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Abstract: Fresh green leaves give off a smell known as “green odor.” It has antibacterial qualities
and can be used to attract or repel insects. However, a common method for evaluating green odor
molecules has never existed. Machine learning techniques are widely used in research to forecast
molecular attributes for binary classification. In this work, the green odor molecules were first
trained and learned using machine learning methods, and then clustering analysis and molecular
docking were performed to further explore their molecular characteristics and mechanisms of action.
For comparison, four algorithmic models were employed, MLP performed the best in all metrics,
including Accuracy, Precision, Average Precision, Matthews coefficient, and Area under curve. We
determined by difference analysis that, in comparison to non-green odor molecules, green odor
molecules have a lower molecular mass and fewer electrons. Based on the MLP algorithm, we
constructed a binary classification prediction website for green odors. The first application of deep
learning techniques to the study of green odor molecules can be seen as a signal of a new era in which
green odor research has advanced into intelligence and standardization.

Keywords: machine learning; green odor; molecular docking; odor prediction; binary classification

1. Introduction

Fresh green leaves release an odor known as “green odor” [1]. The “green odor”
comes mainly from eight volatile c6-aromatic compounds: 3Z-Hexenol, 3E-Hexenol, 2E-
Hexenol, 3Z-Hexenal, 3E-Hexenal, 2E-Hexenal, n-Hexanol, and n-Hexanal [2]. Studies
have shown that green scents can relieve the body’s tiredness and have a soothing and
calming effect on the nervous system. The green odor relieves depressive conditions, eases
feelings of fatigue, and attenuates stress in humans and mice [3–10]. Green odor also has a
wide range of biological effects. For example, one study revealed its antimicrobial effects
against two Gram-positive and three Gram-negative strains of bacteria [11]. In addition to
having certain fungicidal qualities, green scents can be utilized to draw or repel insects [2].
Certain insects consume green leaves, which introduces green odor molecules into their
bodies. These chemicals are then used by the insects as pheromones for functions like
communication [9]. Green odors have been studied as far back as a few decades ago. As a
class of functional compounds, green odorants have the potential to serve as a library of
new candidate compounds for antidepressants, antimicrobials, and more. The discovery
of green odor compounds can serve as a basis for new discoveries in drug screening. The
predictive study of green odor compounds is novel and significant.

Plants have a complex composition of volatile odor compounds, of which green odor-
ants are difficult to identify. Prediction by wet experiment methods is time-consuming
and laborious. Prediction using machine learning methods can compensate for these short-
comings. In this study, for the first time, a machine learning method was used to predict
whether a molecule has a green odor. The predictive performance of machine learning

Int. J. Mol. Sci. 2024, 25, 3515. https://doi.org/10.3390/ijms25063515 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25063515
https://doi.org/10.3390/ijms25063515
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-1931-9316
https://doi.org/10.3390/ijms25063515
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25063515?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 3515 2 of 16

models can be judged by recognized metrics such as Acc (Accuracy), Pre (Precision), AP
(Average Precision), MCC (Matthews coefficient), and AUC (Area Under Curve). The
higher the above metrics are, the more accurate the model predictions are. Prediction of
molecular properties using machine learning is both simple and efficient. By learning the
structural features of molecules, it is possible to binary classify molecules of a particular
nature with high accuracy. Therefore, this study hypothesizes that green odor molecules
have potentially common structural features that can be learned by machine learning meth-
ods, which in turn can be predicted with high accuracy for unknown molecules. With the
results of machine learning, the study will further explore the chemical structure and mech-
anism of action of green odor molecules, revealing the potential laws of their functioning.
Additionally, by using an internet service that is freely available to everyone, the binary
classifiers developed through the application of machine learning can be employed, saving
time and money [12–17]. This study presents a new breakthrough in the field of green odor
research by applying machine learning for the first time to green odor molecular prediction.

