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Abstract: Multiple sclerosis (MS) is a complex inflammatory disease affecting the central nervous
system. Most commonly, it begins with recurrent symptoms followed by partial or complete recovery,
known as relapsing–remitting MS (RRMS). Over time, many RRMS patients progress to secondary
progressive MS (SPMS), marked by gradual symptom deterioration. The factors triggering this
transition remain unknown, lacking predictive biomarkers. This study aims to identify blood
biomarkers specific to SPMS. We analyzed six datasets of SPMS and RRMS patients’ blood and brain
tissues, and compared the differential expressed genes (DEGs) obtained to highlight DEGs reflecting
alterations occurring in both brain and blood tissues and the potential biological processes involved.
We observed a total of 38 DEGs up-regulated in both blood and brain tissues, and their interaction
network was evaluated through network analysis. Among the aforementioned DEGs, 21 may be
directly involved with SPMS transition. Further, we highlighted three biological processes, including
the calcineurin–NFAT pathway, related to this transition. The investigated DEGs may serve as a
promising means to monitor the transition from RRMS to SPMS, which is still elusive. Given that they
can also be sourced from blood samples, this approach could offer a relatively rapid and convenient
method for monitoring MS and facilitating expedited assessments.

Keywords: secondary progressive multiple sclerosis; transcriptomic analysis; blood samples; brain
samples; biomarkers

1. Introduction

Multiple sclerosis (MS) is a complex inflammatory demyelinating disease that affects
the central nervous system (CNS) [1]. Its origin is believed to result from intricate interac-
tions between genetic and environmental factors, although the full details of these dynamics
remain elusive [2]. Beyond its inflammatory characteristics, MS is also widely recognized
as a neurodegenerative condition [3]. MS is a condition that exhibits a low incidence during
childhood but undergoes a notable increase after the age of 18. Its prevalence peaks between
the ages of 20 and 40 years, with the average onset occurring around 30 years, and women
typically experience symptoms 2–5 years earlier than men [4]. In Europe, MS occurs at a
rate of approximately 83 cases per 100,000 individuals, and the mean annual incidence rate
hovers around 4.3 cases per 100,000 [5]. Individuals diagnosed with MS face a reduced life
expectancy, with a shortening of their life span by 7–10 years. Although the standardized
mortality ratio has tripled, there has been discernible improvement in this ratio over the
last few decades [6]. Despite advancements in medical understanding, the primary trigger
for the immune response in MS remains unidentified. In the initial phases of the inflam-
matory cascade, a reaction is triggered against myelin antigens, encompassing the myelin
basic protein, proteolipid protein, myelin/oligodendrocyte glycoproteins, and gangliosides.
The lesions associated with MS are classified as acute, chronically active, and inactive.
While lesions may manifest throughout the CNS, they are most frequently observed in
the optic nerves, cerebral periventricular white matter, brainstem, and white-matter tracts
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of the spinal cord [7]. The course of MS exhibits considerable variability; however, in the
majority of cases, it entails the onset of recurrent clinical symptoms followed by either
complete or partial recovery, a characteristic feature of the classic relapsing–remitting form
of MS (RRMS). However, approximately 15% of individuals with MS experience relentless
disease progression from the onset, known as primary progressive MS (PPMS) [8]. After
10–15 years of the disease, nearly 50% of untreated RRMS patients enter a progressive
phase characterized by a slow and continuous deterioration of clinical symptoms over
many years. This stage is termed secondary progressive multiple sclerosis (SPMS) [9].
Nevertheless, studies have demonstrated that frequent relapses within the initial 2 years
are correlated with later disability, increasing the likelihood of developing SPMS and short-
ening the latency of its onset [10]. Identifying the precise point of the transition to SPMS
can be challenging and is often acknowledged only retrospectively, sometimes years after
subtle signs of progression first emerge [11]. The investigation into MS remains dynamic,
as many aspects of its intricate pathogenesis remain unknown, leading to a lack of curative
medications for affected individuals. Ongoing research aims to explore potential imaging
and laboratory biomarkers that can differentiate SPMS from RRMS, characterize the transi-
tion from RRMS to SPMS, and potentially predict this transition. While various therapies
designed to impact the immune response against the CNS are in use, they primarily serve
to slow down and/or mitigate the severity of the clinical course of MS. This sobering
reality underscores the significance of exploring other components in the pathology of
MS [12]. The use of transcriptomics data may provide helpful insights to better define
MS etiopathogenesis [13]. To better elucidate the specific cellular mechanisms underlying
SPMS compared to RRMS, and thus enable early identification of MS subtypes, we analyzed
brain and blood expression datasets for SPMS compared to a group of healthy controls
(HCs). Peripheral blood biomarkers furnish crucial insights into both the immune triggers
of MS and the therapeutic efficacy of administered drugs [14]. Notably, the accessibility
of blood surpasses that of other bodily tissues. Additionally, blood serves as a conduit
for molecules originating from diverse tissues, offering a comprehensive reflection of the
overall biological status of the body [15]. The aim of this study was to pinpoint DEGs
that could contribute to a deeper comprehension of the transition from RRMS to SPMS.
Additionally, we directed our investigation towards elucidating the significance of altered
genes within cells, aiming to clarify their role in altered cellular mechanisms.

