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Abstract: The exact mechanisms of the development of autism, a multifactorial neurological disorder,
are not clear. The pathophysiology of autism is complex, and investigations at the cellular and
molecular levels are ongoing to provide clarity. Mutations in specific genes have been identified
as risk factors for autism. The role of heavy metals in the pathogenesis of autism is subject to
many studies and remains debatable. Although no exact neuronal phenotypes have been identified
linked to autistic symptoms, overproduction and reduction of specific neurons have been implicated.
A growing literature on generating genetic and non-genetic models of autism aims to help with
understanding mechanistic studies that can explain the complexity of the disorder. Both genetic
and non-genetic methods of zebrafish have been used to model autism. For several human autism
risk genes, validated zebrafish mutant models have been generated. There is growing evidence
indicating a potential link between autism and inorganic arsenic exposure. We have previously
shown that inorganic arsenic induces supernumerary spinal motor neurons via Sonic hedgehog
(Shh) signaling pathway, and Cdk5 knockdown causes an overproduction of cranial and spinal
motor neurons in zebrafish. Here, in this review, we provide a perspective on what these findings of
neurogenic phenotypes mean in terms of dysregulated pathways of motor neuron development and
their applicability to understanding cellular and molecular underpinnings of autism.

Keywords: arsenic; zebrafish; Sonic hedgehog; autism; motor neuron

1. Introduction

Autism spectrum disorder (ASD), commonly known as autism, is a complex neurode-
velopmental disorder [1,2]. Due to the broad spectrum of this neurodevelopmental disorder,
a diagnosis of autism remains a challenge and is based on the individual’s behavioral pat-
terns and developmental history, while the severity and variability of the symptoms can
vary among individuals [3,4]. Autism causes motor defects such as difficulty in walking,
postural irregularities causing clumsiness, and balance issues, while non-motor defects
include memory and cognitive deficits, irritation, anxiety, and aggressive behavior [5].

Over the past two decades, the prevalence of autism reported worldwide has been
steadily increasing. In 2000, according to Autism and Developmental Disabilities Moni-
toring (ADDM), the incidence of autism was estimated to be 1 in 150 children. In 2006,
the incidence was 1 in 110 children, and by 2008, the incidence had increased to 1 in 88
children [6]. A recent estimate shows that more than 70 million people, i.e., 1.5% to 2%
worldwide, suffer from autism [7]. In 2023, the Center for Disease Control (CDC) reported
that the incidence increased to 1 in 36 (2.8%) [8].

With hitherto unknown specific causes, autism, a multifactorial neurodevelopmental
disorder, is found to be highly heritable, and many studies reveal that genetic factors (the in-
volvement of many genes) as well as environmental factors are the major contributors/risk
factors for the development of autism [2,9,10]. Environmental chemicals can contribute
to human diseases, including autism [11]. Mounting evidence indicates that autism re-
sults from complex interactions between genes and the environment [12,13]. A systematic
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review and meta-analyses of 53 studies involving 5054 children described an association
between autism and heavy metal exposure including arsenic, cadmium, mercury, and
lead [14]. Arsenic is considered a potential contributor to the development of autism [15].
Multiple studies have shown an association of arsenic with autism (reviewed in [14]). An
epidemiological study on 397 autism cases and 1034 controls under the Norwegian Mother,
Father and Child Cohort Study showed a positive association between prenatal exposure
to arsenic and autism risk [16] A report showed that populations living closer to industrial
facilities that emit heavy metals such as arsenic, lead, and mercury to the air had a higher
occurrence of autism [17]. Epidemiological studies show that arsenic exposure during
critical periods of neurodevelopment could pose as an environmental risk factor for autism
development [18,19]. Significantly higher levels of arsenic in the urine [20–23], blood [24],
and hair [22] of children with autism have also been reported [20,21]. Arsenic exposure
through drinking water at 10–50 ppb has been shown to cause peripheral neuropathy
in humans [25]. In children, central nervous system (CNS) impairment may occur at
≥ 50 ppb [26]. Mice, after prenatal exposure to arsenic, showed an increased number of
pyramidal neurons of the prelimbic cortex, which has been linked to behavioral inflexibility
in adulthood due to cortical disarrangement [27]. Although arsenic’s effects on specific
neurons in the brain have been well studied, very few studies have focused on its effects
on motor neurons. An epidemiological study in arsenic-contaminated regions showed
a 16.7% higher risk of mortality associated with motor neuron disease [28]. Additional
epidemiological studies show a potential association of heavy metals, including arsenic,
with autism (reviewed in [14]) that warrants further studies in order to determine whether
there is a direct link between these heavy metals and autism.

