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Abstract: In recent years, the field of biology has witnessed a surge of interest in genomics research
due to the advancements in biotechnology. Gene expression pattern analysis plays a crucial role
in this research, as it enables us to understand the regulatory mechanism of gene expression and
the associated biological processes. Real-time quantitative polymerase chain reaction (q-PCR) is
an efficient method to analyze the gene expression patterns, for which accuracy relies on the stan-
dardized analysis of reference genes. However, numerous studies have shown that no reference
gene is universal in all conditions, so screening a suitable reference gene under certain conditions is
of great importance. Cinnamomum burmannii (C. burmannii) is rich in volatile components and has
high medicinal and economic value. However, knowledge of the screening of reference genes for
the gene expression analysis of C. burmannii is insufficient. Aiming at this problem, we evaluated
and screened the reference genes in C. burmannii under different experimental conditions, including
different abiotic stresses (Cold-treated, PEG-treated and Nacl-treated), different tissues, leaves at
different developmental stages and different chemical types. In this study, different algorithms (∆Ct,
geNorm, NormFinder and BestKeeper) were used to evaluate the stability of the candidate reference
genes, and RefFinder further merged the output data to screen out the optimum reference gene
under various experimental conditions in C. burmannii. The results showed that the optimal reference
gene number for gene standardization was 2 under different experimental conditions. RPL27|RPS15
was the most suitable combination under the Nacl-treated and PEG-treated samples. RPL27|APT
was the optimum combination under the Cold-treated samples. The optimal combinations of other
samples were EF1α|ACT7 for different tissues, eIF-5A|Gllα for different borneol clones in C. bur-
mannii, RPS15|ACT7 for leaves at different developmental stages and RPS15|TATA for all samples.
Additionally, two terpenoid synthesis-related genes (CbWRKY4 and CbDXS2) were standardized to
verify the feasibility of the selected reference genes under different experimental conditions. This
study will be helpful for the subsequent molecular genetic mechanism study of C. burmannii.

Keywords: q-PCR; normalization; Cinnamomum burmannii; reference gene

1. Introduction

Real-time quantitative polymerase chain reaction (q-PCR) is a widely utilized method
in molecular biology for investigating gene expression differences across various cell types,
tissues, organs or developmental stages [1–3]. By comparing gene expression in differ-
ent samples, researchers can identify genes that are activated or inhibited under specific
physiological or pathological conditions, which is of great significance for studying the
mechanisms of human diseases, finding treatments and improving crop traits. Compared
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with traditional PCR, a q-PCR has the advantages of rapidity, sensitivity, specificity and
quantification [4]. However, the reliability of a q-PCR is affected by many factors, such as
RNA quality, PCR amplification efficiency and differences between samples [5]. Currently,
the most common method for correcting and standardizing the q-PCR data is to select
appropriate reference genes [6]. Reference genes are expressed in various cells of organisms,
and their products are proteins necessary to maintain the basic life activities of cells. Ideally,
the expression level of a selected reference gene should be relatively constant in various
tissues, cells and experimental conditions. However, multiple forms of evidence suggested
that it was difficult to have a single reference gene that was universal for all conditions.
For instance, glycerol-aldehyde-3-phosphate dehydrogenase (GAPDH), a commonly used
reference gene, was selected as having the best stability in Carex rigescens under salt-treated
leaves [7] but not suitable for Salsola ferganica under six abiotic stresses [8] and Betula platy-
phylla under salt and osmotic stress conditions [9]. In addition, actin (ACT) was selected as
the optimum reference gene for leaves in Solanum lycopersicum exposed to UV-B María [10],
but its stability was poor in most experiments with pecan [11]. Such phenomena have
urged more and more studies to focus on the screening of reference genes in biological sam-
ples under certain circumstances. At present, attempts have been made to screen reliable
reference genes for a q-PCR analysis in many plants, such as sweetpotato [12], Siberian
Apricot [13], Sorghum [14], pecan [11], Metasequoia [15], Rubus [16], Schima superba [17,18],
etc.