2. Results

In the present study, we analyzed MS databases containing information on gene
expression data from blood and brain tissues of patients with SPMS and HCs. Our main
focus was to provide useful information that may enable the identification of potential
diagnostic, predictive, or treatment response biomarkers, as well as key biological pathways
involved in the SPMS transition.

2.1. Differential Expression Analysis (DEA) of SPMS Data

The data collected from each dataset on SPMS patients and HCs were used to perform
DEA, which constituted the first step of our analysis. This analysis aimed to provide a
preliminary pool of DEGs to be further analyzed in the study’s following steps. We utilized
the rank product method, through the BioTEA tool, to diminish biases related to the use
of different samples/arrays. In the DEA, we highlighted a set of DEGs for each dataset.
The results of the analysis are shown in Figure 1, where volcano plots summarize the
distribution of up-regulated, down-regulated, and non-significant altered genes for each
dataset. Specific details on the number, distribution, and names of the DEGs are reported
in Supplementary Table S1.
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Figure 1. In the dot plot, we report all of the genes explored in the DEA for each dataset. The line 
that intercepts the y-axis is related to our threshold of significance for the q-values (0.05); all of the 
genes above this line are considered to be differentially expressed. On the x-axis, we report the log2 
fold change that discriminates up- and down-regulated DEGs. DEGs resulted significantly up-reg-
ulated are highlighted in red, while DEG significantly down-regulated are highlighted in green. 
Genes not differentially expressed are reported in gray. Labels reports the top 10 significant DEGs 
that survived the filtering step (please refer to Section 2.3). 

As can be observed in Figure 1, the DEA returned heterogenous sets of DEGs. Inter-
estingly, most of the top-ranking DEGs in each dataset were not replicated in other da-
tasets, further stressing the heterogeneity and complexity of MS in general and the SPMS 
subtype in this specific case. As such, a filtering step was deemed necessary to select the 
DEGs shared among multiple datasets. 

2.2. DEG Filtering and Selection 
To identify the DEGs reflecting alterations occurring in both brain and blood tissues, 

we conducted a comparative analysis across the results obtained from the previous step. 
Specifically, we selected DEGs present in at least 50% of the brain datasets that were also 
identified as DEGs in the blood datasets with consistent expression patterns across at least 
75% of the datasets. This filtering process yielded a set of 469 brain DEGs that exhibited 
differential expression in both brain and blood tissues, thereby representing potential bi-
omarker candidates for the condition under study. The top 10 DEGs that survived the 

Figure 1. In the dot plot, we report all of the genes explored in the DEA for each dataset. The line that
intercepts the y-axis is related to our threshold of significance for the q-values (0.05); all of the genes
above this line are considered to be differentially expressed. On the x-axis, we report the log2 fold
change that discriminates up- and down-regulated DEGs. DEGs resulted significantly up-regulated
are highlighted in red, while DEG significantly down-regulated are highlighted in green. Genes not
differentially expressed are reported in gray. Labels reports the top 10 significant DEGs that survived
the filtering step (please refer to Section 2.3).

As can be observed in Figure 1, the DEA returned heterogenous sets of DEGs. Interest-
ingly, most of the top-ranking DEGs in each dataset were not replicated in other datasets,
further stressing the heterogeneity and complexity of MS in general and the SPMS subtype
in this specific case. As such, a filtering step was deemed necessary to select the DEGs
shared among multiple datasets.

2.2. DEG Filtering and Selection

To identify the DEGs reflecting alterations occurring in both brain and blood tissues,
we conducted a comparative analysis across the results obtained from the previous step.
Specifically, we selected DEGs present in at least 50% of the brain datasets that were also
identified as DEGs in the blood datasets with consistent expression patterns across at least
75% of the datasets. This filtering process yielded a set of 469 brain DEGs that exhibited
differential expression in both brain and blood tissues, thereby representing potential
biomarker candidates for the condition under study. The top 10 DEGs that survived the
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filtering step for each dataset are reported in Figure 1. From the filtered pool of DEGs, we
further refined our selection by focusing on those that were up-regulated in both brain
and blood tissues, resulting in a subset of 100 DEGs (referred to as RuLu). By focusing
on up-regulated DEGs, we aimed to streamline the identification process and prioritize
candidates with the potential to be used as robust biomarkers. This approach not only
increased the likelihood of identifying clinically relevant markers, but also facilitated the
translation of our research findings into practical diagnostic or therapeutic applications.
Therefore, the selection of up-regulated DEGs aligned with the overarching objective of
identifying actionable biomarkers with translational significance. Supplementary Figure S1
shows the number of DEGs that survived the filtering step, and Supplementary Table S2
provides the details concerning these genes.