Mutations in cyclin-dependent kinase 5 (Cdk5) have been reported in patients with
non-syndromic intellectual disability [29]. Selective loss of Cdk5 in the dorsolateral stria-
tum of mice caused increased locomotor activity with attenuated motor learning [30].
Valproic acid, prenatal exposure to which causes autism-like behavioral abnormalities and
brain malformation in animal models including zebrafish [31,32], downregulates Cdk5
activity in cultured mouse neurons [33]. The effects of the downregulation of Cdk5 ac-
tivity on specific neuron development (a specific neuronal phenotype) can help unravel
cellular and molecular mechanisms behind autism-like symptoms in animal models with
follow-up studies.

One of the pathological mechanisms of autism underlies impaired functions of spe-
cific brain regions and dysfunctional neural circuits [13]. For example, functional studies
of an autism-associated gene, Shank3, a synaptic scaffold protein that is enriched at the
postsynaptic excitatory synapses [34], show that mice lacking Shank3 not only exhibit hy-
pertrophy of the striatum but also experience decreased cortico-striatal excitatory synaptic
transmission and show repetitive behaviors [35]. Lately, various animal modeling studies
have revealed several types of viable mutations, which can shed light on the underlying
mechanisms of autism pathogenesis [13]. Due to the evolutionary conservation of the
developmental processes of the nervous system between zebrafish and mammals, zebrafish
are used to investigate autism using both genetic and non-genetic methods (reviewed
in [2]). Zebrafish exhibit similar behavioral responses as in mammals, such as social in-
teractions and preference, as well as repetitive behaviors, making it possible to model
phenotypes with ASD-like symptoms [36]. A list of zebrafish mutant lines for twelve
autism risk genes has been curated (https://www.sfari.org/resource/zebrafish-models/
(accessed on 10 December 2023)) by the Simons Foundation for Autism Research Initiative
(SFARI). As an alternative animal model, data from zebrafish autism studies can add to the
knowledge gap that exists in mammalian studies, reveal mechanistic pathways, and help
with drug discovery.

Chronic arsenic exposure altered social behavior, a characteristic of autism, in juvenile
zebrafish, which was ameliorated by the antioxidant N-acetylcysteine [37]. In zebrafish
larvae, arsenic caused motor behavioral deficit as well as mild impairment in behavior
towards color preference [38]. Transgenerational changes in motor activity and anxiety-like
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behavior upon arsenic exposure, accompanied by a reduction in brain-derived neurotrophic
factor level and increased histone methylation, have been reported in zebrafish [39]. Arsenic
caused hypoactivity of zebrafish larvae in a photomotor response assay [40]. Anxiety-like
behavior and alteration in long-term memory have also been reported in adult zebrafish
upon arsenic exposure [41]. Based on existing studies both in mammals and zebrafish, this
review provides a perspective on what the neurogenic phenotypes indicate in terms of
modeling autism.

