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Abstract: Human Immunodeficiency Virus type 1 (HIV-1)-associated neurocognitive disorders
(HANDs) remain prevalent in HIV-1-infected individuals despite the evident success of combined
antiretroviral therapy (cART). The mechanisms underlying HAND prevalence in the cART era remain
perplexing. Ample evidence indicates that HIV-1 envelope glycoprotein protein 120 (gp120), a potent
neurotoxin, plays a pivotal role in HAND pathogenesis. Methamphetamine (Meth) abuse exacerbates
HANDs, but how this occurs is not fully understood. We hypothesize that Meth exacerbates HANDs
by enhancing gp120-mediated neuroinflammation. To test this hypothesis, we studied the effect
of Meth on gp120-induced microglial activation and the resultant production of proinflammatory
cytokines in primary rat microglial cultures. Our results show that Meth enhanced gp120-induced
microglial activation, as revealed by immunostaining and Iba-1 expression, and potentiated gp120-
mediated NLRP3 expression and IL-1β processing and release, as assayed by immunoblotting and
ELISA. Meth also augmented the co-localization of NLRP3 and caspase-1, increased the numbers of
NLRP3 puncta and ROS production, increased the levels of iNOS expression and NO production, and
increased the levels of cleaved gasderminD (GSDMD-N; an executor of pyroptosis) in gp120-primed
microglia. The Meth-associated effects were attenuated or blocked by MCC950, an NLRP3 inhibitor,
or Mito-TEMPO, a mitochondrial superoxide scavenger. These results suggest that Meth enhances
gp120-associated microglial NLRP3 activation and the resultant proinflammatory responses via
mitochondria-dependent signaling.

Keywords: methamphetamine; HIV-1gp120; NLRP3 inflammasome; microglia; neuroinflammation

1. Introduction

The global epidemic of Human Immunodeficiency Virus type 1 (HIV-1) infection and
acquired immunodeficiency syndrome (AIDS) remain worldwide public health issues.
After more than 40 years of intensive research, we are still far from an HIV-1 cure due to
viral reservoirs [1,2], and there is no successful vaccine available against HIV-1 despite enor-
mous attempts [3–5]. Although the introduction and widespread availability of combined
antiretroviral therapy (cART) have converted HIV-1 disease from a death sentence into a
manageable chronic illness [6–10], HIV-1-associated neurocognitive disorders (HANDs)
remain prevalent in infected individuals. The mechanisms underlying HAND prevalence
in the cART era are not fully understood. A plethora of evidence indicates that these
mechanisms are dependent on multiple factors, including but not limited to virus persis-
tence in the brain, reduced CNS penetration of cART, viral protein neurotoxicity, chronic
neuroinflammation, and increased life expectancy [11–14], as well as comorbid factors such
as drugs of abuse. Amongst these disease-inciting factors, viral proteins and drugs of abuse
play essential roles in HAND pathogenesis and prevalence.
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HIV-1 envelope glycoprotein protein 120 (gp120) is a potent neurotoxin that plays
a pivotal role in HAND pathogenesis. Shed off from virions and released from infected
cells [13,15], gp120 accumulates in the cerebrospinal fluid and brain tissue in a signifi-
cant amount and causes neuronal damage both in vitro and in vivo [16,17]. Studies have
shown that gp120, on the one hand, induces neuronal apoptosis and synaptic and dendrite
dysfunction [18,19] and, on the other hand, triggers immune activation and the resultant
production of neurotoxic molecules, as well as inflammasome-dependent pyroptosis [20],
leading to the development of HANDs [15,21,22]. The neurocognitive impairment observed
in patients with HANDs can be attributed to the direct and indirect neurotoxic effects of
gp120 and are frequently associated with and worsened by abuse of recreational drugs
such as methamphetamine (Meth) [23,24].

Meth is a potent and highly addictive psychostimulant that is frequently used by HIV-
1-infected individuals [25]. Meth abuse not only increases the risk of HIV-1 transmission
but also augments HIV-1-associated neurocognitive impairments [26–28]. Ample evidence
indicates that Meth exacerbates HANDs [23,29,30]. While many studies have focused
on the individual effects of Meth on the CNS, far fewer have investigated its comorbid
influence on HAND pathogenesis. We have previously reported that Meth augmented
the gp120-induced enhancement of microglial outward K+ current, leading to increased
production of proinflammatory molecules and consequent neuronal injury [31]. We have
also shown, in another study, that the microglial nucleotide-binding domain, leucine-
rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome was involved
in Meth-induced enhancement of gp120 inhibition of long-term potentiation, a widely
accepted synaptic mechanism for learning and memory, implying a potential mechanism
for the Meth-induced exacerbation of HANDs seen clinically [32].