Cinnamomum burmannii (C. burmnnii), a Cinnamomum species in Lauraceae, is an
important aromatic medicinal and green tree species, mainly distributed in the Guangdong,
Guangxi and Fujian provinces in China. C. burmannii leaves contain a variety of volatile
compounds and extensive research showed that C. burmannii had potential health benefits,
such as antibacterial, antioxidant, antidiabetic and antitumor [19–22]. In particular, the
borneol-type essential oil is an important raw material for cosmetics and medicine due to
the better permeability and antibacterial properties of borneol [23]. In the past few decades,
the studies of C. burmannii mainly focused on the extraction, composition analysis of the
compounds and biological activity [21,24–26], but there is only limited research on gene
regulation [27–29]. To some extent, this hindered the genetic improvement of the crop, and
understanding the biological function of this crop is very important for further molecular
breeding. An accurate gene expression analysis will provide a powerful and valuable
approach to understand the molecular biological mechanisms of growth and development,
as well as signal transduction and metabolism [30,31]. However, to our best knowledge,
there is no report on the systematic reference gene screening of C. burmannii. Hence, it is
very necessary to study the reference gene selection of C. burmannii in order to improve the
reliability of the gene expression analysis.

In this study, the stability of 13 candidate reference genes was evaluated under a
series of experimental conditions. In order to verify the reliability and accuracy of the
reference genes, the expression trends of two terpenoid synthesis-related genes CbWRKY4
and CbDXS2 were detected under different experimental conditions. Terpenoids are a kind
of natural compound that exist widely in nature and have great value to plants, animals and
humans. As the first enzyme of the MEP pathway, 1-deoxyxylose-5-phosphate synthetase
(DXS) is a rate-limiting enzyme of this pathway, which plays a key role in regulating the
synthesis of terpenoids [32]. WRKY is a class of DNA-specific binding transcription factors
that regulate metabolic processes by binding promoter elements of key enzyme genes in
the plant secondary metabolic biosynthesis pathway [33]. The reference genes identified
through this study will facilitate the future gene function analysis in C. burmannii.

2. Results
2.1. Primer Specificity and Amplification Efficiency of Candidate Reference Genes

The agarose gel electrophoresis results showed that the PCR amplification product of
the reference genes was consistent with the expected size and had a single band (Figure S1).
A q-PCR analysis showed that each pair of primers had a single peak (Figure S2). The
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amplification efficiency (E) and the regression coefficient values R2 of each pair of primers
are shown in Table 1. All the results suggested that the candidate gene primers used in this
study can be used for further q-PCR analysis.

Table 1. Primer sequences and PCR amplification characteristics of 13 reference genes.