This study compares the various evaluation metrics of MLP, SVM, RF, and MPNN
algorithms in determining whether a molecule has a green odor. We chose the best perform-
ing MLP algorithm for designing the prediction program and building a user-actionable
website. Using molecular fingerprint similarity and chemical spatial network distances, we
clustered green odor molecules. To evaluate chemical attributes and describe trends, we
performed a difference analysis on molecules located in distinct clusters. We carried out
a molecular docking investigation to gain further insight into the molecular mechanism
underlying the formation of green odor. The Anopheles gambiae’s odor receptor [18,19] was
chosen as the study’s target protein, and significant residues interacting with representative
molecules from other clusters were compared. Research on bactericidal and insect proper-
ties heavily relies on the ability to identify chemicals that smell green. Prospective green
odorants could be applied to forest preservation and agricultural production as fungicidal
repellents [20]. The identification of more green odorant-molecules will greatly advance
the study of insects, as green odorants have the potential to function as insect pheromones.

2. Results
2.1. Cluster Analysis

Following data cleaning, we were left with 587 molecules of green odor (Figure 1).
On these chemicals causing the green odor, we performed a cluster analysis. These
587 molecules were divided into various groups, as shown in Figure 2. Out of the
587 molecules, 441 molecules fell into four groups after the groups containing fewer
than 30 molecules were removed. Fingerprint similarity was calculated using the Dice
coefficient. We selected the molecules with the highest similarity in each of the four groups
as representative molecules by similarity calculation (Table 1). Each group was named
after a representative molecule. These groups are 2_Methyl_4_phenyl_2_butanol group,
4,5-Dimethylthiazolel group, 6-Methyl-3-hepten-2-one group, and Hexyl valerate group.

Table 1. The four most numerous groups after clustering and their representative molecule.

Group Molecule Name Closeness Centrality

4,5-Dimethylthiazole Group 4,5-Dimethylthiazole 0.16
6-Methyl-3-hepten-2-one Group 6-Methyl-3-hepten-2-one 0.07

Hexyl valerate Group Hexyl valerate 0.16
2-Methyl-4-phenyl-2-butanol Group 2-Methyl-4-phenyl-2-butanol 0.20
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color. Groups of different molecules are shown in different colors. 

2.2. Docking Study 
2.2.1. 2_Methyl_4_phenyl_2_butanol Group 

The interaction of MET89 and 2_methyl_4_phenyl_2_butanol with the protein recep-
tor OBD is depicted in Figure 3A. The interaction between MET89 and the protein receptor 
is represented by the yellow dashed line, which is hydrogen bonding. The active amino 
acid residues that bind to the target proteins are MET89, LEU73, TRP114, LEU76, and 
ALA88, and the compounds form stronger hydrogen bonds with the active group of 
MET89 at a distance of 2.5 Å, which is smaller than the 3.5 Å of conventional hydrogen 
bonds, which is a stronger bond and plays an important role in stabilizing the small mol-
ecule ligands. In addition, the benzene ring of the molecule also forms a strong π-π con-
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Figure 2. Cluster analysis of 587 green odor molecules. The light gray circles represent the threshold
radii of the molecules, and molecules with two intersecting radii are divided into groups; Groups
with less than 7 molecules are shown in gray, and groups with more than 7 molecules are shown in
color. Groups of different molecules are shown in different colors.