2.3. Network Analysis

The 100 identified Rulu DEGs were used as the input for a network analysis, utilizing
the STRING plugin v2.0.2 within Cytoscape software v3.10.1. This analysis was performed
with the aim of exploring and assessing potential interactions among the DEGs’ encoded
proteins, to ultimately elucidate the interconnectedness of these proteins and evaluate their
collective role in biological processes. The resulting network revealed a distinct subcluster,
denoted as CLUp, comprising 38 DEGs. These 38 interconnected elements highlight the
presence of potentially coordinated biological processes or pathways that may be perturbed
in the context of the condition under investigation. Figure 2 illustrates the findings of the
network analysis, providing valuable insights into the interconnectedness of the identified
DEGs and their potential implications for understanding disease mechanisms.
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2.4. Ontology Enrichment

To elucidate the predominant gene ontologies (GOs) characterizing our identified
DEGs, we conducted a comprehensive over-representation analysis (ORA) encompassing
all selected DEGs as well as the cluster derived from the network analysis. This analysis
used information on biological process (BP), cellular component (CC), and molecular
function (MF) ontologies to highlight significant over-represented ontologies, providing a
broader perspective on potential dysregulations across these various ontological categories.
The ORA conducted using all 100 DEGs from the RuLu group revealed enrichment in 29 BP,
9 CC, and 2 MF ontologies. Similarly, the ORA performed on the CLUp DEGs exhibited
enrichment in 95 BP, 37 CC, and no MF ontologies. It is noteworthy that in both cases, the
enriched ontologies were determined based on the significance of the q-values, highlighting
those with the most statistically significant associations. The top 10 enriched ontologies
for RuLu and CLUp are presented in Figure 3. These selections were made based on
the lowest q-values, signifying the highest degree of statistical significance. Furthermore,
Supplementary Table S3 provides a comprehensive list of all enriched GO terms along with
their associated DEGs.
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Figure 3. This plot shows the enriched ontologies resulting from the ORA for the RuLu and CLUp
DEGs, respectively. The size of the bubble represents the ratio of DEGs divided by the total number
of genes composing each ontology term (in %). The hue represents the significance scores (−log10

FDR). The x-axis indicates the ontologies used: biological processes (BPs), cellular components (CCs),
and molecular functions (MFs).

To comprehensively observe how the enriched ontologies interact with each other,
we also built an interaction network of the ontologies, aiming to provide insights into the
interplay and potential crosstalk among various biological pathways and cellular compo-
nents implicated in the condition under investigation. The functional analysis indicated
immune processes as the predominant pathways associated with SPMS, consistent with the
existing literature and supported by the original authors of the investigated datasets [16–21].
These DEGs primarily localized on cell surfaces, emphasizing the involvement of immune
receptors in MS pathology. In Figure 4, we report the BP and CC interaction network.
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outlined in green. The hue represents the significance of the nodes, with red being more significant.
Ontologies with a high number of shared genes were automatically fused together.

2.5. Comparison with RRMS Patients’ Data

Up to this step, the analyses performed provided information on the DEGs likely
involved with the SPMS phenotype and the processes potentially altered in this condition
regardless of factors such as the sample origin, as they resulted from the intersection of
multiple datasets.

However, the CLUp DEGs may also be indicators of MS in general, since they may
also be dysregulated in other subtypes. To assess their potential use as biomarkers of
progression/transition from RRMS to SPMS, we needed to prune from our DEGs all of
the elements that show similar dysregulation in the RRMS subtype. To perform such
pruning, we performed a DEA on the patients with RRMS vs. HCs of the blood dataset.
The selection of the blood dataset was based on the fact that eventual biomarkers should
be present in blood (for easiness of use); any other element which also results in DEGs in
RRMS patients would not be useful as a progression biomarker. The execution of the DEA
and the subsequent filtering followed the same scheme used for the SPMS data analysis
(please refer to Section 2.1 and 2.2). As expected, the results obtained from the RRMS DEA
evidenced a partial overlap of DEGs. In detail, for RuLu, we found 37 DEGs with the same
expression behavior; 4 DEGs that appeared in both SPMS and RRMS but with opposite
expression behavior; and 67 genes specific for SPMS. Finally, for CLUp, we found 17 genes
with the same expression behavior, which we deemed not eligible as biomarkers specific
for SPMS; 1 DEG that appeared in both SPMS and RRMS but with opposite expression
behavior; and 20 genes specific for SPMS. These latter 21 genes represent the DEGs that
more likely have the potential to be biomarkers of the RRMS transition to SPMS. The results
are summarized in Figure 5 for the CLUp DEGs and in Supplementary Figure S2 for the
RuLu DEGs. Further details on the RRMS DEA are reported in Supplementary Table S4.
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Figure 5. In this chord plot, we report the CLUp DEGs (left-hand side) and the phenotypic groups
in which they were differentially expressed (right-hand side). On the left, the outer ring reports the
expression status in SPMS patients, while the inner one reports the expression status in RRMS patients.
Red genes are up-regulated and green are down-regulated, while gray represents no differential
expression. DEGs belonging to the CLUp group are linked to the red sector on the right-hand
side; DEGs belonging to the RuLu group are linked to the green sector; and genes found to also be
differentially expressed in RRMS patients are linked to the blue sector. The 21 selected genes were
up-regulated in SPMS (outer ring in red) and down-regulated or not DEGs in RRMS (inner ring in
gray or green).