Gene-ID Gene
Abbreviation

Tentative
Annotation

Primer Sequence of
Forward

Primer Sequence of
Reward

Amplicon
Length (bp) Tm (◦C) E R2

Cbur01G028330 ACT7 actin7
CAACCCAAAAG

CCAACAGG
TCACCCGAGT

CCAGAACAATAC 141 58.7/59.1 98.76% 0.9968

Cbur02G019900 Cpn60β
chaperonin 60
subunit beta 2

CAACAAGGATG
GGCTGGCTA

TTGGCCACAGT
CACTCCATC 156 60/60 98.05% 0.9979

Cbur01G001170 EF1α
elongation factor

1-alpha
GGTACAAGGG
CCCAACTCTC

CTGGAGAGCT
TCATGGTGCA 236 60/60 89.99% 0.9983

Cbur05G032970 eIF-5A
eukaryotic
translation

initiation factor 5A
CCAAGTGTCAC

TTTGTGGCG
AGTGGGGAG

CCTCAGATCAT
191 60/60 86.05% 0.9993

Cbur10G024220 GAPDH
glyceraldehyde-3-

phosphate
dehydrogenase

AAGGGTGGTG
CCAAGAAAGT

GTTGCAGTGATG
GAGTGGACAG

215 58.6/60.2 92.81% 0.9917

Cbur06G016220 GIIα
glucan 1,3-alpha-

glucosidase
CCTTATCGCCT
TTTCAACCTT

AGCGTATCAA
TCCGCCCTC 221 58.3/59.9 90.63% 0.9983

Cbur08G011150 HIS
histone superfamily

protein H3
GGAGGGAAG

GCTCCTAGGAA
CAACTGTTCCA

GGGCGGTAT 106 60/60 96.01% 0.9985

Cbur10G000690 RA rubisco activase ACAGACCGAC
AAGGACAAATGG

CGGAGACCCG
TGCTCAAGTAT 168 61.3/61.6 79.95% 0.9926

Cbur10G003920 RPL27
ribosomal protein

L27
GCCGTCATCG
TACGATCCTT

TGCCGTCTTC
TTTGCAGAGT 123 60.0/59.9 98.39% 0.9969

Cbur07G013210 RPS15
ribosomal protein

S15
GCAGCCGAAG
AGGAGAACA

GGCTTCCGC
TTCAAACCAC 144 58.4//60.4 92.04% 0.9972

Cbur04G009020 TATA
TATA-box-binding

protein
CCGTAATGCA

GAGTATAACCCC
TTTGACATCACA

AGAGCCCAC 146 60.1/59.5 82.13% 0.9989

Cbur08G006150 TUB tubulin β chain TGGGAATAA
CTGGGCTAAGGG

AAGCATCATCC
GATCAGGGTA 205 60.9/59.5 95.11% 0.9964

Cbur02G028660 APT
adenine

phosphoribosy
ltransferase 1

TGCTTGATCC
CGAGGCATTT

ACTTCGAACC
AAGGGCCAAA 141 60.1/60 89.03% 0.9993

2.2. Expression Analysis of Candidate Reference Genes of C. burmannii

The transcriptional levels of the candidate reference genes in different materials were
determined by the Ct values, and the gene expression varied from sample to sample
(Figure 1). Among these, the expression level of RA was the highest with the mean Ct
(21.70) across all materials, while the expression abundance of GAPDH was the lowest with
the mean Ct (26.57). The results suggested that for the gene expression level exists obvious
divergence in all the samples. Meanwhile, the transcription level of the reference genes
also showed different expression variation, and ACT7, RPL27, RPS15, TATA and eIF-5A
had a relative narrower Ct range, indicating that these genes might be expressed more
stably. Furthermore, the Log2 Fold method was used to calculate the expression levels of
the candidate genes in all the materials to analyze their expression stability, and the heat
map clearly shows the expression level of each gene in each sample (Figure 2).
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2.3. Gene Expression Stability Analysis

The stability of the reference gene was evaluated by ∆Ct, and the gene associated
with the lowest mean standard deviation (mSD) was thought to be the optimum. The
results of the ∆Ct analysis showed that RPS15 was the most stable gene in Nacl-treated,
PEG-treated, leaves at different developmental stages, different borneol clones and total
samples (Table 2). RPL27 was the most stable gene in the Cold-treated samples and EF1α
had the best stability among the different tissues.
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Table 2. Stability evaluation of 13 reference genes analyzed using ∆Ct.

Total Cold-treated Nacl-treated PEG-treated Tissues
Leaves at Different

Developmental
Stages

Different
Borneol
Clones

Gene mSD Gene mSD Gene mSD Gene mSD Gene mSD Gene mSD Gene mSD

ACT7 1.21 ACT7 0.51 ACT7 0.87 ACT7 0.62 ACT7 1.30 ACT7 0.94 ACT7 1.56
APT 1.29 APT 0.49 APT 1.14 APT 0.64 APT 1.93 APT 1.14 APT 1.22

Cpn60β 1.61 Cpn60β 0.63 Cpn60β 1.37 Cpn60β 1.09 Cpn60β 1.81 Cpn60β 1.43 Cpn60β 2.72
EF1α 1.22 EF1α 0.63 EF1α 1.41 EF1α 0.49 EF1α 1.29 EF1α 1.10 EF1α 1.10

eIF-5A 1.10 eIF-5A 0.58 eIF-5A 0.95 eIF-5A 0.55 eIF-5A 1.52 eIF-5A 1.32 eIF-5A 0.94
GAPDH 1.37 GAPDH 0.49 GAPDH 1.24 GAPDH 0.68 GAPDH 1.67 GAPDH 1.67 GAPDH 1.69

Gllα 1.13 Gllα 0.62 Gllα 0.90 Gllα 0.75 Gllα 1.91 Gllα 0.94 Gllα 0.93
HIS 1.31 HIS 0.66 HIS 1.14 HIS 0.81 HIS 1.73 HIS 1.14 HIS 1.01
RA 3.01 RA 0.71 RA 1.61 RA 0.98 RA 6.61 RA 3.17 RA 1.26

RPL27 1.05 RPL27 0.43 RP L27 0.85 RP L27 0.48 RP L27 1.32 RPL27 0.93 RPL27 1.30
RPS15 0.98 RPS15 0.46 RPS15 0.83 RPS15 0.47 RPS15 1.36 RPS15 0.93 RPS15 0.90
TATA 1.04 TATA 0.57 TATA 0.92 TATA 0.49 TATA 1.31 TATA 0.95 TATA 1.11
TUB 1.34 TUB 0.89 TUB 0.97 TUB 0.51 TUB 2.03 TUB 2.16 TUB 1.05