2.2. Docking Study
2.2.1. 2_Methyl_4_phenyl_2_butanol Group

The interaction of MET89 and 2_methyl_4_phenyl_2_butanol with the protein receptor
OBD is depicted in Figure 3A. The interaction between MET89 and the protein receptor is
represented by the yellow dashed line, which is hydrogen bonding. The active amino acid
residues that bind to the target proteins are MET89, LEU73, TRP114, LEU76, and ALA88,
and the compounds form stronger hydrogen bonds with the active group of MET89 at a
distance of 2.5 Å, which is smaller than the 3.5 Å of conventional hydrogen bonds, which is
a stronger bond and plays an important role in stabilizing the small molecule ligands. In
addition, the benzene ring of the molecule also forms a strong π-π conjugation interaction
with amino acid TRP114 of the active pocket of the protein, and there are π-alkyl forces
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with amino acid residues LEU73, LEU76 and ALA88 of the protein. In addition, there are
several amino acids with the compound with van der Waals forces.
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Figure 3. Results of the molecular docking analysis of four typical molecules for the insect odor-
binding protein (OBP). (A): 2_Methyl_4_phenyl_2_butanol docked to the active residues around
OBP. (B): Dimethylthiazolel docked to the active residues around OBP. (C): 6-Methyl-3-hepten-2-one
docked to the active residues surrounding OBP. (D): Hexyl valerate docked to the active residues
around OBP. (The yellow portion is the small molecule used for docking and the green portion is the
amino acid residue where the small molecule creates an interaction).

2.2.2. 4,5-Dimethylthiazolel Group

Figure 3B demonstrates the docking of 4,5-Dimethylthiazolel with the protein receptor
OBD. The compounds establish stronger hydrogen bonds with the active groups of MET89
and LEU73 at a distance of 2.5 Å, which is less than that of the conventional hydrogen bond
of 3.5 Å, which is a stronger bond and is crucial for stabilizing the small-molecule ligand.
These compounds bind to the target protein 4 through the active amino acid residues
MET89, LEU73, and TRP114. The five-membered ring of dimethylthiazole also forms a
strong π-alkyl interaction with the protein’s active pocket amino acid TRP114. Additionally,
the compound has an alkyl force with the protein’s residue LEU73. Several amino acids
also have van der Waals forces with the compound.

2.2.3. 6-Methyl-3-hepten-2-one Group

Methyl_3_hepten_2_one binds to target protein 6 through the active amino acid
residues ARG94, HIS77, LEU76, LEU80, ALA88, and TRP114, shown in Figure 3C. The
compounds form stronger hydrogen bonds with the ARG94 active group at a distance of
3.0 Å, which is less than the conventional hydrogen bond of 3.5 Å. Methyl_3_hepten_2_one
additionally forms van der Waals forces with multiple amino acids and strong π-W alkyl
conjugation interactions with amino acids TRP114 and HIS77 of the protein’s active pocket,
as well as alkyl interactions with amino acid residues LEU80, LEU76, and ALA88.

2.2.4. Hexyl Valerate Group

LEU96, LEU73, and HIS77 are the active amino acid residues that Hexyl valerate
binds to the target protein 6 in Figure 3D. This molecule is small and potentially active, as
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evidenced by the strong π-alkyl interactions hexyl valerate forms with the HIS77 amino
acid of the protein’s active pocket, the alkyl forces it has with the protein’s amino acid
residues LEU73 and LEU96, and the van der Waals forces it has with several amino acids in
the compounds.

As above, the molecular docking thermograms were analyzed as shown in Figure 4.
For the 6-methyl-3-hepten-2-one subgroup, LEU76, ALA88, and TRP114 generated the high-
est number of hydrogen bonds with the odorant small molecules, which are the key residues
in the docking process. The 4,5-Dimethylthiazolel group and 2_Methyl_4_phenyl_2 group
depend on MET89 and TRP114. The interaction between the 4,5-Dimethylthiazolel group
and the 2_Methyl_4_phenyl_2_butanol group, respectively, is significantly influenced by
MET89 and TRP114.
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2.2.5. Quantum Chemical Calculations

The HUMO, LUMO orbital diagrams of four representative molecules are shown
in Figure 5.
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2.3. Evaluate Different Machine Learning Algorithms to Predict Green Odor

To evaluate different machine learning algorithms used to predict green odors, this
study presents their test results in the form of a confusion matrix (Figure 5B). Cross-
validation was performed 5 times and repeated 10 times on the green odor/non-green odor
molecular dataset. The labels on the confusion matrix are their average values. In addition,
we also compared the evaluation metrics of different algorithms when facing the same
dataset, and the specific values are shown in Figure 6A. In summary, the MLP algorithm
shows greater advantages compared with other algorithms. We trained the dataset using
the MLP algorithm model (Figure 6C).
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(C): Performance of data training in the model. The color shade indicates how high or low the
predicted value is for that region.