Inflammasomes are cytosolic multiprotein signaling complexes that trigger the activa-
tion of inflammatory caspases and the maturation of IL-1β. They are critical for the host’s
immune defense against microbial infection and cell injury. Among various inflammasome
complexes, NLRP3 is an extensively studied and well-characterized inflammasome [33,34]
which recognizes multiple stimuli via NOD-like receptor (NLR) and serves as a platform for
caspase-1 activation. Activation of the NLRP3 inflammasome requires two signals: The first
one (priming signal) activates the transcription factor NF-κB, leading to the upregulation
of NLRP3 and pro-IL-1β. The second one (activation signal) consists of various stimuli
that promote the assembly of ASC and procaspase-1 and result in the activation of the
NLRP3 inflammasome and caspase-1 [35–38]. The activated caspase-1 cleaves pro-IL-1β,
pro-IL-18, and gasderminD (GSDMD), resulting in the release of matured IL-1β, IL-18, and
GSDMD-N (a N-terminal fragment of GSDMD) and consequent inflammation and pyrop-
tosis [34,36,39]. It is our hypothesis that Meth exacerbates HANDs via the augmentation
of HIV-1-associated microglial inflammasome activation and resultant proinflammatory
responses. To test this hypothesis, we investigated the effects of Meth on NLRP3 inflamma-
some activation and consequent proinflammatory cytokine production in gp120-primed
rat microglial cultures. Our results show that Meth enhances gp120-stimulated microglial
activation and the resultant cytokine production via mitochondria-dependent NLRP3
inflammasome activation.

2. Results
2.1. Meth-Induced Enhancement of HIV-1 gp120-Induced IL-1β Processing and Release

IL-1β processing and release are stringently regulated by inflammasomes [40]. Inflam-
masome activation occurs in two steps: priming (first signal: transcription and expression
of inflammasome components) and processing (second signal: assembly of inflammasome
components) [40,41]. Although HIV-1 gp120 is known to signal both steps [20], an addi-
tional second signal can further enhance the activation of gp120-primed inflammasomes.
We have previously demonstrated that treatment of microglia with Meth alone had no sig-
nificant effects on the IL-1β transcript, suggesting that Meth does not work as the first signal
for inflammasome activation [42]. Consistently with our previous results, the treatment of
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microglia with Meth alone at different concentrations (6, 18, and 50 µM) failed to produce
significant effects on IL-1β processing as detected by immunoblotting (Figure 1A,B) and
IL-1β production as measured by ELISA (Figure 1C). To test the effects of gp120 on inflam-
masome activation, microglial cells were treated with gp120 at various concentrations (250,
500, and 1000 pM), and concentration-dependent responses were observed. As evident
from the Western blot results, significant IL-1β processing occurred at 500 pM (2.7-fold, p <
0.01) and 1000 pM (3-fold, p < 0.01) compared with untreated controls (Figure 1D,E). These
results were parallel to the results of IL-1β release in the culture supernatant as measured
by ELISA (Figure 1F), illustrating concentration-dependent IL-1β release mediated by
gp120. As 500 pM gp120 increased IL-1β processing and release and 50 µM Meth had no
significant effect, we examined if Meth could enhance gp120 effects on IL-1β processing
and release when applied in combination. The results showed that Meth (50 µM) enhanced
IL-1β processing (2.6-fold, p < 0.01) and release (3.7-fold, p < 0.001) in gp120-primed mi-
croglia compared with the results from solely gp120-primed microglia (Figure 1G–I). These
results provide us with the optimum concentrations of Meth (50 µM) and gp120 (500 pM)
for testing the Meth-induced enhancement of gp120 effects on microglial inflammasome
activation in this study.
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Bar graphs in the middle row (B,E,H) show the densitometry quantitation of pro-IL-1β and IL-1β 

 

Figure 1. Meth-induced enhancement of HIV-1 gp120-induced IL-1β processing and release. The data
illustrated in three columns were obtained from rat microglial cultures treated with Meth (left) and
gp120 (central), with each compound being applied individually at different concentrations, or with
one concentration of gp120 (500 pM) and different concentrations of Meth (right). The upper row
displays the Western blot results of the expression levels of pro-IL-1β and IL-1β when microglia were
treated with Meth (A) and gp120 (D) alone or 500 pM gp120 with Meth at different concentrations
(G). Bar graphs in the middle row (B,E,H) show the densitometry quantitation of pro-IL-1β and IL-1β
corresponding to the Western blots shown in the upper row. The lower row (C,F,I) shows the levels
of IL-1β detected by ELISA from culture supernatants of microglia under different experimental
conditions as indicated. ## p < 0.01, * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. untreated controls (E,F)
or vs. gp120-treated controls (H,I). Data represent means ± SDs derived from three independent
experiments in triplicate.
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As evident from the Western blot results, significant IL-1β processing occurred at
500 pM (2.7-fold, p < 0.01) and 1000 pM (3-fold, p < 0.01) compared with the untreated
control (Figure 1D,E). These results were further supported by IL-1β release in the culture
supernatant measured by ELISA (Figure 1F). Significant dose–response of IL-1β release
was observed at 500 pM (3.4-fold, p < 0.01) and at 1000 pM (5.2-fold, p < 0.001) compared
with the untreated control sample. As 500 pM gp120 was the “lowest” concentration to
produce significant effects on IL-1β processing and release, this concentration was adapted
in the experiments exploring Meth-induced enhancement of gp120-mediated microglial
proinflammatory responses.

