ratio of the local concentrations of the selected water
at the ends of the unbiased region reflected the 1 kcal/mol energy step between periodic

images (β ln
( [H2O](z=+90 Å)

[H2O](z=−90 Å)

)
= β ln ( 0.868

0.245 ) = 0.779 kcal/mol ≈ 1 kcal/mol). Some loss in
energy is experienced as reflected by the difference in concentration due to dissipation by
flow of the selected water molecules. By modulating the magnitude of the energy ramp,
users can predictably tune the target concentration gradient to suit their needs.

2.2. Generating Oxygen Gradient across a Lipid Bilayer

As a second practical test for our concentration gradient method, gradients of O2 were
generated across a POPC bilayer for the study of membrane permeability. The O2-POPC
system was selected as a test case due to the opportunity for abundant sampling provided
by the rapid permeation of the small O2 molecules, as well as being an exemplary system,
well examined in prior studies [29,31,34].

The concentration profiles of the O2 show that our method successfully created stable
steady-state gradients across the lipid bilayer, with the profiles reflecting the amphiphilic
nature of the membrane (Figure 2). In the gradient simulations, the enriched region shows
elevated concentrations of O2 when compared to the control (Figure 2, black line). Pro-
ceeding from the enriched region toward the depleted region down the z-axis, the O2
concentration decreases linearly until reaching the headgroup region, where the concen-
tration drops steeply due to the polar nature of the region. This phenomenon is observed
in both gradient and control simulations as well as in other systems simulated in our lab,
and has been also reported by other laboratories [29]. Entering the lipid tail core of the
bilayer, the O2 concentration increases substantially, even beyond the concentration in
the bulk solution, in accordance with the hydrophobic nature of the O2 molecule and the
reported partition coefficient of O2 [35,36]. Approaching the headgroups near the depleted
region, the concentration drops steeply once again, below that of the concentration ob-
served at the first headgroup region on the enriched side of the membrane. Exiting the
headgroup region into the depleted solution, the O2 concentration rises again. As expected,
the depleted solution concentration is lower than that of the enriched side. Continuing
down and away from the membrane and toward the end of the simulation box, the O2 con-
centration steadily declines until reaching the biasing region at the boundary. At z = −90 Å,
the concentration begins to rise due to the applied bias.
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While the absolute values of the concentrations differ between the simulations with
different O2 concentration, the gradient profiles are created similarly in all simulations
(Figure 3). The limited sampling resulting from the low concentration of O2 yields greater
uncertainty for the average values in the concentration gradient profiles. A comparison of
the profiles for the CSVR and Langevin dynamics simulations finds nearly identical values,
showing that the choice of thermostat does not impact the energetics of the simulation
(Figure 3). The relative partitioning of the O2 molecules is consistent.

Figure 1. To demonstration the concentration gradient method with water a unidirectional bias
was applied to one out of every hundred water molecules in a pure water simulation. The grid
potential (top plot) applies a bias only in a small region near the periodic boundaries along the z-axis
(membrane normal), creating a force that pushes the selected water molecules across the boundary in
one direction. In the diagram, the direction of the bias is right to left. The potential is flat within the
majority of the simulation system (−90 Å < z < +90 Å) allowing unbiased motion of the particles.
The fixed 1 kcal/mol energy ramp between periodic images specified using the G-SMD module
in NAMD creates a force on the select particles in the direction indicated by the red arrows. The
average concentration of the select water molecules, profiled along the z-axis (bottom plot), displayed
a linear gradient within the unbiased region. The blue line shows the average concentration, with the
shaded regions indicating the bounds within 1 standard error of the mean.
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Figure 2. Concentration gradients were generated across simulated lipid bilayers in an application
of our method. The molecular image on the right depicts a POPC bilayer centered at z = 0 with
a ball-and-stick representation in which lipid tails are colored white, while oxygen and nitrogen
atoms of the head groups are colored red and blue, respectively. On either side of the bilayer is the
aqueous phase which contains Na+ (yellow) and Cl− ions colored yellow and cyan, respectively.
Water molecules are not shown for clarity. Molecular oxygen (O2), shown as two joined red spheres,
is present throughout the systems. Imposing a 1 kcal/mol energy step between periodic images
results in the enrichment of O2 molecules on one side of the membrane while depleting from the
other (red plot). A control simulation with no bias results in equal solution concentrations of O2 on
the two sides of the membrane (black plot). In both cases, the amphiphilic nature of the bilayer is
evident; the polar headgroups coincide with a reduction in local O2 concentration, whereas the lipid
tail core shows maximal enrichment of O2. The plotted lines indicate the mean concentration for
the two profiles after reaching a stable steady state, and the lighter shaded regions show the bounds
within 2 standard errors of the mean.
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Figure 3. Concentration gradient profiles for the low- (5 O2), medium- (50 O2), and high- (500 O2)
concentration simulations ordered from left to right. The concentration profiles show the average
concentration of O2 along the z-axis, plotted as red lines with the shaded regions indicating the
bounds within 2 standard errors of the mean. A concentration profile for the medium concentration
system simulated using the Langevin dynamics thermostat is shown in blue, nearly identical to the
simulation using CSVR. The overall features of the concentration gradients remain consistent across
the various simulations.