2.4. Factor Analysis

A total of 208 characteristics of green and non-green odor molecules were factor
examined. The high eigenvalues of Factor 1, Factor 2, and Factor 3 are evident in Figure 7.
These three elements were our choice for common factors. The factor loadings for Factor 1,
Factor 2, and Factor 3 on the nine descriptors (Table 2) are displayed in Figure 7B. Table 2
displays the association between these three common parameters and the nine descriptors;
Figure 7C shows that the greater the correlation and the deeper the hue, the larger the value.
We examined how the nine characteristics of green and non-green odor molecules differed
from one another (Figure 8) when the significance level is below 0.05. The nine metrics
are FpDensityMorgan1, FpDensityMorgan2, FpDensityMorgan3, NumValenceElectrons,
MolWt, PSA, pyLabuteASA, HeavyAtomMolWt, and TPSA.
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Table 2. Component Matrix Sorted and Filtered.

Features F1 F2 F3

MolWt 0.97 −0.15 0.19
FpDensityMorgan1 −0.41 0.85 0.06
FpDensityMorgan2 −0.23 0.97 −0.03
FpDensityMorgan3 0.06 0.95 −0.11
HeavyAtomMolWt 0.96 −0.14 0.23

NumValenceElectrons 0.97 −0.16 0.16
TPSA 0.21 −0.04 0.98

pyLabuteASA 0.98 −0.15 0.11
PSA 0.21 −0.04 0.98

2.5. The Difference Analysis between Green and Non-Green

The analysis demonstrates that the corresponding features of green odor molecules
and non-green odor molecules differ from one another. The p-values of green and non-green
odor molecules in the nine attributes, as shown in Figure 8, are less than 0.05, suggesting
that there is a significant difference between the two groups in the corresponding qualities.
Non-green odor molecules have higher PSA and TPSA, while green odor molecules have
smaller molecular weights, electron counts, and higher morgan fingerprints 1–3.

2.6. Webserver

Based on the selected MLP model, we built a website named Mlp4green with the
URL (https://hwwlab.com/webserver/mlp4green, accessed on 20 December 2023). The
smiles formula of the molecule is entered on the prediction homepage of the website and
submitted to obtain the probability of whether the molecule contains a green odor or
not (Figure 9).

https://hwwlab.com/webserver/mlp4green
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3. Discussion
3.1. Analysis of the Chemical Properties of Four Representative Groups of Green Odor Molecules

The group 2_Methyl_4_phenyl_2_butanol is an alcohol that is enough a part of the
group to take part in acid-base reactions, hydration processes, and several other common
alcohol reactions. Because of the hydroxyl group and benzene ring, it has specific solubility
and aromaticity. An organic molecule with a thiazole ring, the 4,5-Dimethylthiazolel
group, may be engaged in various electrophilic substitution processes and other related
reactions. It may also play a role in organic reactions of an aromatic type. Carbonyl
functional groups are found in a class of chemical molecules called 6-methyl-3-hepten-2-
one group. A carbonyl functional group, or C=O bond, is present in these compounds and is
found on the second carbon. The polar functional group carbonyl modifies the molecule’s
chemistry, enabling it to engage in both electrophilic and nucleophilic processes. This
class of unsaturated compounds may display a variety of unsaturated nature-related traits
because of the existence of a carbon-carbon double bond. All compounds containing the
hexyl valerate group have an ester functional group—that is, an alkyl group and a carboxyl
group (-COO-). An alcohol reacts with a carboxylic acid to produce esters. The hexyl group,
an alkyl group with six carbons, is present in these compounds. The solubility and boiling
point of the molecule may be impacted by the existence of the branched chain. Despite
not being alcohols, these ester molecules may have certain characteristics in common with
alcohols due to the presence of carboxyl and alkyl groups. For instance, under the right
circumstances, the ester may hydrolyze.