2.2. Meth Augments gp120-Primed Microglia Activation

Ionized calcium-binding adaptor molecule 1 (Iba-1) is a microglia-specific marker, and
its expression is known to increase upon microglial activation [43,44]. Immunofluorescence
microscopy and immunoblotting revealed that unstimulated rat microglia expressed a
low level of Iba-1. In gp120-treated microglia, a remarkable increase in Iba-1 staining was
observed (Figure 2A). The latter was further enhanced after the treatment of gp120-primed
microglial cells with Meth (Figure 2A). In agreement with immunofluorescence staining,
the Western blot results of cell lysate show an increased level of Iba-1 in microglia treated
with gp120, which was increased by Meth (Figure 2B,C). Statistical analyses revealed that
the levels of Iba-1 expression were significantly (p < 0.01) increased when microglial cells
were treated with gp120 and Meth in combination compared with those treated with gp120
alone or the untreated control. These results demonstrate Meth-induced enhancement of
gp120-induced microglial activation.
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Figure 2. Meth augments gp120-primed microglial activation. (A) Immunofluorescence labeling
of Iba-1 expression in microglia under different experimental conditions as indicated. Note that
enhanced Iba-1 expression was detected in microglia treated with gp120 + Meth. (B) Western blot
detection of Iba-1 protein expression and increased levels of Iba-1 expression were observed with
gp120 + Meth treatment. (C) Image J densitometry analyses of Iba-1 protein expression in Western
blots. Each bar represents average with standard deviation of three biological replicate experiments.
** p < 0.01: one-way ANOVA followed by Dunnett’s comparisons test. Scale bar equals to 100 µM.
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2.3. Effect of Meth on NLRP3 Co-Localization and Puncta Formation

The NLRP3 inflammasome plays an important role in microglial activation [34]. To
evaluate the effect of Meth on NLRP3 inflammasome activation, we examined the co-
localization of NLRP3 and caspase-1 in gp120-primed microglia. Our results show increased
NLRP3/caspase-1 co-localization upon Meth treatment (Figure 3), indicating Meth-induced
enhancement of microglial NLRP3 inflammasome activation, which was further validated
by NLRP3 puncta formation, as visualized by immunofluorescence. We observed a signifi-
cant increase in NLRP3 puncta formation upon Meth treatment in gp120-primed microglia
(Figure 4A,B). The pretreatment of microglial cultures with MCC950 (a selective inhibitor of
NLRP3 inflammasome) or Mito-TEMPO (a mitochondria ROS inhibitor) attenuated Meth-
induced increase in NLRP3 puncta formation (Figure 4B), indicating NLRP3 activation
of and involvement in the induction of ROS upstream signaling. Additionally, Meth was
also found to augment the gp120-primed increase in NLRP3 expression (Figure 4C,D). The
pretreatment of microglial cultures with MCC950 significantly blocked the Meth/gp120-
associated increase in NLRP3 expression. However, partial blockade of the latter was
observed when microglial cultures were pretreated with Mito-TEMPO.
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Figure 3. Meth-induced co-localization of NLRP3 and caspase-1 in gp120-primed microglia. Im-
munofluorescence images were taken from microglial cultures treated with gp120 (middle row)
and gp120+ Meth (bottom row) after these were stained separately with primary antibodies against
NLRP3 (red) and caspase-1 (green). Upper row refers to untreated controls. Note that Meth-induced
co-localization of NLRP3 and caspase-1 is shown in merged images. Blue color indicates DAPI
staining. Images were taken at 60× magnification.
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Figure 4. Meth triggers NLRP3 activation in gp120-primed microglia. Panel (A): Representative
fluorescence microscopy images display NLRP3 puncta (red) labeled by anti-NLRP3 antibody (left
column) under different experimental conditions as indicated. Cell nuclei were stained with DAPI
(blue, middle column). Right column shows merged images. Panel (B): Microscopic scoring estimated
the percentage of microglia containing NLRP3 puncta, shown as averages with standard deviations
from three biological replicates, each performed with technical triplicates. Panels (C,D): Western blot
detection of NLRP3 and corresponding densitometric analysis of NLRP3 under different treatment
conditions, where densitometric values are averages with standard deviations from three independent
biological replicate experiments, each experiment performed with technical triplicates. Note synergic
effects of Meth and gp120 on increase in NLRP3 puncta-positive cells and NLRP3 expression levels
and their significant blockade by MCC 950 (NLRP3 inflammasome activation blocker) or by Mito-
TEMPO (MT; mitochondria-targeted antioxidant). *** p < 0.001, ### p < 0.001, and ** p < 0.01: one-way
ANOVA followed by Tukey’s multiple comparisons tests. Scale bar equals to 30 µM.