2. Risk Genes of Autism and Zebrafish

Many reliable risk genes for autism development have been discovered (reviewed
in [2]), and approximately 5% of autism cases result from single-nucleotide polymorphisms
(SNPs) in genes such as NLGN3, NLGN4, NRXN1, MECP2, SHANK3, FMR1, TSC1/2, and
UBE3A (reviewed in [2]). Genetic alterations that can increase the risk of autism include
changes in UBE3A, a ubiquitin protein ligase E3A [42], MAPK3 (mitogen-activated protein
kinase 3) [43], as well as an increase in the copy number variants, such as single nucleotide
polymorphisms (SNPs), for example, in the chromosomal region 15q11-q13.3 [42]. In addi-
tion to this, epigenetic mechanisms that include histone modification, DNA methylation,
chromatin remodeling, and micro-RNA activity are involved in the regulation of social
behavior in autism [44].

A study on zebrafish using high-throughput functional analysis of 10 autism risk genes
identified convergence of dopaminergic and neuroimmune pathways [45]. The functions of
12 autism genes (ARID1B, CHD8, CNTNAP2, DYRK1A, GRIN2B, FMR1, MECP2, NRXN1,
PTEN, SCN2A, SHANK3, and SYNGAP1) have been studied in zebrafish [2]. In zebrafish
embryos, morpholino (MO)-mediated knockdown of CHD8, a chromatin-binding protein
that targets many other autism-related genes, results in macrocephaly consistent with
human autism cases with CHD8 loss of function [46]. Knockdown of FMR1 in zebrafish
larvae resulted in autism-like behavior [47] similar to the valproic-acid treated zebrafish
larvae [48]. MECP2 knockout in zebrafish caused behavioral and motor deficits [49], and
MECP2 knockdown suppressed neural precursor cell differentiation [50]. Double mutation
in CNTNAP2a/b zebrafish caused reduced GABAergic neurons [51]. Zebrafish DYRK1A mu-
tants have microcephaly [52]. Homozygous recessive loss-of-function mutation in scn1alab,
a voltage-gated sodium ion channel, caused abnormal neuronal firing, hyperactivity, and
convulsive behaviors in zebrafish that are consistent with effects shown in mice and hu-
mans [53]. Shank3a/b knockout zebrafish embryos/larvae as well as adults had reduced
revels of synaptic proteins and displayed robust autism-like behaviors with reduced locomo-
tor activity [54]. Syngap1a/b knockdown embryos had significantly decreased GABAergic
neurons [55]. These studies emphasize the utilization of the zebrafish model for autism
studies that can reveal useful information on this complex neurodevelopmental disorder.

3. Autism and Overproduction and Reduction of Specific Neurons

A preliminary study reported brain overgrowth and an excess number of neurons
in the pre-frontal cortex of autistic male children [56]. An overproduction of upper-layer
neurons in the neocortex in mice has been shown to lead to autism-like features, suggesting
a causal link between the overproduction of certain neurons and autism, which offers some
insight into the etiology of the disorder [57]. It has been reported that although the number
of mature neurons of the human amygdala increases from childhood into adulthood under
normal development, in autistic individuals, an initial excess of neurons in the amygdala
during childhood is followed by a reduction of neurons in adulthood [58]. Such develop-
mental anomalies might offer critical information on the etiology of autism. Decreased
cortical interneurons in autism have also been reported, indicating that interneuron hypo-
function could be a primary driver of erroneous circuit engagement and dysfunction in
autism [59]. Furthermore, a study on organoids derived from induced pluripotent stem
cells from patients with Fragile X Syndrome (a known cause of autism) showed a lower
density of GABA-expressing neurons [60].
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Autopsies of patients with autism have shown significant structural changes of their
brains, e.g., altered grey and white matter ratios, increased neuronal numbers accom-
panied by reduced neuronal body volume, increased numbers of glia, and changes in
dendritic spines and cerebral vasculature [61]. Longitudinal imaging studies on toddlers
(18 and 60 months old) with autism revealed an enlarged amygdala [62], and children with
autism had 67% more neurons in the prefrontal cortex [56]. On the other hand, Purkinje
cells were decreased in the cerebellar hemispheres of autistic individuals, who also had
reduced numerical density of neurons in the putamen and nucleus accumbens [63]. Brain
tissues of individuals with autism have supernumerary neurons in the cerebral cortical
subplate [64]. The increased brain size in subjects with autism [65] has been attributed to
an increased number of neurons or increased neuropil when there was no change in neuron
numbers [66]. Malformations of the CNS resulting from such abnormal neurodevelopment
(lack of or over-abundance of specific neurons) can lead to autism, cognitive delay, and
intractable epilepsy [67,68].