Meanwhile, geNorm analyzed the expression stability of the 13 candidate genes
according to the M value (threshold value was 1.5) (Table S1 and Figure 3). The candidate
genes with M < 1.5 could be used for the standardized analysis, and the smaller the M value,
the better the gene stability. In this study, the lowest M of RPL27|RPS15 in the Nacl-treated
samples indicated the highest stability, while the highest M of RA indicated the lowest
stability. In the PEG-treated samples, EF1α|RPL27 showed the most stable expression, and
Cpn60β was the most unstable. GAPDH|RPL27 was the most suitable combination in the
Cold-treated samples, while TUB was the least suitable. In the plant tissues, ACT7|EF1α
was the optimum combination and RA was the poor one. The stability of eIF-5A|Gllα
was higher than that of the other genes in different borneol clones. ACT7|RPS15 was the
best rank in the leaves at different developmental stages, while RA was the worst. After
a comprehensive evaluation of all the samples, the stability of RPS15|TATA was the best,
while that of RA was the worst. In addition to determining the expression stability of the
candidate reference genes, geNorm could also determine the optimum number of reference
genes by analyzing the pairwise variation (Vn/Vn + 1). In this study, the V2/3 were all less
than 0.15, indicating that the standardized analysis of the q-PCR in C. burmannii could be
met by using two reference genes (Figure 3H).

Furthermore, NormFinder further determined the stability of the candidate genes
via SV and a lower SV indicated more stability (Table 3). In the Nacl-treated samples,
RPL27 (0.328) was expressed most stably, with RA (1.499) the most unstable. In the PEG-
treated samples, RPS15 (0.082) was stable, and Cpn60β (1.005) was the least stable. In the
Cold-treated samples, RPL27 (0.115) was the optimum, and TUB (0.803) was expressed
most unstably. EF1α (0.058) was expressed most stably in the different tissues, while RA
(6.568) expression was the most unstable. In different borneol clones, the stability of eIF-5A
(0.128) was most stable, and Cpn60β (2.66) was the most unstable. RPS15 (0.063) was
expressed most stably in the leaves at different developmental stages, and RA (3.132) was
the most unstable. The NormFinder analysis of all the samples showed that RPS15 (0.21)
was expressed most stably and RA (2.918) was the least stable.
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Figure 3. Gene stability values of reference genes and determination of the optimum number of
reference genes for q-PCR based on geNorm in different experiment conditions. (A): Cold-treated
samples; (B): PEG-treated samples; (C): Nacl-treated samples; (D): different tissues; (E): leaves at
different developmental stages; (F): different borneol clones; (G): total samples; and (H): the pairwise
variation (Vn/n + 1) was analyzed between the normalization factors to determine the optimal
number of reference genes for q-PCR normalization by geNorm.

Table 3. Stability evaluation of 13 reference genes based on NormFinder.

Total Cold-treated Nacl-treated PEG-treated Tissues
Leaves at Different

Developmental
Stages

Different
Borneol
Clones

Gene SV Gene SV Gene SV Gene SV Gene SV Gene SV Gene SV

ACT7 0.811 ACT7 0.285 ACT7 0.438 ACT7 0.401 ACT7 0.058 ACT7 0.063 ACT7 1.482
APT 0.877 APT 0.247 APT 0.934 APT 0.448 APT 1.380 APT 0.547 APT 1.007

Cpn60β 1.314 Cpn60β 0.506 Cpn60β 1.114 Cpn60β 1.005 Cpn60β 1.445 Cpn60β 1.034 Cpn60β 2.660
EF1α 0.745 EF1α 0.476 EF1α 1.311 EF1α 0.102 EF1α 0.058 EF1α 0.439 EF1α 0.499

eIF-5A 0.436 eIF-5A 0.427 eIF-5A 0.559 eIF-5A 0.308 eIF-5A 0.208 eIF-5A 0.834 eIF-5A 0.128
GAPDH 0.995 GAPDH 0.255 GAPDH 1.082 GAPDH 0.521 GAPDH 1.205 GAPDH 1.448 GAPDH 1.440