2.4. Meth-Induced Enhancement of Proinflammatory Cytokine Production in
gp120-Primed Microglia

It is well established that the upregulation of proinflammatory cytokines plays mul-
tiple roles in both neurodegeneration and neuroprotection. To examine if the Meth-
induced enhancement of gp120-primed microglial NLRP3 inflammasome activation could
increase cytokine production, we measured the levels of TNF-α, IL-1β, IL-6, and IL-18
in the culture supernatants by ELISA. Significant increases in IL-1β (~4.35 fold), TNF-
α (~10 fold), IL-6 (~7.81 fold), and IL-18 (~55 fold) in gp120-primed and Meth-treated
microglia (Figure 5A–D) compared with the supernatants collected from gp120-primed mi-
croglia were observed, suggesting that the Meth-induced enhancement of proinflammatory
cytokine release is responsible for neuronal injury [45]. In addition, Meth was found to
enhance mitochondrial total ROS production (Figure 6A,B). The Meth-associated increase
in cytokine production was blocked by pretreatment of microglial cells with MCC950 or
Mito-TEMPO, suggesting the involvement of the NLRP3 inflammasome and its upstream
mitochondrial ROS signaling in Meth-associated enhancement of cytokine release.
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Figure 5. Meth increased proinflammatory cytokine production in gp120-primed microglia. The
ELISA analysis results of the levels of proinflammatory cytokines in the culture supernatants recov-
ered from microglia subjected to experimental treatments as indicated. Increased production levels of
IL-1β (A), TNF-α (B), IL-6 (C), and IL-18 (D) were detected in gp120-primed, Meth-treated microglia.
The pretreatment of microglia with the NLRP3 inhibitor MCC950 or the mitochondrial superoxide
scavenger Mito-TEMPO significantly decreased the levels of cytokine production. *** p < 0.001, and
### p < 0.001.
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results are displayed in a bar graph. All images were captured at 40× original magnification.
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2.5. Meth-Induced Increase in iNOS Expression and NO Production

Studies have shown that activation of microglia causes overproduction of nitric ox-
ide (NO) by inducible nitric oxide synthase (iNOS), resulting in neuroinflammatory pro-
cesses [46–48]. To assay the levels of NO production and iNOS expression in gp120-primed
microglia treated with Meth, we measured NO production in microglial culture super-
natants by ELISA and iNOS expression in microglial lysate by Western blot. The results
show that the application of Meth to gp120-primed microglial cultures significantly in-
creased NO production (Figure 7A) and iNOS expression (Figure 7B,C).
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2.6. Meth Increased GSDMD-N Production in Microglial Cells Primed with gp120

Pyroptosis is a form of proinflammatory programmed cell death mediated by caspase-
1-cleaved pore-forming protein gasdermin D (GSDMD) [49]. The N-terminal proteolytic
fragment of GSDMD (GSDMD-N) is an executor of pyroptosis and is required for IL-1β
release [50]. To explore the involvement of NLRP3-dependent pyroptosis in Meth-induced
enhancement of gp120-associated pathophysiology, we examined the expression levels
of GSDMD-N in microglial cultures. The treatment of microglial cells with gp120 led
to cleavage of GSDMD and increased production of GSDMD-N (Figure 8A). The Meth-
induced increase in GSDMD-N production in microglial cells primed with gp120 implies
the occurrence of inflammatory pyroptosis triggered by Meth. The addition of MCC9500
or Mito-TEMPO to microglial cultures attenuated the Meth-/gp120-associated increase in
GSDMD-N production, implying activation of NLRP3/caspase-1 by Meth/gp120.
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3. Discussion

Although cART has significantly decreased the spectrum of disease morbidities, includ-
ing profound dementia, more subtle forms of HIV-1-associated neurocognitive disorders
(HANDs) remain prevalent [14,51,52]. Virus persists in the brain at low levels, often in a
latent or restricted manner. Immune activation and neuroinflammation, which are linked
to viral proteins and drugs of abuse, continue to play pivotal roles in HAND pathogenesis.
Meth abuse exacerbates the HANDs seen clinically, and the mechanism(s) underlying this
remains unclear [23,53,54]. To understand how Meth exacerbates HANDs, we studied the
augmentation effects of Meth on HIV-1 gp120-induced microglial NLRP3 inflammasome
activation and the resultant proinflammatory cytokine production. Our results reveal that
these effects were exerted via mitochondria-dependent NLRP3 inflammasome activation.