2.3. Oxygen Flux across the Membrane

Measuring the accumulated flow over the course of the simulation (Figure 4), we
observe that the flow is proportional to the total number of O2 molecules present in the
simulation. For higher numbers of the permeant, the plot for accumulated flow becomes
less noisy and approaches that of a straight line. Both the 50 and 500 O2 simulations reach
an accumulated flow of about 3.2 times the total number of permeant molecules over the
course of a microsecond.

Figure 4. Accumulated flow (above) and membrane area (below) of the low- (5 O2), medium- (50 O2),
and high- (500 O2) concentration simulations. The low-concentration simulation is run for 1.7µs to
increase sampling, while the medium- and high-concentration simulations run for 1µs. A continuous
net flow of O2 across the membrane is observed for the three simulations, and the rate of accumulated
flow becomes increasingly steady and linear with increasing concentration. The low-concentration
simulation exhibits substantial noise in the flow. The average flux through the membrane is found to
increase with increasing the O2 concentration, most noticeably for the high-concentration simulation.
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Because we measure flow at z = 0, large fluctuations (“noise”) envelop the absolute
value of flow which stems from the large population of O2 in the lipid bilayer core. With an
increasing number of O2 molecules, the accumulated flow appears increasingly smooth.
The low-concentration simulation visibly shows the widest fluctuations about the average.
In addition to the noise, the low-concentration simulation shows a noticeable drift in the
rate of accumulated flow. These two characteristics occur due to the sparse population of
O2 in the simulation such that the membrane even transiently experiences a total absence
of O2 (t ≈ 1250 ns), despite the bilayer interior providing a favorable environment for the
partitioning of O2. For the calculation of permeability, the accumulated flow is converted
into a flow rate by normalizing it with respect to the block size of 100 ns.

The membrane area fluctuates around its average throughout the simulations (Figure 4).
We find that the average membrane area increases with increasing O2 concentration.
Whereas the difference between the low- and medium-concentration simulations is slight,
there is a significant increase in the membrane area for the high-concentration simulation.
We attribute the increased area to the packing of a large number of O2 molecules into the
membrane interior, which cause the lipids to spread out (Figure 5).

Figure 5. Shown are three molecular visualizations of the various concentration conditions explored
by gradient simulations. Each visualization depicts a POPC bilayer at the center shown in a ball-
and-stick representation. The lipid tails are colored white, while oxygen and nitrogen atoms of the
head groups are colored red and blue, respectively. On either side of the bilayer is the aqueous
phase which contains Na+ (yellow) and Cl− ions colored yellow and cyan, respectively. Water
molecules are not shown for clarity. Molecular oxygen (O2), shown as two joined red spheres,
is present throughout each of the systems. (A) Shows the “low” (5 O2)-concentration simulation
which most closely replicates a physiological concentration for dissolved O2, although sampling
was limited. (B) Shows the “medium” (50 O2)-concentration simulation, representing a balanced
number permeants to achieve adequate sampling for more precise measurements while minimizing
the introduction of artifacts that accompany the inclusion of high permeant counts. (C) Shows the
“high” (500 O2)-concentration simulation, which shows a membrane whose phospholipid bilayer
structure has been perturbed by the extreme and unrealistic inclusion of O2.

2.4. Oxygen Permeability of POPC Bilayers

Collating data for the concentration gradient, flow, and surface area from the simula-
tions, we measure the permeability of POPC bilayers to O2. We find that O2 permeability
positively correlates with the permeant concentration, measuring PO2

5 = 12.1 ± 5.4 cm/s,
PO2

50 = 15.4 ± 1.8 cm/s, and PO2
500 = 23.8 ± 2.0 cm/s for our simulations containing 5, 50,

and 500 O2 molecules, respectively. Use of the Langevin thermostat instead of CSVR
(Canonical Sampling through Velocity Rescaling) results in a reduced permeability for the
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simulation containing 50 O2—PO2,Langevin
50 = 13.8 ± 2.2 cm/s. A summary of the simulation

conditions and their results are presented in Table 1 and Figure 6, reporting the means and
accompanying standard errors of pertinent measurements. We also perform control simula-
tion for the 50 O2 CSVR simulation, wherein no directional bias is applied. All simulations
are run for 1µs, except for the 5 O2 simulation, which is performed for 1.7µs. The results
indicate that the permeability of the bilayer is sensitive to the permeant concentration and
choice of thermostat in the simulation.