3.2. Analysis of the Results of the Docking Study

Four representative groups of molecules were molecularly docked to the receptor
proteins and better results were obtained. Each group of docked small molecules generates
strong hydrogen bonding interactions with the target protein. A variety of intermolecular
interactions such as van der Waals forces, π-alkyl interactions, and other interactions also
exist. They further increase the binding stability of the small molecules in the active pocket.
All these interactions suggest that the green molecules have stable binding to olfactory
receptors. These small molecules are likely to activate olfactory receptors, which in turn act
as pheromones.

The study analyzed the pattern of interaction produced by OBD with green odorants.
The involvement of different residues in the binding was compared. Among them, TRP114
tends to generate a large number of hydrogen bonds with small molecules, and the binding
of green odorants to the OBD protein receptor is significantly affected by TRP114.

The study mapped the HOMO and LUMO orbitals of representative molecules, re-
vealing the active chemical structures of green odorant small molecules. Dimethylthiazolel
and 2_Methyl_4_phenyl_2_butanol mainly have their HOMO-LUMO orbitals on the pen-
tagonal and hexagonal rings, respectively. The p-orbital electrons on the appropriate rings
produce these orbitals, which are called π and π* orbitals. The carbonyl moiety of molecules
6-Methyl-3-hepten-2-one and Hexyl valerate is the primary focus of the HOMO-LUMO
orbitals of these compounds. To be more precise, the lone pair of electrons on the oxygen
atom makes up the majority of the HOMO orbital, whereas the p-orbital electrons of the
C-O bond create the π* orbital, which is the primary component of the LUMO orbital. With
HOMO-LUMO gaps of 5.79 eV and 5.14 eV, respectively, dimethylthiazolel and 6-Methyl-3-
hepten-2-one have the smallest of the four, suggesting more reactivity. Conversely, Hexyl
valerate and 2_Methyl_4_phenyl_2_butanol display larger gaps, with values of 7.22 eV and
6.59 eV, suggesting lower reactivity.

3.3. Analysis of the Results of the Prediction Algorithms

In the prediction program construction, we compared four different machine learning
algorithms. MLP scored the highest in all the metrics. The individual metrics of MLP are as
follows: Pre value is 0.81, ACC value is 8.12, AP value is 7.61, F1 value is 8.13, MCC value
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is 6.24 and AUC value is 8.11. Thus, the MLP algorithm was used to write the program and
the study also constructed a prediction website based on the MLP algorithm.

In the factor analysis, the study validated nine important green odor molecular fea-
tures. It can be seen that Factor 2 provides three main qualities including Morgan’s molecu-
lar fingerprint, while Factor 1 provides four main attributes including MolWt, Heavy Atom
MolWt and four other features. With the help of factor analysis, we identified nine key
characteristics. They were further analyzed for differences. The results showed that green
and non-green odor molecules differed significantly in terms of their corresponding quali-
ties. The non-green odor molecules have higher PSA and TPSA, whereas the green odor
molecules have lower molecular weight, electron number and higher Morgan’s fingerprint
1-3. Green odorants and other molecules tend to have distinguishable differences in these
structural features. We hypothesize that these features may be important factors in the
production of green odors.