As an additional step, we performed an ORA on the DEG subgroups specific to
SPMS and common in RRMS and SPMS to identify BPs specific to SPMS. This analysis
was performed with the aim of identifying potential processes whose alteration may
constitute a potential mechanic behind MS’s transition from RRMS to SPMS. To increase
the specificity of this comparison, we performed a three-layered assessment. In the first
layer, we compared CLUp DEGs that were specific for SPMS vs. DEGs shared with RRMS
patients. In the second-layer, we extended the analysis to all DEGs from the RuLu group.
In the third layer, we compared all of the SPMS DEGs that exhibited opposite/different
behavior in RRMS patients (i.e., up-regulated in SPMS and down-regulated/not DEGs in
RRMS) vs. DEGs with the same behavior in both SPMS and RRMS patients. From these
comparisons, we selected the BPs that were specifically enriched in SPMS patients but not
in RRMS patients. The final results of these analyses are summarized in Table 1, and are
detailed in Supplementary Table S5, respectively.
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Table 1. SPMS-specific biological processes based on the three-layered comparison.

Term Overlap p-Value q-Value Genes

Negative regulation of calcineurin–NFAT
signaling cascade (GO:0070885) 3/11 5.32 × 10−5 3.51 × 10−2 HOMER2; FHL2;

HOMER3
Negative regulation of calcineurin-mediated

signaling (GO:0106057) 3/11 5.32 × 10−5 3.51 × 10−2 HOMER2; FHL2;
HOMER3

Regulation of defense response to virus
by host (GO:0050691) 4/37 1.27 × 10−4 4.19 × 10−2 DHX9; CGAS;

TARBP2; MICB

In table, we report the biological processes (BPs) significantly enriched from the genes with different expression
patterns observed in SPMS and RRMS. From the list of BPs, we filtered out the processes that were significantly
enriched from the genes with the same expression patterns observed in SPMS and RRMS.

3. Discussion

MS exhibits a multifactorial nature, complicating the identification of its genetic
background and prediction of its progression across subtypes.

For our study, we used a subset of subjects from six different databases containing
information on gene expression from both brain (GSE126802 [16] and GSE131282 [17])
and blood (GSE17048 [18], E-MTAB-11415 [19], E-MTAB-4890 [20], and E-MTAB-5151 [21])
tissues. We opted to use both brain and blood tissues for our analysis. The rationale for
this choice was based on the fact that (1) MS is a pathology mainly acting on the CNS [1],
and (2) biomarkers should be easily accessible. Thus, we first selected all DEGs from the
brain tissues, which should be informative of MS-related expression alterations, and then
focused on the ones that also appeared as DEGs in the blood, which is an easily accessible
tissue. These choices allowed our analysis to have some advantages: the use of multiple
heterogenous samples would highlight alterations caused by the phenotype under investi-
gation, filtering out genes whose dysregulation was due to other – sample-related – factors;
the filtering of brain DEGs in the blood helped us to isolate DEGs that were likely involved
in MS physiopathology in CNS, and, at the same time, easy to detect given their presence
in blood; and the use of both brain and blood samples gave us an increased sample size.

Overall, the results we obtained, especially in first steps of our analyses, are supportive
of the important role of immune/inflammatory processes in MS, which constituted the main
findings of the original works related to the datasets used [16–21], as many of the top genes
found to be up-regulated (please refer to Figure 1 and the Supplementary Materials) were
related to such processes. The datasets’ original studies also greatly described the shared
molecular pathways at work in MS pathogenesis, regardless of the subtype, and were
informative of the regulatory architecture behind MS-associated altered gene expression.
Different from the datasets’ original works, this study aimed to highlight gene expression
alterations that could serve as potential biomarkers for the progression of MS towards the
SPMS subtype. Additionally, we sought to infer specific biological processes contributing to
this transition: we compared CLUp DEGs with those obtained from RRMS patients versus
HCs in blood analyses. Filtering out the common elements, we obtained a set of 21 (up-
regulated) DEGs specific for SPMS. This list included CBX3, CGAS, CLU, COL18A1, CST7,
CTLA4, CTSL, CXCL8, CXCR2, GBP5, H2BC11, HDC, ITGB5, LPAR5, MICB, PTPRC, S100A6,
SELP, SLAMF8, TRIM10, WWOX. The potential role of these genes in MS is discussed
as follows.

The CBX3-encoded protein has been implicated in T-cell self-tolerance modulation and
homeostasis mechanics [22], processes involved in MS. Up-regulation of CBX3 may lead to
consistent inhibition of regulatory CD4+ T-cells, diminishing their function as suppressors
of autoimmune events. Additionally, CBX3 acts as a positive regulator of the high-affinity
antibody response [23,24]. While high-affinity antibody production is crucial for pathogen
clearance, it promotes the production of auto-antibodies in MS and other autoimmune
diseases, exacerbating immune system effects on patients.