The NLRP3 inflammasome is a critical component of the innate immune system that
mediates caspase-1 activation and proinflammatory cytokine production in response to
diverse stimuli and multiple biomolecules, including but not limited to viral proteins and
drugs of abuse. Typically, two independent signals are required to fully activate the NLRP3
inflammasome [35,42]. To understand whether Meth augments gp120-induced NLRP3
inflammasome activation in microglia, we previously examined the effects of Meth on
lipopolysaccharide (LPS; a known priming signal)-induced NLRP3 inflammasome acti-
vation in rat microglial cultures. We observed that Meth could augment the pre-existing
inflammatory stimulation and produce an increase in IL-1β maturation and release in
an NLRP3 inflammasome-dependent manner. In the present study, we substituted LPS
with HIV-1 gp120 to reflect disease conditions in human subjects and investigated the
enhancement effects of Meth on HIV-1 gp120-induced rat microglial activation and the re-
sultant inflammatory responses, focusing on the involvement of the NLRP3 inflammasome.
We observed that Meth enhanced NLRP3 inflammasome activation and proinflammatory
cytokine production in HIV-1 gp120-primed rat microglial cells. The enhancement effects
were attenuated or blocked by the addition of the NLRP3 inflammasome inhibitor MCC950
and/or the mitochondria-targeted antioxidant Mito-TEMPO, suggesting the involvement
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of the mitochondria-dependent NLRP3 inflammasome in the Meth-induced enhancement
of gp120-stimulated microglial activation and proinflammatory cytokine production.

Meth is one of the most abused drugs among individuals infected with HIV-1 [25].
Ample evidence indicates that Meth abuse exacerbates cognitive deficits and neurode-
generative abnormalities in HIV-1-infected patients and animal models [27,28,55,56]. To
explore the impact of Meth on HIV-1 gp120-induced microglial NLRP3 activation, we first
examined the individual effects of Meth and gp120 on NLRP3 inflammasome activation in
primary rat microglial cultures. Consistently with our previous observations [42], Meth had
no significant impact on pro-IL-1β/IL-1β expression and IL-1β release at three different
doses (6, 18, and 50 µM), indicating that this compound may not work as the first signal
for inflammasome activation [42]. However, HIV-1 gp120 significantly increased pro-IL-
1β/IL-1β expression and IL-1β release at concentrations of 0.5 nM and higher, suggesting
that gp120 could cause NLRP3 inflammasome activation. When tested in combination, 50
µM Meth was found to enhance the gp120-mediated increase in pro-IL-1β/IL-1β expres-
sion and IL-1β release, implying Meth-induced enhancement of gp120-associated NLRP3
inflammasome activation.

HIV-1 gp120 plays a vital role in the HAND pathogenesis. It causes immune activation
and the resultant production of proinflammatory cytokines and inflammasome-dependent
pyroptosis, in addition to its direct toxic effects on neural cells. The neurotoxic effects
of HIV-1gp120 could be augmented by drugs of abuse, such as Meth. The mechanisms
underlying the Meth-induced enhancement of HIV-1gp120-associated neurotoxicity are
multifaceted and include but are not limited to the activation of the microglial NLRP3
inflammasome. Studies have shown that the NLRP3 inflammasome is involved in HIV-
1 gp120-associated microglial activation [20,57] and the resultant neuronal injury [32].
In agreement with the abovementioned studies, our results show that Meth enhanced
pro-IL-1β/IL-1β expression, processing, and release in HIV-1 gp120-primed microglial
cultures which were attenuated or blocked by MCC950, a specific NLRP3 inflammasome
inhibitor, demonstrating Meth-induced enhancement of gp120-primed microglial activation
via NLRP3 inflammasome signaling in cultured rat microglial cells.

The treatment of microglia with Meth significantly increased the production levels of
IL-1β, TNF-α, IL-6, and IL-18 in gp120-primed microglia compared with those subjected
to individual treatments. The production of these cytokines was significantly reduced by
the pretreatment of microglia with Mito-TEMPO and MCC950, suggesting an involvement
of mitochondria and NLRP3 inflammasome in the Meth-associated increase in cytokine
production. As mitochondria represent an important source of ROS, we measured total ROS
activation and observed a significant increase after the treatment of microglia with gp120
and Meth, indicating that ROS may play a role in inflammasome activation signaling [58].
In addition to ROS activation, Meth-associated increase in inducible nitric oxide synthase
(iNOS) expression and increase in nitric oxide (NO) production were detected in gp120-
primed microglial lysate and culture supernatants, respectively. The increased production
of NO could be one of the mechanisms underlying the Meth-induced exacerbation of
HANDs seen clinically.