4. Materials and Methods
4.1. The Workflow of the Study

In Figure 10, our workflow is displayed. To obtain the training dataset, we extracted
the green and non-green odors from the database molecules, cleaned them, and balanced
them. Four models (SVM, MLP, RF, and MPNN) were trained on the processed dataset, and
the top model was chosen to be implemented on the website. In parallel, molecule docking,
quantum chemistry calculations, factor analysis, clustering, and difference analysis were
carried out.
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4.2. The Dataset Processing

The data for the article was downloaded from the LRI & Odour Database—Odour
Data, Flavornet and The Good Scents Company Information System, as well as the paper
by Hatanaka et al. [2,21]. We extracted 9944 non-green odor molecules and 642 green
odor molecules from the database, as indicated in Figure 1. After deleting molecules
that RDKit and DGL were unable to identify, as well as duplicates, the data was cleaned,
yielding 5758 non-green odor molecules and 587 green odor molecules. In order to achieve
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a 1:1 ratio of green odor molecules to non-green odor molecules, the 5758 non-green
odor molecules were stratified and up-sampled to 588 molecules. A link is provided to
the source code of the organized and balanced data: mlp4green/data_clean.py at main—
heyigacu/mlp4green—GitHub. Ten repetitions and five cross-validations were performed
on the final green/non-green dataset.

4.3. The Models for Green Odor Prediction

We used the four models for training green odor predictors, with detailed information
on the models below:

(1) We built MLP [22] using PyTorch 2.2.1 (https://pytorch.org/, accessed on 5 December
2023). First, using RDKit 2023.9.5 (https://www.rdkit.org/, accessed on 3 December
2023), the molecules in the dataset were transformed into morgan fingerprints with
a radius of 2 and a length of 2048 bits. The batch size was set to 1/16 of the total
number of molecules. Subsequently, the fingerprint feature was fed into an MLP,
which had two neurons in the output layer, 256 neurons in the hidden layer, and
256 neurons in the input layer. A 0.1 dropout and a ReLU activation function were
present between each layer. When the number of times the loss no longer accumulated
to seven, the early stop method was utilized to end the training. The trainer employed
the cross-entropy loss function, the Adam optimizer, and a learning rate of 0.001.

(2) SVM [23] was built using scikit-learn 1.4.1 (https://scikit-learn.org/, accessed on
1 December 2023). The SVM uses the same input as the MLP mentioned earlier. A
5-fold cross-validated grid search technique was used to identify the SVM’s ideal
parameters. The optimal parameters were “C”: 1, “gamma”: 0.1, “kernel”: “rbf”, and
“probability”: True.

(3) The RF model [24] uses the same input as the SVM mentioned previously. A 5-
fold cross-validated grid search technique was used to identify the RF’s ideal pa-
rameters. The optimal parameters were “max_depth”: 6, “max_features”: “log2”,
“min_samples_leaf”: 50, “min_samples_split”: 2, “n_estimators”: 100, and “probabil-
ity”: True.

(4) Using DGL-LifeSci 0.3.1 (https://lifesci.dgl.ai/, accessed on 6 December 2023), we
constructed the MPNN [25]. The DGL graphs of the molecules were the MPNN’s
input, and a batch size of 1/16 of the total number of molecules was selected. Using
canonical atom and bond featurization, node feature and edge feature embedding
produced 74 one-hot coding features for atoms and 12 one-hot coding features for
bonds. The MPNN’s node output dimension and edge output dimension were both
set to 64 and 128 correspondingly, with the remaining parameters remaining at their
factory settings. The training parameters, similar to MLP, include early stopping,
learning rate, loss function, and optimizer.

4.4. Performance Evaluation

Five commonly used indicators were introduced in order to effectively [26], and
quantitatively assess each binary classifier model’s performance:

Precision = TP/(TP + FP) (1)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Recall = TP/(TP + FN) (3)

F1 = 2TP/(2TP + FN + FP) (4)

MCC = (TP × TN − FP × FN)/
√

((TP + FP)(TP + FN)(TN + FP)(TN + FN)) (5)

where the numbers for correctly classified positives, correctly categorized negatives, incor-
rectly classified negatives, and incorrectly classed positives are represented, respectively, by
the symbols TP (True Positives), TN (True Negatives), FP (False Positives), and FN (False

https://pytorch.org/
https://www.rdkit.org/
https://scikit-learn.org/
https://lifesci.dgl.ai/
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Negatives). AUC is the probability that given a random positive sample and a negative
sample, classified and predicted with a classifier, the score of that positive sample is greater
than the score of that negative sample.