The CGAS-encoded protein is involved with immune processes, as well as autoin-
flammatory and neurodegenerative disorders [25,26]. CGAS produces cyclic GMP-AMP,
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a second messenger involved in interferon (IFN) production [27]. While IFN has anti-
inflammatory properties [27], it has been observed that subjects with autoimmune dis-
eases have an increased/chronic production of IFN and are more prone to produce auto-
antibodies [28]. Based on these data, the up-regulation of CGAS may be an indicator of
chronic inflammation and increased auto-antibody production in MS.

The CLU gene encodes for a chaperone promoted as a potential biomarker of MS by
independent studies [29]. In certain stress-associated conditions, including active inflam-
matory states [30], CLU can accumulate in the cytoplasm, where it inhibits apoptosis [31],
or in the nucleus, where it promotes apoptosis [32,33]. It can be hypothesized that extended
exposure to stressing conditions may lead to intracellular accumulation of CLU in MS,
which could trigger pro-apoptotic processes, consequently aggravating the disease.

The COL18A1 gene encodes for the precursor of endostatin [34], and is up-regulated
in several immune-related diseases [35,36]. Although angiogenesis appears to have a
deleterious role in MS, this is true only in the early phases of lesion formation [37,38].
In the later phases, this process acquires a beneficial role and contributes to remission
after relapses [34]. Further on in MS’s progression, lesions are characterized by a marked
hypoperfusion, causing hypoxia and triggering disease progression [34]. According to this
data, COL18A1 may be an indicator of the transition to the advanced phases of MS and, as
suggested by our results, it may be a good indicator of the RRMS-to-SPMS transition.

The CST7 gene is mainly expressed in immune system cells [39], and seems to be
linked to demyelination processes. Data from the literature report that CST7 expression
appears to be up-regulated in activated microglia during demyelination, and totally absent
in normal brains [40]. This observation highlights the potential of this gene for use as a
marker of active demyelination. Notably, CST7 showed a high affinity for cathepsin L, a
protein encoded by CTSL, another overexpressed gene in our results [41], suggesting a
complex balancing mechanism acting between the two elements.

The CTLA4 gene is involved in T-cell homeostasis and self-tolerance [42]. Despite
autoimmunity being linked to its loss [43], our results indicate an up-regulation of CTLA4.
This overexpression may represent an effort to modulate the immune response, as increased
CTLA4 expression is physiological in activated T-cells [44]. In MS, T-cells’ increased toler-
ance to this regulatory mechanism [45] may hinder CTLA4’s ability to deactivate/regulate
T-cells effectively. The literature suggests that the activation of T-cells in MS is independent
of co-stimulatory signals [46], and CTLA4 signaling is impaired in MS patients [42]. Notably,
CTLA4 is down-regulated in RRMS patients [47]. Thus, CTLA4 overexpression, combined
with persistent inflammation, could serve as a potential marker for T-cell regulation loss,
particularly prominent in SPMS compared to RRMS.

The CTSL gene encodes for an enzyme involved in the cleavage of complement C3
into its active fragments C3a and C3b [48]. C3a promotes T-cell survival and regulates
T-cell responses and cytokine production [49,50]. Up-regulation of CTSL suggests increased
production of C3a fragments. Interestingly, T-cells from patients with autoimmune diseases
exhibit CTSL-dependent complement hyper-activation and IFNγ production [48]. This
phenomenon may be prominent in the SPMS subtype, due to the chronic inflammatory state.
Notably, as previously discussed, this up-regulation may be countered by CST7. However,
they usually do not colocalize [51], potentially limiting the inhibition’s effectiveness.

The CXCL8 gene encodes for a pro-inflammatory chemokine [52,53] mainly involved in
recruiting immune cells from the blood and in their adhesion to endothelium [54]. Studies in
the literature report an up-regulation of the CXCL8 receptor in immune cells at the chronic
lesions [55], suggesting its potential for use as a biomarker, and, according to our results, it
may be specific for SPMS. Notably, CXCL8 expression is regulated by the calcineurin–NFAT
signaling pathway, which was found to be enriched in SPMS subjects [56].

The CXCR2 gene encodes for the CXCL8 receptor. CXCR2 is an important activator of
the immune response and has a key role in immune cells recruitment [57]. This receptor
acts in concert with its ligand in MS to promote the heightened inflammatory status [55].
As described before, CXCR2 appears to be up-regulated in many immune cells, including
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macrophages, astrocytes, microglia, and oligodendrocytes, in MS lesions [55]. Also, CXCR2
mRNA levels were found to be higher in brain autopsies from MS subjects [58]. For
these reasons, this element may also be a potential marker of MS, especially in the later
progressive phases, where a continuous up-regulation is expected.

The GBP5 gene is involved in cellular inflammatory responses and cytokine re-
lease [59,60]. While not directly linked to MS, the literature suggests that GBP5 has a
role in selective NLRP3 inflammasome activation [61], a process potentially linked with
MS. NLRP3 activation significantly increases neutrophil extracellular trap (NET) formation
in the brain [62] with a concomitant increase in the expression of pro-inflammatory recep-
tors such as CXCR2. NET has been implicated in the pathology of MS [63] and disease
severity [62]. Thus, GBP5 may be implicated in MS through the activation of NLRP3,
consequently acting together with pro-inflammatory elements like CXCL8 and CXCR2, to
promote immune cell recruitment and NET formation. Elevated GBP5 expression may be
indicative of this progression, suggesting its potential as a biomarker.