Figure 6. Membrane permeability displayed dependence on O2 concentration and simulation ther-
mostat. The calculated permeability along with standard errors are plotted in relation to the O2

concentration revealing a correlation. Although the difference in permeability between the low- and
medium-concentration simulations is not statistically significant, the downward trend appears to
persist down to concentrations near 2 mM. Also plotted is the permeability from the simulation using
the Langevin dynamics thermostat, which shows a slightly lower permeability from the simulation
using the CSVR thermostat with an equivalent O2 concentration.

Table 1. Summary of data used for permeability calculations. Tabulated are the simulation conditions
and collected data used to calculate the O2 permeability of a POPC bilayer. The average values are
reported along with standard errors of means.

O2 Count Length (µs) Thermostat [O2]z=+30 Å
(mmol/L)

[O2]z=−30 Å
(mmol/L) Flow Rate (molecules/100 ns) Area (Å2)

Permeability
(cm/s)

5 1.7 CSVR 2.56 ± 0.19 0.92 ± 0.12 1.12 ± 0.48 9375 ± 5 12.07 ± 5.41
50 1.0 CSVR 27.77 ± 1.07 9.38 ± 0.62 16.1 ± 1.58 9434 ± 10 15.41 ± 1.84

500 1.0 CSVR 210.35 ± 6.00 88.67 ± 3.21 171.4 ± 10.88 9847 ± 25 23.75 ± 2.01
50 1.0 Langevin 27.38 ± 1.63 10.52 ± 0.61 13.2 ± 1.55 9399 ± 12 13.84 ± 2.16

2.4.1. Correlation of Permeability and Permeant Concentration

Comparing the simulations with varying levels of O2, we find that the calculated
permeability increases with O2 concentration. While the difference is not statistically sig-
nificant between the low- and medium-concentration simulations, there is a significant
difference between the medium- and high-concentration simulations (Table 1 and Figure 6).
The correlation exhibited between the concentration and permeability has been observed
in other simulation studies. Krämer et al. [31] observed from simulations that membrane
permeability to ethanol increased under elevated ethanol concentrations, with permeability
calculations using either the ISD model or partial transition counting showing greater sen-
sitivity than full permeation counting-based calculations. In another simulation study with
extensive examination of concentration effects that included double bilayer simulations,
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Ghorbani et al. [30] found a correlation between permeability and ethanol concentration for
POPC, POPE, and POPS lipid bilayers. They found that POPC showed the greatest increase,
with a permeability of ∼0.10 cm/s at 1% ethanol concentration, and up to ∼1.28 cm/s at
18% when measured using the ISD model. Both discussed the breakdown of the Marko-
vian assumption under high concentration when measuring permeability by either partial
transition counting or ISD model-based methods. Although they focused their discussion
on the sensitivity of methods, they touched on the fact that the presence of a solute within
the membrane modulates its properties. Considering these reports and our own results, we
can generalize the idea that the permeability of a membrane to a solute correlates positively
with its concentration, at least for those that partition preferably and largely into the lipid
phase and can change its properties.

High O2 concentration spreads lipids, increasing permeability in simulation. Though
O2 is smaller than ethanol, aligned with its highly hydrophobic nature and large partition
coefficient (∼3.5 at 37 ◦C)[36], we observe that most of it dissolves in the membrane
and that the membrane permeability increases significantly under high, albeit unrealistic,
concentration. We attribute this phenomenon to the influence of O2 on the membrane.
The high saturation of O2 causes the membrane to expand as evidenced by the increase
in membrane area resulting from the increased O2 concentration (Table 1). The 500 O2
simulation exhibits the greatest membrane area, markedly greater than that of the others
(4.4% greater than the medium-concentration simulation). The increased area is associated
with elevated permeability, although, if all else remains the same, it is expected to in fact
decrease the permeability (larger area translating to reduced density of flux). However,
the disruption and lipid separation caused by high O2 seem to produce a more “porous”
membrane with higher permeability. O2 prefers to partition into the hydrophobic lipid tail
core of the bilayer, and in doing so, expands the space between lipids, importantly also in
the headgroup region, making the membrane more amenable to permeating flow.

As an example, consider the ratio between the rate of flow and O2 count. For the low-,
medium-, and high-concentration simulations, the flow rate, after normalizing for the O2
count, increases with the O2 count, measuring 0.22/100 ns, 0.322/100 ns, and 0.343/100 ns,
respectively. The increase is even more apparent when normalizing the flow rate for the
solution concentrations of O2 used to measure ∆c. To explain this elevation in flow rate,
and subsequently permeability, the presence of the O2 must cause the lipids to space out
and the membrane to become more leaky.