The Meth-induced enhancement of HIV-1gp120-primed NLRP3 inflammasome activa-
tion was supported by experimental results demonstrating the co-localization of NLRP3
inflammasome with its downstream effector protein, caspase-1, and the formation of
NLRP3 puncta as visualized by immunofluorescence microscopy. We observed that the
co-localization of NLRP3 and caspase-1 was enhanced upon Meth treatment of the gp120-
primed microglial cells, a sign of Meth-induced enhancement of NLRP3/caspase-1 activa-
tion. As NLRP3 activation leads to the assembly of NLRP3, ASC, and caspase-1 and the
formation of the NLRP3 inflammasome complex, a micron-sized dense structure known
as puncta, Meth was found to increase the numbers of NLRP3 puncta-positive cells, a
hallmark of inflammasome activation [59]. The treatment of microglial cells with MCC950
significantly decreased NLRP3/caspase-1 co-localization and puncta formation, indicat-
ing an involvement of the NLRP3 inflammasome in the Meth-associated enhancement of
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NLRP3/caspase-1 colocalization and puncta formation. In addition to NLRP3 puncta quan-
tification, we measured the levels of NLRP3 expression using immunoblotting and found a
significant increase in NLRP3 expression in gp120/Meth-treated microglial cells, which
was significantly restored upon the pretreatment of the cells with MCC950. The detection of
increased colocalization and puncta formation of the NLRP3 inflammasome complex inside
a cell after the Meth treatment of HIV-1gp120-primed microglial cells strongly supports the
Meth-induced enhancement of HIV-1gp120-associated microglial activation.

Canonically, the inflammasome can be activated in response to various upstream sig-
nals. As the primary mediator for pro-IL-1β maturation, NLRP3 inflammasome activation
is accompanied by the processing of pro-IL-1β, the cleavage of caspase-1, and ASC protein
aggregation. After sequential stimulation with HIV-1gp120 and Meth, NLRP3 and IL-1β
were cleaved to their activated forms, as illustrated by their upregulated expression levels
and increased proinflammatory cytokine production (e.g., IL-1β, IL-6, IL-18, and TNFα).
The increase in proinflammatory cytokine production led to pyroptosis, as demonstrated
by the increased expression of GSDMD-N, a central player in executing pyroptosis, the
cell death pathway downstream of inflammasome activation [60]. These results are in
agreement with the classical cellular pattern of inflammasome activation, in which princi-
pal components redistribute from dispersed to clustered arrangements and promote the
restoration of caspase-1 enzyme activity after the cross-cleavage process [61].

Lastly, it is worth pointing out that all experiments were carried out on rat microglial
cultures instead of human microglial cells due to not having been able to obtain sufficient
human microglial cells for this study. Thus, the findings reported here may have a limitation
in implying disease conditions in human subjects. However, Meth was found to exacerbate
HANDs in HIV-1-infected individuals, and the results we observed, which indicate Meth-
induced enhancement of gp120-associated microglial NLRP3 activation and resultant
proinflammatory responses, may implicate the potential mechanisms underlying the Meth-
induced exacerbation of HANDs seen clinically.

4. Materials and Methods
4.1. Materials

Full-length HIV-1 envelope glycoprotein 120 from a Clade B virus (HIV-1MN gp120,
Cat# IT-001-002MNp) was purchased from Immune Technology Corp. (New York, NY, USA)
and stored at −80 ◦C in a freezer in 100 nM aliquots. Methamphetamine was purchased
from Sigma-Aldrich (St. Louis, MO, USA; Cat# M-8750) with DEA license # RX0374974.
Lipopolysaccharide (LPS; from Escherichia coli 0111:B4; Cat# L4391) was also procured from
Sigma-Aldrich (Saint Luis, MO, USA). MCC950 (Cat# 538120) and Mito-TEMPO (Cat#
AL-X-430-150-M005) were obtained from Enzo Life Sciences (Farmingdale, NY, USA). All
other chemicals, unless otherwise specified, were purchased from Sigma-Aldrich.

4.2. Animals

For the isolation of microglia from neonates, pregnant female Sprague-Dawley (SD)
rats were purchased from Charles River Laboratories (Wilmington, MA, USA). The animals
were kept in the university animal house at constant temperature (22 ◦C) and relative
humidity (50%) under a regular light–dark cycle (light was turned on at 7:00 a.m. and off
at 5:00 p.m.) with adequate access to food and water round the clock. All the animal use
procedures in the study were strictly reviewed by the Institutional Animal Care and Use
Committee (IACUC) of University of Nebraska Medical Center (IACUC No. 19-085-07-FC).

4.3. Isolation and Culture of Microglial Cells

Microglial cells were isolated from the cerebral cortex of postnatal (0–1 day old) SD rats
as described previously [62]. Briefly, rat cortical tissues were dissected in cold Hank’s Bal-
anced Salt Solution (HBSS; Cat# 14025-076; Life Technologies, Grand Island, NY, USA) and
digested with 0.25% trypsin (Cat# 25200-056) and 200 Kunitz units/mL DNase (Cat# D4263;
Sigma-Aldrich, Saint Luis, MO, USA) at 37 ◦C for 30 min. The digested tissues were then