The H2BC11 gene encodes for a core component of the nucleosome, with no proven
association with MS. Data from the literature report that its expression is enriched in
immune cells, especially neutrophils [64], and its potential role as an indicator of immune
infiltration in cancer [65]. According to these data, in MS patients, it may function as
an indicator of immune cell accumulation, and could be linked with NET formation.
However, to our knowledge, no data are available in the literature regarding more specific
MS-related functions.

The HDC gene encodes a key protein for histamine production, influencing chronic
inflammation, neurotransmission, and immune responses [66,67]. Elevated HDC expression
may be indicative of active immune cell recruitment, a phenomenon more consistently
observable in SPMS compared to RRMS [68]. Histamine’s regulatory role in MS models
further supports this observation [69]. However, HDC overexpression’s significance should
be carefully evaluated due to histamine’s complex effects on immune cells through various
receptors [67,69]. Our results suggest that HDC overexpression is a potential marker for
MS progression, but further studies are needed to precisely assess this finding given the
diverse effects of histamine in MS.

The ITGB5 gene encodes a beta subunit of integrin, which can combine with several
alpha chains to form multiple types of integrin heterodimers. While no specific studies
have investigated ITGB5’s role in MS, data from the literature indicate a positive correlation
of ITGB5 with immune infiltration in cancer [70]. We could hypothesize that immune
infiltration may also occur in MS lesions; thus, ITGB5 could prove to be a useful indicator
of the active progression of MS.

The LPAR5 gene encodes for a protein implicated in the mechanism of immune tol-
erance [71]. LPAR5 is an important regulator of T-cell activation [72]. Increased LPAR5
expression may serve as a feedback mechanism in activated T-cells, enhancing responsive-
ness to inhibitory signals. We can hypothesize that this up-regulation could be related
to negative feedback due to decreased ligand (LPA) production. Interestingly, data from
the literature evidence that LPA production is impaired/diminished in MS’s active phase
and increased in symptom-free intervals [73], supporting this hypothesis. A chronic low
concentration of LPAR5 may be one of the triggers for the shift of MS to its progressive
form, the SPMS subtype, which does not have remitting intervals; thus, it may be a useful
marker of the SPMS transition.

The MICB gene encodes for a protein that, through its association with the NKG2D
receptor, can stimulate immune cells, potentially leading to autoreactive T-cell stimula-
tion [74]. Several studies have investigated its possible correlation with MS and highlighted
its significant association with the disease [75,76]. Interestingly, it has been observed that
this protein reaches higher concentrations in MS, with the highest levels being observed
during active relapses [77]. It can be hypothesized that in SPMS, where there are no relapse
time frames, MICB expression is continuously stimulated, leading to the up-regulation we
detected in our data.
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The PTPRC gene encodes for a protein abundantly expressed in leukocytes, which
is involved in the antigen–T-cell receptor/CD3/CD45 signal transduction [78]. Several
investigations have been performed to evaluate its potential association with autoimmune
diseases. According to these investigations, PTPRC alterations may increase the overall
reactivity of the immune system and thus can predispose an individual to many different
types of autoimmune diseases, including MS [79,80]. The prolonged immune activation
promoted by PTPRC may be linked with the progressive phase of MS, thus nominating
this gene as a potential biomarker.

The S100A6 gene is expressed in a wide range of cell types, and appears to mainly con-
tribute to cellular Ca2+ signaling and play a role in stress responses in brain [81]. Although
its biological activity has not been completely elucidated, S100A6 was found to be over-
expressed in MS patients and has already been suggested as a potential biomarker of this
disease [82,83]. Some studies suggest that S100A6’s increased expression may affect NFAT
transcriptional activity, which has an established role in regulating the immune system [82].
Our results overall showed an up-regulation of this gene, and support the observations in
the literature regarding its use as a biomarker. Additionally, our data suggest that its use
may be more specific for the SPMS subtype compared to the RRMS subtype.

The SELP gene encodes for a protein that has a major role in myeloid cells’ adhesion to
the endothelium and their infiltration into lesions [84]. Interestingly, data from the literature
have associated mutations within this gene with MS [85]. Regarding our results, we found
an up-regulation of SELP in SPMS patients. Additionally, SELP expression is up-regulated
by histamine [86], linking its up-regulation to HDC, a previously discussed gene. This
up-regulation may indicate an increased recruitment of autoreactive immune cells at lesion
sites, exacerbating the inflammatory process and promoting MS progression. Constantly
elevated SELP production could serve as an indicator of this process, suggesting it as a
potential marker for SPMS.