The impact of the permeant on the membrane properties raises questions about the
realism of MD simulations performed at unrealistically high concentrations of the solute,
which is often used to compensate for poor sampling. This is a clear example of how using
high ligand counts to enhance sampling can introduce artifacts that may affect outcomes.
The concentrations that we examine are high as well. With a Henry’s law constant of
Hpx

v = 4.7521 GPa at 303.14 K [37,38], we expect O2 to be present in water at a concentration
of around 250µM under atmospheric conditions (21%). Our closest simulation system,
containing only five O2, has an average solution concentration of 1.74 mM, still an order
of magnitude greater than reality. Although we find a correlation between concentration
and permeability, it remains to be seen whether this effect will persist in the regime of more
physiological concentrations. A confident assertion of whether the presence of O2 continues
to modulate membrane permeability at lower concentrations, which is outside the scope of
the present study, would require additional simulations. It may be interesting to examine
whether the positive correlation between permeability and concentration persists at more
realistic concentrations of O2 in future work. However, considering that the difference in
permeability that we observe between the 5 and 50 O2 systems is not statistically significant,
the 50 O2 simulation system seems the most practical choice, as it balances sampling and
measurement precision with realism.
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2.4.2. Effect of Thermostat

The permeability determined from the simulations using the Langevin thermostat
is lower than the simulation using the CSVR thermostat for an equivalent number of O2
molecules. For the simulation with 50 O2, for example, using the Langevin thermostat, we
observe a permeability—PO2,Langevin

50 = 13.8 cm/s ± 2.2, whereas with the CSVR thermostat,
the permeability is calculated to be PO2,CSVR

50 = 15.4 cm/s ± 1.8 (Table 1 and Figure 6).
Although the difference is not found to be statistically significant, lower permeability

values resulting from the use of the Langevin thermostat have similarly been reported
in the simulation literature. Dotson et al. [39] observed this effect studying O2 when
comparing Langevin to the Berendsen thermostat, as well as Kramer et al. [31] studying
ethanol in comparison to Nosé–Hoover chains. Bussi et al. have reported that the CSVR
thermostat preserves momentum, while the Langevin thermostat does not [40,41]. As
a result, the Langevin thermostat reduces the diffusivity of particles, especially when
the damping coefficient (γ) is large, when compared to NVE simulations or those using
CSVR or other momentum-preserving methods. Considering the linear dependence of
permeability on diffusivity in the ISD model, the reduction in permeability measured from
our simulation using the Langevin thermostat is expected.

2.5. Dissipation of the Chemical Potential

Our concentration gradient method enables us to microscopically characterize the
permeability of the membrane. The impact of concentration gradient on the dynamics
may be better understood by drawing an analogy to electrical circuits. We can isolate the
contribution of the concentration gradient to the relative free energy of the O2 partitioning
∆G along the z-axis by comparing the concentration profile of gradient simulations to their
control (Figure 2):

[O2]gradient(z)
[O2]control(z)

= e−(∆Ggradient−∆Gcontrol)/kBT = e−∆∆Ggradient/kBT (3)

This calculation allows us to visualize the dissipation of the chemical potential
(Figure 7). Doing so removes the enthalpic contribution to the O2 partitioning, which origi-
nates from the interaction energy between O2 molecules and their environment, i.e., the
lipids and solution. After subtracting the enthalpy, we have access to the entropic contribu-
tion, which contains information about the organization of O2 in the concentration gradient
(loss of entropy):

∆G = ∆H − T∆S (4)

Consider the system analogously to an electrical circuit with resistors wired in series
and view the free energy through the lens of Ohm’s law:

V = IR (5)

where V is the voltage, I the current, and R the resistance. In our analogy, the free energy
G can be thought of as voltage, which will decrease as the flow of O2 (electrons), analogous
to the electrical current, encounters resistance to permeation Rp = 1