4.5. Clustering of the Green Odor Molecules

The morgan fingerprint vector, which had a length of 2048 and a molecule radius,
was computed using RDKit. The dimensionality was then reduced to two dimensions
using t-distributed Stochastic Neighbor Embedding (t-SNE) [27]. The odor molecules’
chemical space is represented by this space. We selected a new clustering technique that
can differentiate the edges of distinct classes more effectively than the K-means method.
This approach visits all the molecules to finish the clustering, considering two molecules
as a group if their distance from one another is less than 1/24 of the distance between the
two furthest molecules in the full collection of molecules. Using Matplotlib 3.8.3 (https:
//matplotlib.org/, accessed on 9 December 2023), we visualized the clustered chemical
spatial network (CSN). This involved displaying the node radius, which represents the
distance cutoff, and the edge thickness, which represents the dice similarity between two
molecules. You may obtain the aforementioned clustering code from https://github.com/
heyigacu/DistanceClustering (accessed on 11 December 2023).

4.6. Chemical Space Network Mapping

Our study created a map of the chemical space network (CSN) using the similarity
between chemical fingerprints [28,29]. Every molecule has a specific position in a theoretical
region called chemical space. The closer the molecules are in place, the more similar their
characteristics and properties are. CSN [30] is one tool for analyzing and displaying inter-
actions in small molecule datasets. CSNs are meant to provide an alternate representation
to coordinate-based visualization by utilizing molecular descriptors. In a CSN, compounds
are usually shown as nodes connected to edges, where an edge is a connection between
two compounds. We used the t-SNE dimensionality reduction approach to obtain each
odor compound node coordinates.

4.7. Factor Analysis and Difference Analysis

For factor analysis, we chose 208 molecular property descriptors from the computa-
tional chemistry software RDKit 2023.9.5 (https://www.rdkit.org, accessed on 12 Decem-
ber 2023). The component matrix was generated by choosing the right number of common
elements, and the component matrix score was computed after passing the KMO and
Bartlett’s spherical test [31]. Selecting descriptors for the component matrix that had factor
loading values higher than 0.75 allowed us to determine if the distributions of A and B dif-
fered noticeably. If you want to determine whether there is a significant difference between
the two samples, perform the Shapiro-Wilk test [32] first. If not, use the Mann-Whitney
U test [32]. To find out if there was a difference between the two samples, we utilized
the Welch t-test [33] when the variance was not homogenous and an independent t-test
otherwise. All of the paper’s significant difference tests used the test analysis described
above (https://scipy.org/, accessed on 11 December 2023). They were carried out with a
p-value of less than 0.01.

4.8. Dice Coefficients to Compute Morgan Fingerprint Similarity

Dice is a centralized similarity measure that is commonly used to calculate the similar-
ity between samples [34]. The formula is:

DSC(A,B) = (2 × |X∩Y|)/(|X| + |Y|) (6)

Morgan fingerprinting [35], sometimes called circular fingerprinting, is a feature
representation used in cheminformatics to characterize molecules. Morgan fingerprinting
generates bit vector representations by taking into account the local environment of the
molecule, and these bit vectors are commonly used in applications such as molecular

https://matplotlib.org/
https://matplotlib.org/
https://github.com/heyigacu/DistanceClustering
https://github.com/heyigacu/DistanceClustering
https://www.rdkit.org
https://scipy.org/
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similarity searches and virtual screening. We used the dice coefficient for each group of
green odor molecules to determine the similarity between their morgan fingerprints. For
each group of green odor molecules, we chose the molecule with the highest similarity
score as the representative molecule of the group [36] (Table 1).