The SLAMF8 gene is expressed in a variety of activated myeloid cells, and regulates
a variety of immune responses [87]. While no studies directly link SLAMF8 to MS, its
up-regulation has been reported in autoimmune inflammation states [88], suggesting
a potential role of SLAMF8 in immune-related diseases [89]. Up-regulated SLAMF8 is
associated with increased disease activity and inflammation in autoimmune diseases [90],
and its involvement in the activation of macrophages during inflammation has been
observed in cancer studies [89,91]. Our findings highlight SLAMF8’s overexpression
in SPMS, potentially facilitating antigen presentation and local immune responses [89],
thereby aggravating the autoimmune process and MS progression.

The TRIM10 gene encodes for a protein involved in the IFN/JAK/STAT signaling
pathway, regulating the immune response [92,93]. Increasing evidence highlights its
association with autoimmune diseases [94], including MS [95]. While the exact molecular
mechanisms triggered by TRIM10 remain elusive [96], it likely regulates the IFN response.
Our results support a potential implication of this gene in MS, with its up-regulation being
linked with the SPMS subtype.

The WWOX gene encodes for a tumor suppressor, mainly correlating its function to
cancer [97], but it is also associated with the CNS’s development and function [98], as well as
with immune cell proliferation and maturation [99,100]. While the exact molecular cascades
regulated by WWOX are still being investigated [100,101], the WWOX gene exhibits higher
transcriptional levels in inflammatory conditions [100]. The literature suggests a potential
association of WWOX with MS [98,102], consistent with our results. However, some studies
report its down-regulation, rather than up-regulation, in chronic active MS lesions [103],
warranting further investigation into WWOX’s specific involvement.

In summary, genes involved in the dysregulation of immune tolerance and activa-
tion of immune cells, coupled with the increased exposure of myelin to immune cells
due to chemokine-guided recruitment, may be indicative of the transition from RRMS to
SPMS. Our study also aimed to infer key processes involved in this transition. Enriched
BPs specific to SPMS are reported in Table 1 and further details are given in the Supple-
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mentary Materials. Our three-layered comparison evidenced three processes: the negative
regulation of the calcineurin–NFAT signaling cascade (GO:0070885), the negative regulation
of calcineurin-mediated signaling (GO:0106057), and the regulation of the defense response
to viruses by a host (GO:0050691). These ontologies, overall, implicate the potential role of
Ca2+ signaling cascades in immunity. Indeed, Ca2+ is an essential signaling molecule that
controls a wide range of biological functions. The immune system is not an exception: here,
Ca2+ plays a central role in several functions in immune cells and inflammation [100,104].
In particular, through the calcineurin–NFAT pathway, it regulates the transcription of genes
essential for innate and adaptive immunity [105]. The literature has evidenced how this
pathway is dysregulated in autoimmune diseases [104]. Interestingly, Ca2+–calcineurin
signaling may also facilitate immune cell recruitment in the brain lesions, since it may
disrupt the blood–brain barrier [106]. This evidence is in line with our data. Moreover, our
results suggest that dysregulation of this signaling pathway may be specifically involved
with the progressive subtype of MS. However, to further elucidate the molecular mecha-
nisms, further studies would be needed. Regarding the regulation of the defense response
to viruses, it is known that abnormal functioning of the related processes may predispose
an individual to autoimmunity [107]. The correlation with SPMS may be due to a more
constant presence of inflammation in this condition, which elevates cytokine concentrations
and results in the dysregulation of the defense response.

Some limitations are worth being mentioned. Our data were based on publicly avail-
able datasets that have little to no available clinical information data. As such, we cannot
exclude the effect of possible confounders (including, but not limited to, comorbidities,
previous therapies, or other concomitant treatments) in our analyses.

4. Materials and Methods
4.1. Flowchart of the Analysis

The present study is a multistep analysis with the aim of highlighting potential
biomarkers informative of the SPMS transition. Below, in Figure 6, we report the flow chart
of our analysis.

4.2. Dataset Selection

A systematic research process was undertaken across publicly accessible databases
Gene Expression Omnibus (GEO) [108] and ArrayExpress [109]. The chosen datasets
encompassed individuals diagnosed with MS alongside HC subjects, with detailed cate-
gorization based on MS subtype. A key criterion for dataset inclusion was the presence
of samples specifically representing SPMS. These samples originated from blood or brain
tissues. Furthermore, each selected dataset was required to exhibit a sufficiently robust
sample size to bolster the statistical robustness of our analyses. The finalized datasets
enlisted for the analyses performed on the brain were GSE126802 [16] and GSE131282 [17].
The datasets selected for the blood analyses were GSE17048 [18], E-MTAB-11415 [19], E-
MTAB-4890 [20], and E-MTAB-5151 [21]. The above-reported datasets included a total of
116 SPMS samples (41 from brains and 75 from blood) and 175 HCs (23 from brains and 152
from blood). Additionally, we isolated all RRMS patients used for the analysis from the four
blood datasets. The number of RRMS patients present in the aforementioned datasets was
162. All of the databases were accessed on 1 December 2023 to identify appropriate datasets.

4.3. Dataset Description

Details on the datasets are publicly available on the GEO database and ArrayExpress
database, as well as in the original submitters’ publications. Table 2 reports the descriptives
of the datasets analyzed and the original submitters’ publications.
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Table 2. Descriptives of the samples under investigation.