P .
Drawing an analogy to Ohm’s law enables us to determine the resistance to permeation

with near-Ångstrom resolution by examining the dissipation rate of the chemical potential.
Drops in the chemical potential indicate regions of high resistance, whereas a flat potential
indicates negligible resistance. In this way, we can make a detailed characterization of the
resistance profile of the system, which in turn determines the overall permeability. The two
head group regions of the bilayer, which correspond to local minima in the O2 concentration
(z ≈ ±25 Å in Figure 2), exhibit the greatest resistance. In fact, the majority of the energy
dissipation occurs in these regions. Others have stated that only regions where the PMF
rises above that of the solvent free energy will result in a decrease in permeability [29,42]
since permeability depends exponentially on free energy in the ISD model. Our data
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support this claim. However, one could expect a permeant that encounters a rising PMF to
be kinetically hindered, like at the transition from the core to the head groups, where the
PMF rises steeply (10 Å < |z| <17 Å in Figure 2). Interestingly, the chemical potential does
not appear to drop significantly in this region, further supporting the idea that only regions
where the PMF is elevated above that of the solvent level provide resistance. There does
appear to be a subtle difference between the two drops in the chemical potential at the head
group regions, with the enriched side producing a smaller decrease than the depleted side.
We attribute this to there being a lower concentration of O2. Examining the dissipation,
we can also characterize the solvent, which exhibits a non-zero resistance to permeability.
A substantial portion of the concentration gradient dissipates within the solvent, which
appears greater on the depleted side of the membrane than on the enriched side. While
this is consistent with the ISD model due to the reduced O2 concentration on this side, it
is unintuitive since one would expect the permeability of the solvent to be equal on both
sides. This is perhaps where we might benefit from a more general theoretical treatment of
permeability, as we encounter the assumption of “small gradients” [23] in the ISD model,
which does not hold in our case. The concentration of CO2, metabolically related to O2, is
measured to be 23 mM in arterial plasma and 11 mM within red blood cells, representing
a 2:1 ratio [43]. In biological systems, the magnitude of the concentration gradient can be
significant. We model a similar extrema for the concentration of a similar species of gas, O2.
In order to understand the subtleties of permeation, we may need to consider cases where
the assumption of small gradients no longer holds.

Figure 7. Dissipation of concentration gradient. Comparing the concentration profiles of the gradient
simulation to the control enables the calculation and visualization of the gradient energy. Steep
drops in the gradient, like at the lipid headgroups (z ∼ ±18 Å), indicate regions of high resistance to
permeation, whereas relatively flat regions, like within the bilayer core (z ∼ 0 Å), indicate regions
of low resistance. Viewing the energy of the concentration gradient in this way provides a precise
characterization of permeability.
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2.6. Discrepancy between Computation and Experiments

It is commonly known that membrane permeability estimates from MD simulations
differ significantly from those measured experimentally, in some cases by several orders
of magnitude [11]. It is usually the case that permeability measurements via simulations
are higher than those of experiments. Because of this, MD simulations have focused
mostly on qualitative characterizations of permeability. Measuring the permeability of
small, non-electrolytic species can prove challenging due to their rapid permeation. For
example, membrane permeability to CO2 was measured experimentally to be on the order
of 10−3 cm/s [44] for liposomes composed of E. coli lipids, while a similar follow-up study
from the same group measured the permeability of DPPC liposomes to be on the order of
10−4 cm/s [45]. While the precision of experimental measurements of permeability may
benefit from improvement, examination of our concentration gradient simulations may
help to close the gap.

Significant dissipation of the concentration gradient occurs in the solvent phases over
the length of a few nanometers, both in the enriched and depleted sides of the membrane. In
an experiment, if the separation between the two points at which concentration is measured
is large, then the solvent phase may contribute significant resistance to permeation. Points
at which concentrations are measured that are far apart would yield a smaller permeability.
This may very well be the case for experimental measurements of concentration since
probes, like a pH sensor, may be only as close to the membrane as a few nanometers. While
minuscule on the scale of experiments, a few nanometers will be in large excess of the
membrane thickness, which is considered precisely in simulations. If this is the case, then
experiments and simulations are almost measuring different things, not to mention the other
variables in play when conducting, for example, an experiment that uses the enzymatic
conversion of CO2 into carbonic acid and pH measurements as a readout for gas exchange
across the [44]. Simulation results calculate the permeability specifically for the lipid bilayer,
whereas experiments measure the lipid bilayer as well as solvent layers adjacent to it, which
can contribute resistively to permeability. If the resistance to permeability of the solvent
is taken into consideration, perhaps the permeability determined by experiments and the
one determined in simulations can be brought closer to each other. Supporting this notion,
if we calculate the permeability from our concentration gradient simulations for a slab
larger than the membrane (−90 Å < z < +90 Å), which includes the solvent, we obtain a

lower permeability of PO2,±90 Å
50 = 11.4 cm/s. Möller et al. [46] suggested that the unstirred

aqueous layers of around 10 nm thickness can present resistance to permeation at levels
similar to that of red blood cell and EYPC (egg yolk, mostly POPC) membranes against
nitric oxide, which appears a reasonable proposal in light of our data.