Gllα 0.564 Gllα 0.473 Gllα 0.429 Gllα 0.603 Gllα 1.390 Gllα 0.131 Gllα 0.138
HIS 0.834 HIS 0.545 HIS 0.899 HIS 0.673 HIS 0.948 HIS 0.617 HIS 0.542
RA 2.918 RA 0.593 RA 1.499 RA 0.887 RA 6.568 RA 3.132 RA 0.760

RPL27 0.467 RPL27 0.115 RPL27 0.328 RPL27 0.114 RPL27 0.126 RPL27 0.131 RPL27 1.134
RPS15 0.210 RPS15 0.171 RPS15 0.340 RPS15 0.082 RPS15 0.099 RPS15 0.063 RPS15 0.153
TATA 0.344 TATA 0.378 TATA 0.570 TATA 0.107 TATA 0.099 TATA 0.119 TATA 0.700
TUB 0.969 TUB 0.803 TUB 0.601 TUB 0.194 TUB 1.644 TUB 2.086 TUB 0.426

Moreover, BestKeeper calculated the standard coefficient of variation (SD) and coef-
ficient of variation correlation (CV) of the Ct values of all the candidate genes, and the
relatively low SD values (less than 1) were generally considered to be in the acceptable
range (Table 4). In the Nacl-treated samples, TATA (0.38) was the most stable, while EF1α
(1.28) was the least stable. In the PEG-treated samples, RPL27 (0.35) was stable, while RA
(0.8) was the least stable. In the Cold-treated samples, APT (0.27) was expressed most stably,
but the expression of HIS (0.74) was the most unstable. ACT7 (0.19) was expressed stably in
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the different tissues, and the expression of RA (4.74) was the most unstable. Among the
different borneol clones, HIS (0.1) ranked the best, while Cpn60β (2.37) ranked the worst.
In the leaves at different developmental stages, eIF-5A (0.46) was the most stable, while
TUB (2.38) was the most unstable. The BestKeeper analysis of all the samples showed that
RPL27 (0.47) was the most stable, while RA (1.87) was the least stable.

Table 4. Stability analysis of 13 reference genes based on BestKeeper.

Total Cold-treated Nacl-treated PEG-treated Tissues
Leaves at Different

Developmental
Stages

Different
Borneol
Clones

Gene SD
[±CP] Gene SD

[±CP] Gene SD
[±CP] Gene SD

[±CP] Gene SD
[±CP] Gene SD

[±CP] Gene SD
[±CP]

ACT7 0.56 ACT7 0.58 ACT7 0.52 ACT7 0.58 ACT7 0.19 ACT7 0.79 ACT7 0.53
APT 0.73 APT 0.27 APT 1.13 APT 0.54 APT 0.85 APT 0.60 APT 0.32

Cpn60β 1.00 Cpn60β 0.56 Cpn60β 0.83 Cpn60β 0.38 Cpn60β 0.61 Cpn60β 1.43 Cpn60β 2.37
EF1α 0.78 EF1α 0.36 EF1α 1.28 EF1α 0.38 EF1α 0.26 EF1α 1.03 EF1α 0.96

eIF-5A 0.64 eIF-5A 0.42 eIF-5A 0.66 eIF-5A 0.40 eIF-5A 0.83 eIF-5A 0.46 eIF-5A 0.63
GAPDH 0.96 GAPDH 0.37 GAPDH 1.21 GAPDH 0.57 GAPDH 0.32 GAPDH 1.80 GAPDH 1.45

Gllα 0.76 Gllα 0.67 Gllα 0.75 Gllα 0.59 Gllα 1.04 Gllα 1.09 Gllα 0.62
HIS 1.09 HIS 0.74 HIS 1.21 HIS 0.71 HIS 0.79 HIS 1.38 HIS 0.10
RA 1.87 RA 0.53 RA 0.68 RA 0.80 RA 4.74 RA 1.20 RA 0.89

RPL27 0.47 RPL27 0.35 RPL27 0.44 RPL27 0.35 RPL27 0.53 RPL27 1.01 RPL27 0.43
RPS15 0.53 RPS15 0.55 RPS15 0.45 RPS15 0.36 RPS15 0.56 RPS15 0.87 RPS15 0.41
TATA 0.57 TATA 0.48 TATA 0.38 TATA 0.43 TATA 0.52 TATA 0.79 TATA 0.26
TUB 0.83 TUB 0.55 TUB 0.65 TUB 0.37 TUB 1.05 TUB 2.38 TUB 0.80