Int. J. Mol. Sci. 2024, 25, 3588 12 of 17

suspended in cold HBSS and filtered through 100 µM and 40 µm pore cellular strainers (BD
Bioscience, Durham, NC, USA). The isolated cells (25 × 106) were plated into T75 cm2 flasks
(Cat# 90076; TPP, Tecchno Plastic Products AG, Trasadingen, Switzerland) in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM; Cat# 11965-084; Life Technologies, Grand
Island, NY, USA) containing 10% fetal bovine serum (FBS; Cat#, A5670701; ThermoFisher
Scientific, Asheville, NC, USA), 1×glutaMAX (Cat# 35050; Life Technologies, Grand Island,
NY, USA), 1% penicillin/streptomycin (Cat# 30-002-Cl; Mediatech, Inc., Manassas, VA,
USA), and 300 ng/mL macrophage colony-stimulating factor (M-CSF) supplied by the
Department of Pharmacology and Experimental Neuroscience, University of Nebraska
Medical Center. After 8–10 days in culture, the flasks were gently shaken, and the detached
cells were collected and seeded onto 6-well (2 × 106/well) and 12-well (1 × 106/well) or
96-well plates (0.5 × 106/well) based on the experimental requirements with M-CSF-free
DMEM. The suspensory glial cells were removed 1 h after seeding by changing the culture
media. The resultant cultures were 98–100% microglia as determined by staining with
anti-CD11b (Cat# ab8879; Abcam, Cambridge, MA, USA), a marker for microglia.

4.4. Western Blotting

After priming with gp120 for 48 h, the microglial cells were treated with Meth for
another 24 h. The cells were then lysed using RIPA lysis buffer (Cat# 89901; ThermoFisher
Scientific, Asheville, NC, USA) for analyzing pro-IL-1β processing. An amount of 30 µg of
total proteins was separated by 4–20% gradient PAGE (Cat# 4561094; Bio-Rad, Hercules,
CA, USA) and transferred to nitrocellulose polyvinylidene difluoride (PVDF) membranes
(Cat# 1620177; Bio-Rad, Hercules, CA, USA). The membranes were blocked with 3% bovine
serum albumin (BSA; Cat#) in tris-buffered saline (TBS) and incubated overnight at 4 ◦C
with rabbit polyclonal antibody for IL-1β (Cat# EPR21086; Abcam, Cambridge, MA, USA)
at 1:500 dilution, mouse polyclonal antibody for NLRP3 at 1:1000 dilution (Cat# AG-20B-
0014-C100; AdipoGen, San Diego, CA, USA), rabbit Iba-1 antibody (Cat# 016-20001; Fujifilm,
Richmond, VA, USA) at 1:1000 dilution, or anti-mouse β-actin monoclonal antibody (1:5000;
Cat# A5441; Sigma-Aldrich, Saint Louis, MO, USA). The washing buffer was TBS with 0.2%
Tween (TBS-T). For iNOS expression, rabbit polyclonal antibody for iNOS (Cat# ab15323;
Abcam, Cambridge, MA, USA) at 1:500 dilution was used. For pyroptosis analysis, rabbit
monoclonal anti-GSDMD (Cat# ab219800; Abcam, Cambridge, MA, USA) was used. The
secondary antibody was horseradish peroxidase (HRP)-conjugated anti-rabbit (Cat# 31460)
or anti-mouse (Cat# 31430; Invitrogen, Rockford, IL, USA). The labeled proteins were
visualized by the Pierce-enhanced chemiluminescence (ECL) system (Cat# 30496; Thermo
Fisher Scientific, Waltham, MA, USA).

4.5. Enzyme-Linked Immunosorbent Assay (ELISA) Analysis

Secretion of IL-1β and other cytokines in the culture supernatants was assayed by
ELISA. Microglia were primed with gp120 for 48 h and then stimulated with Meth at
different concentrations for another 24 h. The cells were washed three times with PBS before
the addition of Meth. The microglia were washed three times between these two treatments.
To measure IL-1β release, the supernatant of Meth-treated microglia was collected at 24 h.
Cytokines in supernatants were detected using the ELISA kit (Cat# DY501 for IL-1β, DY510
for TNFα, DY521-05 for IL-18, and DY506 for IL-6; R&D systems, Inc. Minneapolis, MN,
USA). The experiments were performed following the manufacturer’s instructions. Briefly,
the plates were coated with capture antibody overnight at room temperature; then, the
reagent dilution buffer was used as the blocking reagent. After overnight incubation, the
plates were washed three times with wash 1× buffer. The capture antibody-coated 96-well
plates were incubated with the collected supernatants for 2 h at room temperature, followed
by 2 h application of the detection antibody. After each step, the plates were washed using
1× wash buffer. Finally, the Streptavidin-HRP working solution was incubated for 20 min
before substrate solution was added to each well for 20 min. Afterwards, the reaction was
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stopped with a stop solution, a reading was performed by using a Bio-Rad microplate
reader with filters at 450/560 nm, and the result was calculated using a 4-parametric curve.