On the computational side, disparities may originate from inaccuracies in the classical
force fields. We have shown above that even the permeability through the water phase,
often dismissed perhaps as uninteresting, contributes to the overall permeability. For
water, the TIP3P model, used here for the simulations, has been reported to produce a
shear viscosity about twice that measured from experiments [47]. The Stokes–Einstein
equation predicts that the diffusivity of a particle in solution is inversely proportional to the
viscosity of the solution (D ∝ 1

η ), so we can expect the diffusivity of O2 to be overestimated
by a factor of two in simulation for the water phase, translating to an overestimation of
the overall permeability. In support of this idea, the self-diffusion coefficient of TIP3P
water has been calculated to be approximately two times greater than experimental values
(∼5.5 vs. 2.3 [×10−9 m2s−1]) [48,49]. This means that we might expect the contribution
to permeation resistance by the solvent to be even more substantial than observed in our
simulation because the diffusivity of a solute, in our case O2, is proportional to the self-
diffusion of the solution. Like resistors in series, the water becomes a more significant
contributor to the resistivity of the simulation system. The resistance to permeation of the
solution phase is likely responsible for most of the discrepancy between the simulation
and experiment.
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Furthermore, the model for O2 overestimates its partitioning into the lipid phase.
For our work, we use the CHARMM-D, dipole model of O2. Even though the model is
among the more accurate models in terms of replicating the free energy of transfer between
hexadecane and water, the energies still do not match closely: ∆Gtr = 6.42 kcal/mol
vs. ∆Gtr = 4.5 kcal/mol experimentally [50]. It is more challenging to explain how this
discrepancy will translate into changes in the calculated permeability. A reduction in
partitioning into the lipid tail core of the bilayer should result in a lower permeability
through the region, but it could also mean that it lowers the free energy barrier located in
the headgroup region. A set of simulations comparing the results would be necessary to
make a definitive statement on how the O2 affects the modeled permeability.

3. Materials and Methods
3.1. Generating Concentration Gradients via a Unidirectional Bias at the Boundary

We generate concentration gradients in the MD simulation by applying a unidirectional
bias to the motion of select particles near the periodic boundaries. Such a bias drives the
select particles across the periodic boundary into the next periodic image in one direction
(Figure 1). This causes a local reduction in the concentration of the particles at one end
(depletion) while raising it at the other (enrichment). Spatially restricting the application of
the bias to the simulation boundary allows the select particles to diffuse freely within the
rest of the simulation volume (the core) and naturally establish a concentration gradient.
The absence of bias from the core is an important design goal of our method, as it allows
users to observe the stochastic movement of permeants in a region of interest, for example,
across the membrane.

We achieve the directional bias using Grid-steered molecular dynamics [51] (G-SMD
or “grid-forces”), a module in NAMD [52,53] that allows the user to impose, on select
particles, an external force derived from the gradient of a user-defined scalar field (grid
potential). We define the (grid) potential to be flat within the core of the simulation box so
as not to interfere with the natural dynamics of particles in this region. The grid potential
extension to the boundaries along the long axis experiences a fixed energy step between
periodic images, thus creating a linear energy ramp that biases the motion of select particles
between periodic images. The resulting effect is that the concentration of the select particles
at opposite sides of the boundary experiences a gradient proportional to the magnitude of
the imposed energy step between periodic images.

3.2. POPC Bilayers for Concentration Gradient Simulations

Testing our concentration gradient method as a means to accurately characterize
permeability, we apply it to O2 in µs-scale MD simulations of POPC membranes. We
simulate a 100 Å × 100 Å patch of POPC, generated using CHARMM-GUI [54], solvated
on both sides to a total height of 220 Å. We define an unbiased region that stretched from
z = −90 Å to z = +90 Å, and impose a 1 kcal/mol energy step between periodic images
of the simulation on the O2 (Figure 1). We perform a set of simulations with varying O2
concentration to observe the effect of permeant concentration on permeability, populating
each simulation system with either 5, 50, or 500 O2 molecules by randomly selecting and
replacing water molecules. Our simulations primarily use the canonical sampling through
velocity re-scaling (CSVR) thermostat [40]. In addition, we also perform a simulation
using the Langevin thermostat to compare the impact of the thermostat choice. To perform
the permeability analysis, we characterize the concentration gradient across the system
and measure the flux of O2.