Moreover, early assessments of autism show striatal hypertrophy with reduced amyg-
dala volume albeit increased neuronal density in the region covering the medial, central,
and lateral nuclei that plays critical roles in anxiety, fear conditioning, and social behav-
ior [13,69,70]. Additionally, prenatal exposure to valproic acid, which, clinical evidence
indicate, has a strong association with autism [71,72], enhanced untimely embryonic neuro-
genesis in mice, leading to a depletion of the neural precursors and resulting in decreased
levels of adult hippocampal neurogenesis [73]. In zebrafish embryos, valproic acid ad-
versely affected neurogenesis in the optic tectum [74], reduced midbrain size, and reduced
the number of neuronal progenitors, along with perturbations in the secondary motor
neuron neurite development [75]. Modeling the genetic as well as environmental aspects
in zebrafish embryos can offer an ideal system for an in-depth investigation of the potential
mechanisms of autism development, since manipulation of individual risk genes in these
embryos may lead to the identification of phenotype-based mechanistic pathways.

4. Arsenic and Zebrafish Motor Neurons: Relevance to Autism

Recently, we reported that arsenic induced supernumerary spinal motor neurons in
transgenic (hb9-GFP) zebrafish that express green fluorescent protein (GFP) in the motor
neurons via Sonic hedgehog pathway (Figure 1A–C) and also increased the density of
tyrosine hydroxylase-positive dopaminergic neurons [76]. However, arsenic did not alter
the density of serotonergic neurons [76]. In vertebrates, the formation of motor neurons
depends on Hedgehog (Hh) signaling, which is mediated by Gli zinc finger proteins [77].

There are three Hh family members, Sonic Hedgehog (Shh), Indian Hedgehog (Ihh)
and Desert Hedgehog (Dhh). These three proteins activate a common signaling pathway,
called Hh signaling, and arsenic activates Hh signaling [78]. Shh, a secretory protein acts as
a developmental morphogen, and Shh signaling plays an integral role in embryogenesis in-
cluding neurodevelopment and neurodegeneration [79]. The Shh signaling pathway plays
an important role in development [80]. Vertebrate Patched (a receptor) binds to the Shh lig-
and [81]. Such binding relieves the inhibitory effect of Patched on a seven-transmembrane
protein, Smoothened, resulting in transcription of the Gli transcription factors, including
Gli2 [82,83]. Gli2, a positive regulator of Shh signaling, is then activated [84–86]. However,
supernumerary motor neuron development is inhibited by the Shh signaling inhibitor
Gant61 [76]. While Gli1 can induce Nkx2.1-positive ventral forebrain neuron development,
both Gli1 and Gli2 can induce Hb9-positive spinal motor neuron development [87]. In
arsenic-treated zebrafish, Patched gene expression was not altered [88]. Whether protein
levels of Patched and Shh changed in arsenic-treated embryos remains under investigation.
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Figure 1. Inorganic arsenic-induced supernumerary motor neuron development is inhibited by the
Shh inhibitor, Gant61. Five hours post fertilization (hpf), transgenic embryos (hb9-GFP) that express
green fluorescent protein (GFP) in the motor neurons were exposed to 200 mg/L of sodium arsenite
(internal concentration of 387.8 ± 26.9 pg/embryo). Fluorescent images of spinal cord regions of the
72 hpf embryos are shown for control (A), 200 mg/L sodium arsenite-treated (B), 200 mg/L sodium
arsenite with 5 µM Gant61-treated (C). Arrows indicate GFP-expressing motor neurons. YE indicates
yolk extension (Adapted from Kanungo et al. [76]).