4.6. Measurement of Nitric Oxide (NO) Production

The production of nitrite was measured by the Griess reagent system (Cat# TB229;
Promega, Madison, WI, USA) according to the manufacturer’s instructions. After treatment
with gp120 and Meth, 50 µL aliquots of culture supernatant were collected from each
treatment group. Then, 50 µL of sulfanilamide solution and 50 µL of NED solution were
supplemented with the collected supernatants for 10 min in each case. The absorbance of
the final samples was measured with a Bio-Rad microplate reader with filters at 560 nm.

4.7. Fluorescent Dye Loading and Imaging

Fluorescent probes against ROS production with H2DCFDA were loaded onto the mi-
croglia that had been treated with Meth for an additional 24 h after priming with gp120 for
48 h. 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA)
(Cat# vC6827, Life Technologies, Eugene, OR, USA) was deployed to examine the intracel-
lular ROS production. CM H2DCFDA enters cells passively, and the acetate groups of the
probe were cleaved by intracellular esterase, leading to better cellular retention. After oxi-
dation by reactive oxygen intermediates generated in response to Meth, the non-fluorescent
H2DCFDA was converted to the highly fluorescent 2′,7′-dichlorofluorescein (DCF). The
CM-H2DCFDA (5 µM) working solution was freshly made with pre-warmed DMEM
and incubated on treated microglia at 37 ◦C for 30 min. The cells were then fixed with
ice-cold 4% paraformaldehyde in PBS for 10 min and counterstained with 4′,6-diamidino-
2-phenylindole (DAPI). To quantify the results, the microglia were seeded onto a 96-well
black plate at a density of 0.25 × 106/well, and the treatment procedure mentioned above
was then repeated. After loading with CM-H2DCFDA, the intensities of fluorescent signals
were evaluated by the microplate reader.

4.8. Immunocytochemistry

Immunocytochemistry was performed to quantify NLRP3 puncta as a readout of
inflammasome activation. Microglia were seeded on coverslips in a 24-well plate at a
density of 0.5 × 106 cells per well. After priming with gp120 (0.5 nM) for 48 h, Meth
treatment was administered for 24 h. Iba-1 staining was conducted to monitor microglial
activation. The cells were fixed with 4% paraformaldehyde (PFA) for 10 min at room
temperature. Then, the cells were blocked and permeabilized in PBS with 10% goat serum
and 0.1% Triton X-100 for 15 min. The primary antibodies used included mouse polyclonal
antibody for NLRP3 (Cat# sc-518122; Santa Cruz, CA, USA) and mouse monoclonal Iba-1
(Cat# sc-32725; Santa Cruz, Dallas, TX, USA) at 1:100 dilution, rabbit polyclonal antibody
for ASC (Cat# sc-22514-R; Santa Cruz, Dallas, TX, USA) at 1:200 dilution, and caspase-1
(Cat# sc-514; Santa Cruz, Dallas, TX, USA) at 1:500 dilution. The microglia were identified
by mouse monoclonal antibody CD11b at 1:500 dilution (Cat# ab8879; Abcam, Cambridge,
MA, USA). The secondary antibodies used here were goat anti-rabbit Alexa 488 (1:1000,
Cat# A-11034) and Alexa594 (1:1000 Cat# A-11012), and goat anti-mouse Alexa 488 (1:1000,
Cat# A-11001) and Alexa594 (1:1000 Cat# A-11032) from ThermoFisher Scientific (Waltham,
MA, USA).

4.9. Data Analyses

All data are expressed as means ± SDs unless otherwise indicated. Statistical analyses
were performed by one-way ANOVA followed by post hoc Tukey’s multiple comparisons
test (GraphPad Prism, version 9.4.1). A minimum p-value of 0.05 was chosen as the sig-
nificance level for all tests. The densities of target Western blot bands were quantified
using NIH Image J software (Version: Java 1.8.0_172, 64-bit) and standardized to β-actin
band density. The percentage of microglia with NLRP3 puncta was estimated by micro-
scopic scoring as per the description in the previous article by Rodrigues et al. [63]. In
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the fluorescent staining for total ROS production, nine field images were taken with a
fluorescent microscope, and all cellular fluorescent intensities were quantified by Image J.
The intensities of all individual cells in each field were averaged and transformed to fold
changes against a control group. All experiments were performed in technical triplicate
and biological triplicate unless otherwise specified.

5. Conclusions

The present study demonstrated Meth-induced enhancement of proinflammatory
responses in gp120-primed rat microglial cultures via NLRP3 inflammasome activation.
Meth enhanced gp120-associated NLRP3 expression and IL-1β processing and release;
it also increased the co-localization of NLRP3 with caspase-1 and ROS production. In
addition, Meth increased the levels of iNOS expression and NO production, as well as the
level of cleaved GSDMD-N, an executor of pyroptosis, in gp120-primed microglia. The
Meth-associated effects were attenuated by MCC950, a NLRP3 inhibitor, or Mito-TEMPO, a
mitochondrial superoxide scavenger. These results evidence Meth-induced enhancement of
proinflammatory responses in gp120-primed rat microglial cultures via NLRP3 activation
and mitochondria-mediated signaling (Figure 9).
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