3.3. Molecular Dynamics Technical Specifications

The lipid bilayer in the membrane simulation systems contains 294 POPC molecules-
The membranes are solvated in TIP3P water using the SOLVATE plugin of VMD [55],
with the solvent box size measuring 100 Å × 100 Å × 220 Å in the x, y, and z dimensions,
respectively. The AUTOIONIZE plugin, also included with VMD, is used to add Na+



Int. J. Mol. Sci. 2024, 25, 3616 14 of 20

and Cl− ions to create a 150 mM salt solution, emulating a biological solvent. The solvent
consists of 56.5k water molecules with 159 Na+ and 159 Cl− ions. O2 molecules are in-
troduced by random selection and replacement of water molecules. The total size of the
system is 209k atoms. Our simulations use the CHARMM36m force field [56,57] and the
CHARMM-D, dipole model for O2 (ϵ = −0.12 kcal/mol; Rmin/2 = 1.7 Å; lbond = 1.23 Å;
q = ±0.021 e) [58–60]. Simulations are performed with NAMD2.14 [52,53], first equilibrat-
ing for 15 ns and then performing production runs for 1µs, except for the 5 O2 system,
which is run for 1.7µs. To prevent a drift in the lipid bilayer with relation to the applied
gradient, the center of mass of the lipids is restrained to z = 0 using a harmonic restraint
with a force constant of 1 kcal/mol using the collective variables [61] module in NAMD.

3.4. Characterization of Concentration Gradients

We profile the concentration gradient of O2 in the simulations by measuring its local
concentrations in thin 1-Å slabs along the simulation z-axis (membrane normal). The local
concentrations are measured for each saved frame of the simulation trajectory to obtain
a time average. The concentration profiles of the gradient simulations show elevated
concentrations on the enriched side of the membrane, and a decreased concentration on
the depleted side when compared to the control simulation (Figure 2). The profiles also
highlight the amphiphilic features of the POPC lipid bilayer membrane.

Measuring permeability using the relation derived from Fick’s first law (Equation (1))
requires the characterization of ∆c. Using the concentration profiles to inform our selection,
we choose the difference in concentration at regions just outside the lipid headgroups,
within a few Ångstrom, at z = ±30 Å,

∆c = c(z = +30 Å)− c(z = −30 Å). (6)

O2 concentrations begin to drop just after ±30 Å points before entering the lipid bilayer.
These bounds precisely indicate the full extent of the membrane’s influence on the O2,
and the point of complete transition into the solution phase. Our observation agrees with
X-ray and neutron scattering experiments showing that the atomic density of a POPC
bilayer becomes 0 at 30 Å [62].

3.5. Flux Calculation

Returning to measuring permeability, we measure flux J, which is defined as the rate
of flow per unit area. From our simulations, we calculate flux by dividing the accumulated
flow of O2 through the membrane over time ∆t by the average membrane area A:

J =
Accumulated flow

Area × ∆t
(7)

We define the accumulated flow as the total number of crossings of the permeant, O2,
across a boundary (e.g., the membrane) over the course of a simulation (∆t). And due to
conservation of mass in the time-average steady state,

J(z)
dz

− c(z)
dt

= 0 (8)

we assume the flow to be consistent along the length of the simulation box, only requiring
that it be measured across one boundary. The accumulated flow (Figure 8) was measured
by analyzing the simulation trajectories in VMD [55] using in-house Tcl scripts, described
in the following text.

Two characteristics of MD simulations must be considered when determining flow.
First, MD simulations are discrete in both time and space, especially in the context of saved
trajectories, where instantaneous snapshots of simulations are saved at regularly spaced
intervals. Second, MD simulations typically use periodic boundary conditions (PBCs)
to reduce edge effects, which introduce a major discontinuity to the position of particles
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when they traverse a boundary. Because of these two conditions, care must be taken when
determining flow.

We define four regions in the simulation space, which we shall call regions I, II, III,
and IV (Figure 9). The boundary across which we would like to determine flow, B, divides
regions II and III. We also define a normal vector n̂ for B that points in the direction from
region III to region II. Now, for each saved frame in the simulation trajectory, particles
are labeled according to the region they reside in. The positions of the particles are then
compared between the consecutive frames. If a particle moves from region III to region II,
we consider it to contribute +1 to the flow, in accordance with n̂. If a particle moves from
region II to region III, we consider it to contribute −1 to the flow. Movements between the
flanking regions across the periodic boundaries, i.e., between regions I and IV, are ignored.

Figure 8. A sustained concentration gradient was induced, causing our simulations to experience a
net flow of permeants through the system over time. By tracking the accumulated flow of permeants,
we can determine the average rate of flow. Shown is a plot for the accumulated flow of a simulation
with 50 O2. There is a relatively linear accumulation of O2 over the course of the 1µs simulation.
Because flow is measured across the z = 0 plane, there is substantial noise from the repeated up and
down crossings in this high-concentration region of the membrane, but the net flow is in the direction
of the applied gradient (negative z).