Ultimately, RefFinder further merged the output data to screen out the optimum
reference gene in the different experimental materials (Figure 4). The expression stability of
RPL27|RPS15 was higher than that of the other genes in the Nacl-treated and PEG-treated
samples. RPL27|APT ranked best in the Cold-treated samples and EF1α|ACT7 was the
most suitable combination in the different tissues. eIF-5A|Gllα was suitable for different
borneol clones and RPS15|ACT7 was the optimum in leaves at different developmental
stages. When analyzing all the samples, RPS15|TATA was the best combination in all
the samples. The Ct values of all the candidate reference genes in various materials for
reference gene screening can be found in Table S2 of the Supplementary Material.
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2.4. Reference Gene Validation

To verify the accuracy and suitability of the selected reference genes, the expression
levels of two terpenoid synthesis-related genes (CbWRKY4 and CbDXS2) were evaluated
using two stable reference genes and the unstable reference gene under different experi-
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mental conditions. DXS, a key rate-limiting enzyme, is pivotal in the MEP pathway for
terpenoid synthesis and exerts influence on the downstream metabolite content [34,35].
WRKY transcription factors play a crucial role in terpenoid synthesis by specifically binding
to the promoter elements of key genes involved in the terpenoid synthesis pathway [36,37].
Our results show that the expression patterns of CbDXS2 and CbWRKY4 differ significantly
using different reference genes for q-PCR normalization in all the experimental treatments
(Figure 5). The expression patterns of CbDXS2 and CbWRKY4 were similar using the
optimal and the best combination reference genes. However, after the normalization of the
unstable reference genes, the expression patterns of CbDXS2 and CbWRKY4 were signifi-
cantly different from those of the optimal reference gene combination. For instance, the
expression levels of CbDXS2 and CbWRKY4 in roots were the lowest when normalized by
ACT7 and EF1α, while the expression levels of CbDXS2 and CbWRKY4 in roots were the
highest when normalized by RA in different tissues (Figure 5C,D). CbDXS2 had the highest
expression at 1 h using RPL27 and RPS15 for q-PCR normalization, while CbDXS2 was
hardly expressed at 1 h using EF1α under the Nacl-treated samples (Figure 5K). All the
results showed that the selection of appropriate reference genes was crucial for the accurate
normalization of gene expression.
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Figure 5. Normalization of relative expression levels of CbWRKY4 and CbDXS2 using the identified
reference gene. (A): CbDXS2 for leaves at different developmental stages; (B): CbWRKY4 for leaves
at different developmental stages; (C): CbDXS2 for tissues; (D): CbWRKY4 for tissues; (E): CbDXS2
for different borneol clones; (F): CbWRKY4 for different borneol clones; (G): CbDXS2 for Cold-
treated samples; (H): CbWRKY4 for Cold-treated samples; (I): CbDXS2 for PEG-treated samples; (J):
CbWRKY4 for PEG-treated samples; (K): CbDXS2 for Nacl-treated samples; and (L): CbWRKY4 for
Nacl-treated samples. a, b, c, d, e and f indicate significant differences at p < 0.05.

3. Discussion

Nowadays, a q-PCR is regarded as an efficient tool to understand the molecular biology
research [38,39], for which accuracy relies on the normalization of reference genes [40].
However, numerous studies have shown that the gene expression level of a reference gene
differs in different experimental conditions [41–43], which was also confirmed in our study
where the stability of 13 reference genes was different under certain conditions. Therefore,
screening appropriate reference genes under specific conditions is of great significance for
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subsequent gene expression analysis. The identification of appropriate reference genes in
C. burmannii will promote the study of the gene regulation of this species.

In this study, ∆Ct [44], BestKeeper [6], geNorm [45] and NormFinder [46] were used
to evaluate the candidate reference genes in C. burmannii under different experimental
conditions. The results demonstrated that there were some differences in the stability
of the reference genes among the different software. The reason for this may be due
to the differences in algorithms between the software [47] and the similar phenomena
were often seen in other research, such as in Carex rigescens [7], Luffa [48] and Rubia
yunnanensis Diels [49]. In this case, a further comprehensive analysis of the results based on
the geometric means of the results to reduce the bias caused by differences in the software
algorithms better reflects the expression stability of the reference genes under certain
conditions (Figure 4). Considering the reliability and accuracy of q-PCR normalization, a
growing number of studies showed that a single reference gene sometimes cannot guarantee
the accuracy of experimental results; two or more reference genes were needed for a q-PCR
standardized analysis [50,51]. In this study, the comprehensive verification analysis showed
that two reference genes could meet the requirements of a q-PCR normalization analysis
(Figure 3H).