Shh is secreted from the notochord and is critical for the development of the mo-
tor neurons in vertebrates [87] (Figure 2). Shh signaling activates Gli genes, which are
known to affect motor neuron development and positioning in the spinal cord during
early development of vertebrates [89,90]. In the CNS, Shh plays a critical role in ventral
specification along the neural axis. Overexpression of Shh in the spinal cord has been
shown to alter the positioning of the motor neurons and results in the aberrant structure
of the motor column [90]. Misexpression of Shh can induce the differentiation of floor
plate cells including motor neuron differentiation at ectopic locations in the spinal cord in
vertebrate embryos [91–93]. A schematic presentation of motor neuron development in
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zebrafish pertaining to the Shh signaling pathway is shown in Figure 2. The cross-sectional
view of the neural tube flanked dorsally by the ectoderm and ventrally by the endoderm
shows the location of the roof plate, sensory neurons, interneurons, motor neurons, floor
plate, and notochord, the latter producing the Shh that induces motor neuron development
(Figure 2). This pathway of motor neuron development is conserved in vertebrates [94].
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Figure 2. Schematic presentation of motor neuron development in zebrafish. The neural tube
develops from the neural plate with the dorsal location of the sensory neurons, intermediate location
of the interneurons, and ventral location of the motor neurons. The dorsal ectoderm above the roof
plate and the ventral endoderm below the notochord are shown. Sonic hedgehog (Shh) is expressed
in the floor plate and notochord, which triggers the development of motor neurons from the neuronal
progenitors of the floor plate.

Based on rodent studies, it has been postulated that the motor dysfunction caused
by arsenic ingestion may be a consequence of arsenic’s direct influence on motor neu-
rons rather than other processes, such as demyelination [95]. In children with autism,
significantly higher levels of serum Shh protein have been reported [96]. A low dose of
arsenic can induce Hh signaling in vitro and in vivo [78]. Dysregulation of Shh signaling
leads to many physiological changes that precede neurological disorders such as autism
and cognitive decline (reviewed in [97]). These data suggest a mechanistic link between
arsenic, motor dysfunction, and some of the symptoms commonly observed in ASD. In
mouse models of autism, mechanisms involving cellular and synaptic functions of the
neurons of the peripheral somatosensory system, as well as spinal cord neurons, have been
shown to contribute to tactile over-reactivity [98–102]. Further studies on arsenic-induced
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supernumerary neurons in zebrafish are needed to explore the molecular and behavioral
changes related to autism. The questions that remain to be answered are whether arsenic
alters Shh expression at the gene and/or protein level and whether downstream Gli genes
are induced by arsenic.

In the hb9:GFP zebrafish embryos, it was difficult to discern brain motor neurons as
opposed to those in the spinal cord [76]. Future research using high-resolution microscopy
might reveal a clearer picture.

5. Cdk5 Knockdown and Zebrafish Motor Neurons: Relevance to Autism

Cdk5 is a member of the family of serine/threonine cyclin-dependent kinase, which
is highly expressed in neurons [103]. A multi-functional protein kinase, Cdk5 regulates a
wide range of neuronal functions, including neuronal survival and migration and plays a
critical role in neuronal differentiation [103]. Additionally, Cdk5 is essential in regulating
a number of cellular processes of the nervous system including protein trafficking, neu-
rite and synapse development, dopaminergic function, learning, and memory [104,105].
Dysregulation of Cdk5 activity can cause a wide range of pathological processes affecting
the nervous system development, leading to neurodegeneration [103]. Suppressing Cdk5
activity in cultured cortical neurons leads to compromised neurite outgrowth, whereas
ectopic expression of exogenous Cdk5 and its regulator p35 produce longer neurites [106].
Cdk5-null mice that are embryonically lethal show an aberrant development of the cortex
and cerebellum [107]. We have previously shown that the suppression of Cdk5 activity
through MO-mediated Cdk5 knockdown or overexpression of the dominant negative
human Cdk5 (hCdk5 DN) mRNA generated supernumerary motor neurons in vivo in
zebrafish [108] (Figure 3A–F). In the islet-1-GFP transgenic zebrafish embryos that express
GFP in the motor neurons, morpholino-mediated Cdk5 knockdown (translational inhibi-
tion) and hCdk5 DN-mediated suppression of Cdk5 activity caused supernumerary motor
neuron generation in both cranial and spinal regions (Figure 3) [108]. In these embryos,
Cdk5 activity was significantly reduced [108]. Although using a single morpholino may not
be sufficient to provide a conclusive statement about a gene function in studies conducted
lately, as the specificity of the morpholinos needs more controls, overexpression of the
kinase-dead hCdk5 DN mRNA increasing motor neuron density further strengthens the
finding (Figure 3). In agreement with this, the study also showed that overexpression of
Cdk5 mRNA reduced the motor neuron density in the zebrafish embryos compared to the
control [108].