4.9. Molecular Docking and Quantum Chemistry Calculations

We selected representative molecules from each of the four groups of green odorant
molecules as ligands. The structure and active site information of the Anopheles gambiae
odor-binding protein 1 have been extensively studied. Green odor can attract or repel
insects. Insects can communicate, alert, and attack by inhaling green odor as a pheromone.
Green odor is closely related to the olfactory connection of insects. In this study, we used
Anopheles gambiae odor-binding protein 1 as an olfactory receptor to investigate the
mechanism of green odor production. The structure files were obtained from the PDB
database (PDB ID: 3N7H [37]). The original structure files were dewatered and other ions
were removed. Molecular docking was performed using AutoDock Vina 1.2.5 [38]. We used
Gaussian 09 (https://gaussian.com, accessed on 15 December 2023) to perform quantum
chemistry calculations [39] for the above molecules, and Multiwfn to visualize the LUMO
and HOMO orbitals.

4.10. Webserver

The front-end of the website used the front-end language React v18.0 (https://react.
dev/, accessed on 16 December 2023) and user interface (UI) library Antd 5.x (https:
//ant.design, accessed on 16 December 2023), while the back-end used Django 5.0 (https:
//www.djangoproject.com/, accessed on 16 December 2023) based on the model-view-
controller (MVC) framework, and the server was real-time responsive.

5. Conclusions

In this study, we constructed a green/non-green odor determination procedure based
on the MLP algorithm and created a website https://hwwlab.com/webserver/mlp4green,
(accessed on 20 December 2023). It successfully predicts whether a molecule contains a
green odor with 81.2% accuracy and high levels of recall, f1-score, and other performance
metrics. In the study, 587 green odor molecules were analyzed by clustering and molecular
docking. Compared to non-green odor molecules, green odor molecules are smaller in
terms of molecular mass, FpDensityMorgan, and electrons. LEU 76, ALA 88, MET 89, and
TRP 114 play important roles in the green odor mechanism of action. The full code for
this study is publicly available at https://github.com/heyigacu/mlp4green, (accessed on
20 December 2023).

This study confirms the hypothesis that there are common features in the structure
of green odor molecules and it successfully constructs a prediction method with high
accuracy. The good results of molecular docking also reveal the possible mechanism of
green odor molecules playing the role of insect pheromone, which supports the validity
of the prediction tool. Existing experimental screening methods are difficult to achieve
efficient and economical discovery of new molecules in the face of the huge amount of
plant volatile compounds. With the rapid development of artificial intelligence, the first
incorporation of deep learning methods in the study of green odor molecules can be
regarded as a sign of a new era in which green odor research has stepped into intelligence
and standardization.

However, due to the numerous roles of green odor molecules, there are many potential
possibilities for their mechanism of action. In this study, only the aspect of attracting or
repelling insects among them was chosen as an example to explore. Meanwhile, due to
the fact that deep learning itself is characterized by high accuracy but low interpretability,
this study did not derive the most essential structural features of green odor molecules, but
simplified the research system by clustering, mainly analyzing the representative molecules
of each cluster.

https://gaussian.com
https://react.dev/
https://react.dev/
https://ant.design
https://ant.design
https://www.djangoproject.com/
https://www.djangoproject.com/
https://hwwlab.com/webserver/mlp4green
https://github.com/heyigacu/mlp4green
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In order to clarify the target proteins of green odor molecules in multiple biological
pathways, subsequent studies can be considered for the analysis of antidepresssant-related
pathways and experiments on antibacterial mechanisms. Relevant receptors in humans
or mice can also be selected for molecular docking studies. After the target proteins are
experimentally confirmed, molecular dynamics simulations can be performed to explore
the differences in the mechanism of action of different green odor molecules. The next step
of the machine learning study can be directed to the extraction of green molecular features
captured by the computer.

The prediction tool constructed in this study facilitates the discovery of new green
molecules. The library of green odor molecules, as a potential source of computer-aided
drug design, is likely to be expanded relatively quickly by this. The research process
of clustering-machine learning prediction-difference analysis-molecular docking in this
study is likely to be further used for property exploration and prediction studies of other
bioactive compounds.
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