Dataset Tissue
Secondary Progressive

(SPMS)
Relapsing–Remitting

(RRMS)
Healthy Controls

(HCs) References
n % Females Mean Age n % Females Mean Age n % Females Mean Age

GSE126802 Brain 18 100.0% 61.3 ± 13.4 - - - 9 100.0% 61.7 ± 10.1 [16]
GSE131282 Brain 23 73.9% 75.1 ± 14.8 - - - 14 28.6% 58.5 ± 14.5 [17]
GSE17048 Blood 20 75.0% 57.5 ± 9.8 36 80.6% 48.5 ± 9.0 45 64.4% 48.5 ± 13.5 [18,110]

E-MTAB-4890 Blood 21 52.4% 54.3 ± 11.1 52 61.5% 37.4 ± 10.2 40 50.0% 33.3 ± 10.4 [20]
E-MTAB-5151 Blood 13 69.2% 41.8 ± 9.3 21 57.1% 41.2 ± 8.1 27 48.2% 42.4 ± 9.1 [21]
E-MTAB-11415 Blood 21 47.6% 54.4 ± 11.1 53 60.4% 37.4 ± 10.1 40 50.0% 33.4 ± 10.5 [19]

In table, we report for each dataset the number of subjects (n), the percentage of females, and the mean age for
each group (SPMS, RRMS, and HCs) used in our investigation. The original submitters’ publications are also
indicated in the References column.

4.4. Annotation of Probes and Genes

Due to the differences in terms of the dates of data collection and the instruments/
technologies used between the databases, we performed two annotation steps to retrieve
gene identifiers from the probes. The first step was based on the probes’ names according
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to the chip array used for each dataset. This step was performed automatically through
a bioinformatics approach. In the second step, the results from the first step were manu-
ally checked to update the gene names. Any data displaying inconsistencies or deemed
unreliable were eliminated in this step.

4.5. Bioinformatics Analysis

The workflow implemented in BioTEA v1.1.0 [111] was executed to acquire, prepro-
cess, and conduct a DEA using microarray data from the selected datasets. Initially, the
pipeline encompassed data retrieval from raw CEL files and data preprocessing stages.
BioTEA performed the reading, parsing, background subtraction, quantile–quantile nor-
malization, and quality checks of the raw expression data, ensuring robust computational
reproducibility. DEA was conducted independently on each dataset to discover every DEG
for each comparison. Rank Product (RankProd v3.28.0 package in R v4.3.3 environment)
was applied for the DE analysis [112]. This selection was motivated by prior findings indi-
cating the biological relevance of RankProd results. Moreover, RankProd is better suited for
cross-dataset comparisons as it evaluates gene ranks rather than absolute expression values.
In our analysis, we accepted as DEGs all genes with an adjusted p-value (q-value) < 0.05.
The FDR method was applied to adjust the p-values to reduce the number of false positives.
The regulation status of each DEG was determined using the original log2 fold change
obtained from the analysis of each dataset.

The STRING database [113], integrated with Cytoscape software [114], was employed
to construct interaction networks among the DEGs in our study. STRING provides a
comprehensive resource for assessing protein–protein interactions, amalgamating both
experimental and predicted data. The default confidence score cut-off (kappa = 0.4) was
utilized for network construction, based on the STRING dataset version 12.0. In addition
to a network analysis, the list of DEGs was subjected to gene ontology (GO) enrichment
analysis to identify statistically significant alterations in the gene ontologies. The GSEAPY
package v1.1.1 in the Python environment was utilized for the enrichment analysis.

4.6. Differential Expression Analysis Specifics

In the performed DEA, we considered as up-regulated all DEGs that assumed a
statically confirmed increased expression in the SPMS group compared to the HC group for
each dataset, while the down-regulated DEGs were those less expressed in the SPMS group
compared to the HCs for each dataset. No filters based on fold changes were applied as we
wanted to maintain the most comprehensive perspective possible.

5. Conclusions

We highlighted 21 genes possibly involved with MS and in particular with the RRMS-
to-SPMS transition. According to their discussed functions, these genes may be directly
involved with SPMS progression or may appear overexpressed as an attempt to counter
the immune activation. These phenomena are likely more evident in the SPMS phase as the
relapsing–remitting patients are still able to have free-of-symptoms windows, suggesting
that the inhibitory mechanics still retain their ameliorating effect on immune activation.
This balance is instead skewed towards immune activation in SPMS patients. Such obser-
vations may suggest that the primary trigger of the RRMS-to-SPMS transition is related to
the disruption of the inhibitory cascades controlling immune cells’ activity and tolerance
against antigen mechanisms. In this sense, a potential process involved may be related to
Ca2+, more specifically, the calcineurin–NFAT pathway, which we found to be enriched
specifically in SPMS patients. Its role in this condition, however, will need further in-
vestigations to be elucidated. Regarding their potential use in the MS clinical field, the
selected genes may set up the groundwork for the definition of potential markers of the
RRMS-to-SPMS transition, and could be useful for further studies and in developing new
treatment designs to slow disease progression.
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