Cdk5 has been implicated in the pathogenesis of various neurological disorders in-
cluding autism [109]. Downregulation of Cdk5 has been associated with attention deficit
and hyperactivity disorder [110], epilepsy [111], and schizophrenia [112]. Cdk5 rescued
hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a genetic form
of intellectual disability associated with epilepsy, autism, and mood disorders, suggesting
that activation of Cdk5 activity might be a pharmacological tool to treat Fragile X Syn-
drome [113]. However, no association between polymorphisms in Cdk5 with autism was
found in a Chinese Han population [114]. On the other hand, studies explored a severe
neurodevelopmental disorder that was characterized by intellectual disability, early-onset
seizures, and autistic features resulting from mutations in the X-linked cyclin-dependent
kinase-like 5 (CDKL5) gene [115–117]. The mechanism behind this link between the CDKL5
mutation and autistic behavior is not known.

We have shown that Cdk5 activity is significantly reduced in zebrafish mindbomb
1 (Mindbomb E3 ubiquitin protein ligase 1) mutants [118]. The mindbomb 1 (Mib1) gene
was first identified as an E3 ubiquitin ligase in zebrafish through genetic mutagenesis
screens [119]. In zebrafish, Mib1 positively regulates the Notch pathway [119] necessary
for cell fate specification [120]. While Mib1-null mice are embryonically lethal [121], the
loss-of-function zebrafish mutant (mindbomb 1) exhibits developmental defects due to a loss
of Notch signaling-induced lateral inhibition, thus resulting in a neurogenic phenotype
characterized by increased supernumerary primary neurons [119]. In addition to defects in
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neurogenesis, severe defects in angiogenesis and somitogenesis occur in zebrafish Mib1
mutants [122–124]. In humans, Mib1 mutations contribute to congenital heart disease
through disruptions in heart development [125]. Mib1 homozygous mutant zebrafish do
not live beyond four days, whereas Mib1 heterozygotes (a recessive mutation) are able to
survive and breed [126].
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Figure 3. Cdk5 knockdown through microinjection of Cdk5 morpholino and dominant negative
human Cdk5 (hCdk5 DN) mRNA caused supernumerary motor neuron generation in zebrafish
embryos. Images of live 72 hpf islet-1–GFP transgenic zebrafish embryos show motor neurons in the
brain; (A) noninjected (vehicle only) control, (B) Cdk5 morpholino (MO)-injected, and hCdk5 DN
mRNA-injected (C); spinal regions of (D) noninjected (vehicle only) control; (E) Cdk5 morpholino
(MO)-injected embryos; and (F) hCdk5 DN mRNA-injected embryos. Arrows indicate the GFP-
expressing motor neuron populations in the brain (upper panel) and spinal cord (lower panel). YS
indicates the yolk sac; e indicates the eye; YE indicates yolk extension. (Adapted from Kanungo
et al. [108]).