According to the results of the stability evaluation in this study, no reference gene was
suitable for all experimental conditions. Under most experimental conditions, ribosomal
proteins (RPs) showed good expression stability, for example, RPS15 was the most stably
expressed in the total sample, PEG-treated sample and leaves at different developmental
stages, and RPL27 showed relatively high stability in the Cold-treated and Nacl-treated
samples (Figure 4). As genes encoding ribosomal protein, RPs have an important role
in cellular protein biosynthesis, and previous studies also identified RPs as the reference
genes, such as RPL19 for potato tissues [52], RPL5 for MeJA, cold and hot stress in Rubia
yunnanensis Diels [49] and RPS15 for developmental stages, RPL32 for tissues and tempera-
ture stress and RPS3 for insecticide stress and starvation stress in Lymantria dispar [53].
Actin is highly conserved and expressed in almost all eukaryotic cells [54] and is usually
used as a reference gene for q-PCR normalization. However, in this study, ACT7 was the
proper gene only under specific conditions; just like in Scutellaria baicalensis Georgi, ACT7
showed high stability under hormonal conditions but was not the best choice in other
conditions [42], and in Haloxylon ammodendron, ACT7 was stable under salt treatment
but poor under other conditions [55]. In addition, we compared the expression levels of
AtACT2 (Arabidopsis) with those of ACT7 and the stable reference genes RPL27 and RPS15
(C. burmnnii) under the Nacl-treated samples (Figure S3), showing that the stability of At-
ACT2 was relatively lower. Based on the previous research, TATA-box, as the first promoter
found in eukaryotes, was more suitable for q−PCR analysis in a variety of species, such as
in Monomorium pharaonic [1], Gleditsia microphylla [56] and Dendrobium huoshanense [57], but
in our study it was not the optimum reference gene for some experimental conditions. In
addition, eIF-5A was just the best reference gene in different borneol clones and EF1α was
the optimum gene for studying different tissues. Moreover, the common reference gene
GAPDH was highly stable in many species [58–60], but the stability was not as expected in
this study, indicating that the reference gene needed to be re-screeded in different species.
All the results suggested the importance of a suitable reference gene for the gene function
research, and it was of great significance to evaluate and screen reference genes under
certain experimental conditions.

A validation experiment is the prerequisite to evaluate the accuracy and stability of
reference genes. Therefore, we examined the expression trends of two terpenoid synthesis-
related genes CbWRKY4 and CbDXS2 under different experimental conditions to determine
the accuracy of the selected reference genes. The results in Figure 5 showed that the
expression patterns of target genes were significantly different after the normalization using
the stable reference gene and the unstable reference gene under different experimental
conditions. There was little difference in the expression levels when the stable reference
genes were normalized alone or in combination, while the least stable reference genes
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were normalized with greater difference in the expression levels. This phenomenon further
revealed that the reliable gene expression analysis depended on the stable reference gene
and the necessity of screening reference genes for the accuracy of q-PCR results. This
process of reference gene screening under various experiment conditions can provide
guidance for researchers to study the genetic breeding of C. burmannii.

4. Materials and Methods
4.1. Plant Materials

C. burmannii was obtained from a nursery managed by the Guangdong Academy of
Forestry. Seedlings of 1–2 years were selected for cultivation in an artificial climate chamber
(light/dark = 16 h/8 h and relative humidity = 65–75%). To induce different abiotic stress
conditions, the seedlings were exposed to various treatments. Seedlings treated with cold
were grown at 16 ◦C, and those treated with 200 mM NaCl and 20% PEG 6000 were grown
at 25 ◦C. Leaves from all abiotically stressed seedlings were collected at 0, 1, 3, 6, 9, 12 and
24 h after treatment. Samples of plant tissues were collected from distinct parts of the plant,
encompassing mature leaves, stems and roots. Mature leaves from different borneol clones
of C. burmannii (Cb-H, 51.96%; Cb-M, 27.65%; and Cb-L, 0.00%) were collected. Leaves at
different developmental stages (Cb-S1, Cb-S2, Cb-S3 and Cb-S4) were collected from the
same material, in accordance with our previous research [27]. All the samples were frozen
immediately in liquid nitrogen and stored at −80 ◦C and all the treatments were conducted
in triplicate.