If the length of the simulation time between the trajectory frames is too long, it might
be possible for a permeant particle to also traverse the periodic boundary and then the
traverse therefore not to be counted. Also, if a particle moves from region I to III from
one frame to another, there will be zero contribution to the flow. Paying attention to the
sizing of the four regions helps avoid some of these problems. In this study B represents
the bilayer, and regions II and III each have a length of 40 Å placed on either side of
the lipid bilayer, while regions I and IV occupy the remaining length (∼70 Å) of the
simulation box. Considering that the diffusivity of oxygen is reported to be approximately
8 ×10−5 cm2/s = 8 Å2/10 ps [29], and frames are saved every 10 ps, the region lengths are
deemed to be of sufficient length.

To measure area, we query our simulation data for the lengths of the lateral xy
dimensions. Each of these measurements is recorded and contributes to the average
membrane area for our flux calculations (Figure 10).
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Figure 9. A flow counting algorithm was implemented to track the flow of particles across a boundary,
B, with surface normal n̂ . The algorithm for counting divides the area of interest into four regions,
I, II, III, and IV, and tracks the movement of particles between them by comparing frames of the
trajectory. Particles that move across the boundary in the same direction as n̂ (III to II, green particle)
contribute +1 to the flow count. Conversely, particles that move across B against n̂ (III to II, blue)
contribute −1 to the flow. Particles that remain in the same compartment contribute 0 to flow (II,
red). To avoid erroneous flow counts that might arise from a particle crossing the periodic boundary,
particles that move between the flank regions also contribute 0 to flow (I to IV, yellow).

Figure 10. Membrane area for 50 O2 simulation. The instantaneous, exponentially weighted moving
average, and whole simulation average of the membrane area over the course of 1-µs are plotted in
light gray, gray, and black, respectively. The flow rate of O2 is normalized using the average area to
yield the flux.

3.6. Calculating Membrane Permeability

We determine the permeability of the POPC bilayers by combining gradient, flow rate,
and surface area, averaged over 100 ns blocks from our simulations:

P =
J

∆c
=

Accumulated flow
Area × ∆t × ∆c

(9)
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where ∆t is the block size used for block averaging. The concentrations at z = ±30 Å
are used to calculate the gradient. Incorporating ∆t with accumulated flow and area is
necessary to transform our flow into a flow rate.

3.7. Error Analysis via Block Averaging

The positions of particles are highly autocorrelated in MD simulations, especially
when frames are saved with short intervals. This autocorrelation disallows the simple use
of the number of frames as the number of samples N to estimate standard errors (SEs).
Estimating error as SE ≈ σ√

N
invokes the underlying central limit theorem, which assumes

that each sample is independent. We do not assume independence for each trajectory frame,
as they are saved every 10 ps. Doing so would erroneously underestimate the statistical
error and subsequently overestimate the precision. To obtain a more accurate quantitation
of error, we divide our simulations into 100 ns blocks and calculated the mean values for
the properties of interest, treating them as independent samples—block averaging [63].

4. Conclusions

In this paper, we introduce a non-equilibrium method to create a steady-state concen-
tration gradient in MD simulations and demonstrate its utility in measuring the perme-
ability of membranes. Because the bias used to generate the gradient is isolated to only
a small region at the boundaries of the simulation box, the motion of affected permeants
remains diffusive, Brownian, in the region of interest, namely, the membrane. The free
flow of permeants through the system and across the membrane can then be measured
to characterize permeability in a manner consistent with experiments. We have shown
that the resulting permeability measurements agree with previously reported values for an
exemplary system consisting of O2 and a POPC bilayer, while also reporting the sensitivity
of calculated permeability to the choice of thermostat and permeant concentration. Because
this method calculates the bulk permeability of the membrane as opposed to along a single
path as is the case when using the ISD-model, it can be applied to a wide variety of perme-
ants and membranes of complex, heterogeneous composition and structure, including even
proteins. In addition, the method allows the user to readily pre-determine the magnitude
of the concentration gradient by modulating the quantity of the permeant and imposed
gradient potential to emulate the experimental conditions. Lastly, the users can measure
the dissipation of the concentration gradient potential along the system to identify regions
of high resistance to permeation.

5. Future Work

This report sets the foundation for future work on the examination of simulation
artifacts and complex biological membrane systems. We observe a relationship between
the total permeant concentration and the permeability of the membrane, which we hy-
pothetically attribute to the membrane modulating effect of the O2. In simulations, we
usually tend to enhance sampling by employing high ligand concentration, which may
introduce artifacts that affect the simulation properties. We observe that artificially high
concentrations produce an increase in permeability. It may be interesting to examine
whether the positive correlation between permeability and concentration is eliminated for
more realistic O2 concentrations. Additionally, we would like to examine more complex
membranes composed of heterogeneous lipids types and even containing proteins, which
represent more closely biological membranes, which consist of integral and peripherally
associated components.
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