Mindbomb mutant zebrafish exhibit spontaneous seizures accompanied by altered
gene expression in the GABA signaling pathways [127]. Loss of function due to point
mutations in human ubiquitin E3A ligase has been reported in patients with autism [128].
Additionally, small deletions or mutations in the human ubiquitin E3A ligase gene have
been linked to autism [129]. Mib1 has been shown to regulate neurite morphogenesis by
interacting with Cdk5 and its regulator p35 [130]; however, it is not clear why mindbomb
mutant zebrafish have reduced Cdk5 activity [118]. A potential pathway of the reduction
in Cdk5 activity in the mindbomb mutant zebrafish has been proposed, which suggests that
overexpression of Cdk5 beyond a threshold limit can reduce its own activity [118]. This
study indicated that reduction of Cdk5 activity but not Cdk5 mRNA level itself is critical
for the overproduction of primary neurons, and Notch inhibition (mindbomb/Mib1 mutant)
is upstream of the downregulation of Cdk5 activity [118].

Mib1 ubiquitinates and induces the degradation of survival of motor neuron proteins
(SMNs), and Mib1 knockdown increases SMN protein levels in HEK-293T cells, suggesting
a beneficial effect on the survival of motor neurons [131]. Similar to Mib1 mutation, arsenic
has been shown to block Notch signaling in a human small-cell lung cancer cell line [132,133].
Whether arsenic inhibits Notch signaling in zebrafish, which could be responsible for the
neurogenic phenotype we have reported [76], warrants further studies that would reveal
divergent or convergent pathways linking the phenotypes to the upstream events.

6. Conclusions

An overproduction and reduction of specific neurons have been reported in autism, which
can potentially explain the excitation/inhibition imbalance displayed in individuals with this
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serious and complex disorder [59]. In the phenotypes discussed above, data are lacking on
whether the overproduction of tyrosine hydroxylase positive neurons in the brain by arsenic
or motor neurons in the spinal cord by Cdk5 knockdown and arsenic in zebrafish occurred
while there was reduction in other types of neurons (e.g., interneurons). Arsenic and Cdk5
knockdown, inducing supernumerary motor neurons and producing a similar outcome in
motor neuron development, indicates that such phenotypes can occur through many differ-
ent mechanisms and may cause an imbalance in specific neuron functions, e.g., excitatory
to inhibitory imbalance—a hallmark of autism (Figure 4). Arsenic also increased tyrosine
hydroxylase positive neurons in the brains of zebrafish embryos [76]. These phenotypes may
be utilized as preclinical models for in-depth studies to demonstrate whether the alteration in
the neuronal development patterns predisposes the organism to exhibit autism-like symptoms
(Figure 4). Zebrafish have been utilized to model phenotypes related to autism either through
genetic manipulation or chemical exposure (e.g., valproic acid) (reviewed in [2]). Although
these phenotypes of zebrafish cannot completely simulate the pathological processes of autism
reported in human beings, they will help to understand the triggers and molecular precursors
of the development of autism. Therefore, alterations in early development of specific neurons
in autism risk-gene mutants or those that are induced by chemicals need to be investigated.
Furthermore, exposing specific autism risk-gene mutants of zebrafish to arsenic and examining
the effects on specific neuron types would reveal deeper understanding of the multifactorial
nature of the disease. While stem cell models have been able to reveal that disruptions in
specific molecular processes, such as calcium and Wnt signaling, and chromatin remodeling
can contribute to the pathogenesis of autism [46,134], being a vertebrate with conserved genetic
and physiologic pathways [135], zebrafish carry an advantage in phenocopying cellular and
behavioral aspects of autism that can reveal hitherto unknown mechanisms. The early detec-
tion of defective neuronal development would help delineate the mechanism of the role of
environmental factors in autism development, which would shed light on gene/environment
interactions and provide opportunities for therapeutic drug discovery. The current perspective
presents a scenario that warrants further investigation of the zebrafish phenotypes with an
overproduction of specific neurons in order to determine whether autism can be modeled to a
certain extent, if not completely, using these embryos.
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