4.2. RNA Extraction and cDNA Synthesis

The total RNA was extracted using an RNAprep Pure Plant kit (Polysaccharides
and Polyphenolics rich) (Tiangen, Beijing, China). The RNA integrity and purity was
determined by 1% agarose gel electrophoresis and OD260/280. cDNA was synthesized using
a PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time) (Takara, Beijing,
China) and stored at −20 ◦C for the subsequent q-PCR analysis.

4.3. Candidate Reference Genes Selection and Primer Design

The candidate reference genes were selected based on our previous transcriptome
and other common reference genes information. Primer Premier 5.0 was used to design
the primers for q-PCR (Table 1), and the primer design criteria were G + C (40–60%), PCR
product (80–300 bp), TM (58–62 ◦C), and primer length (17–25 bp). The specificity of each
primer was verified by 1% agarose gel electrophoresis and melting curve. The amplification
efficiency (E) of the candidate genes was calculated using a standard curve (a 5-fold dilution
series cDNA was used as the template) by q-PCR. E (%) = (10−1/slope –1) ×100% [61].

4.4. q-PCR Amplification

A q-PCR was performed on CFX ConnectTM real-time systems (Bio-Rad, Singapore)
with Biomike fluorescent quantitative SYBR reagent under the following reaction system:
Biomarker 2× SYBR Green Fast qPCR MIX (10 µL), Forward Primer (0.4 µL), Reverse
Primer (0.4 µL), cDNA (1 µL), and Nuclease-free H2O (8.2 µL). The reaction conditions
were as follows: 95 ◦C for 3 min; 40 cycles: 95 ◦C for 5 s and 60 ◦C for 30 s; melting curve:
instrument default. Three techniques were repeated for each sample.

4.5. Data Analysis and Validation of Selected Reference Genes

The stability of the candidate reference genes was assessed using different algorithms:
∆Ct [44], BestKeeper [6], geNorm [45], NormFinder [46] and RefFinder [62]. The ∆Ct
method calculates the average standard deviation (SD) of all potential reference gene pair-
ings, with the gene displaying the lowest SD considered the most stable. The algorithms
of geNorm and NormFinder rely on the transformation of Ct values into 2−∆Ct values.
geNorm is utilized for evaluating the stability of reference genes through the calculation
of the M value, where a lower M value suggests better stability. Furthermore, geNorm is



Int. J. Mol. Sci. 2024, 25, 3500 11 of 14

capable of determining the optimal number of normalization genes. NormFinder evaluates
the expression stability of candidate genes by calculating the stability value (SV), where
the lower SV of the reference gene indicates greater stability. In contrast to geNorm and
NormFinder, the analysis conducted by BestKeeper utilizes the Ct values in order to cal-
culate the standard deviation (SD) and coefficient of variance (CV). A smaller SD value
indicates a higher level of stability in the expression of reference genes. The RefFinder is
utilized to conduct a comparative analysis of the aforementioned data. The final overall
ranking is determined by RefFinder through calculating the geometric mean, which helps
identify the optimal reference gene. Finally, two terpenoid synthesis-related genes (Cb-
WRYK4 and CbDXS2) were analyzed to verify the reliability and suitability of the selected
reference genes under the above different conditions.

5. Conclusions

In this study, the expression stability of 13 candidate genes under different experi-
mental conditions was evaluated for a standardized q-PCR analysis of C. burmanni. ∆Ct,
geNorm, NormFinder and BestKeeper were used to evaluate the gene stability, and the re-
sults were further ranked based on the geometric mean to screen out the optimum reference
genes in the diverse experimental conditions. The expression stability of RPL27|RPS15
was higher than that of the other genes in the Nacl-treated and PEG-treated samples.
RPL27|APT ranked best in the Cold-treated samples and EF1α|ACT7 was the most suit-
able combination in different tissues. eIF-5A|Gllα was suitable for different borneol clones
and RPS15|ACT7 was the optimum in leaves at different developmental stages. In all the
samples, RPS15|TATA was the best combination. All the results suggested the importance
of selecting appropriate reference genes under specific experimental conditions for q-PCR
analysis. This study will contribute to the subsequent research on the genetic molecular
mechanism and genetic breeding of C. burmannii.
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