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Abstract: The epidermis hosts populations of epithelial stem cells endowed with well-documented
renewal and regenerative functions. This tissue thus constitutes a model for exploring the molecular
characteristics of stem cells, which remain to date partially characterized at the molecular level
in human skin. Our group has investigated the regulatory functions of the KLF4/TGFB1 and the
MAD4/MAX/MYC signaling pathways in the control of the immaturity-stemness versus differentia-
tion fate of keratinocyte stem and precursor cells from human interfollicular epidermis. We described
that down-modulation of either KLF4 or MXD4/MAD4 using RNA interference tools promoted an
augmented stemness cellular status; an effect which was associated with significant transcriptional
changes, as assessed by RNA-sequencing. Here, we have implemented a computational approach
aimed at integrating the level of the coding genome, comprising the transcripts encoding conventional
proteins, and the non-coding genome, with a focus on long non-coding RNAs (IncRNAs). In addition,
datasets of micro-RNAs (miRNAs) with validated functions were interrogated in view of identifying
miRNAs that could make the link between protein-coding and non-coding transcripts. Putative
regulons comprising both coding and long non-coding transcripts were built, which are expected
to contain original pro-stemness candidate effectors available for functional validation approaches.
In summary, interpretation of our basic functional data together with in silico biomodeling gave
rise to a prospective picture of the complex constellation of transcripts regulating the keratinocyte

stemness status.
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1. Introduction

The scientific challenge of deciphering the molecular components that contribute
to the regulation of the stemness status was particularly highlighted in the 2000s [1-5].
However, this concept remains to this day associated with unresolved fundamental ques-
tions. In particular, the identification of molecular species from the non-coding genome,
including the class of long non-coding RNAs (IncRNAs), brings a level of complexity
to the achievement of this objective [6]. Indeed, a flow of data leads to the observation
that integrating the contributions of the non-coding genome into the regulatory networks
governed by the protein-coding genome—i.e., encoding the proteome—is necessary to
address in a relevant way the processes of physiological regulation and pathophysiological
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disturbances [7]. The choice of addressing these questions in humans brings a parameter of
difficulty, compared to rodents, where transgenic models can be developed for functional
and mechanistic studies.

Epidermal stem cells, which are also named keratinocyte stem cells from human
interfollicular epidermis, constitute a relevant cellular model to decipher the stemness in
a human tissue. Indeed, their functional characteristics are well established, according to
two major clinical advances obtained in cutaneous biotherapies. The first one is the demon-
stration that the keratinocyte stem cells hosted within the human interfollicular epidermis
are endowed with a regenerative potential that enables skin substitute bioengineering and
patient grafting on large body surfaces affected by irreversible third-degree burns [8,9]. The
second one is the long-term correction of a genodermatosis (i.e., junctional epidermolysis
bullosa) via stable viral vector-driven insertion of a therapeutic transgene in the genome of
keratinocyte stem cells, in the context of a gene therapy clinical trial [10-12]. The cellular
material corresponding to the clonal progeny of keratinocyte stem cells can be cultured and
maintained ex vivo, and is functionally defined as “holoclones”. Keratinocyte holoclones
are endowed with the capacity for self-renewal, resulting in a growth potential exceed-
ing 100 population doublings [13,14]. Experimentally, their regenerative potential can be
assessed in vitro by their efficient capacity for three-dimensional epidermis reconstruc-
tion [14-16], and in vivo by the xenografting of skin reconstructs in immunocompromised
recipient animals [17-19]. In summary, the cellular model of holoclone keratinocytes has
the advantage of connecting basic researches aimed at acquiring knowledge on epidermal
stem cells and the clinical side of their uses.

Our group has used holoclone keratinocytes as a cellular model to investigate the func-
tion of two candidate transcription factors in the regulation of the immaturity /stemness
versus differentiation fate decision in epidermal stem and precursor cells. A functional
genomics approach based on stable lentiviral vector-mediated transduction of short-hairpin
interfering RNAs (shRNAs) was set up to compare the molecular characteristics and func-
tionalities of transcription factor “wild-type” and “knockdown” holoclone keratinocytes.
Using this principle, we first documented that the expression level of “Kruppel-like fac-
tor 4” (KLF4) constitutes a control mechanism of this balance. A low KLF4 level drives
cells towards self-renewal and expansion, whereas a higher KLF4 expression orientates
cells towards reduction of stemness-immaturity and entry into differentiation [19]. We
next documented an equivalent role for our second candidate “MAX Dimerization Pro-
tein 4” (MXD4/MADA4), as its low expression level also promoted immaturity-stemness
and self-renewal [16]. For both transcription factors, we characterized the transcriptome
profiles of “wild-type” and “knock-down” holoclone keratinocytes by RNA-sequencing
(RNA-seq). In first intention, transcriptome modulation was investigated at the level of the
proteome-coding genome, but the results of the two studies were not cross-analyzed.

Here, we implemented a computational approach aimed at increasing the scope of the
bioanalysis by integrating the data corresponding to the proteome-coding transcriptome
and those corresponding to the non-coding transcriptome with a focus on IncRNAs; in
view of identifying crosstalk between the signaling modulated by KLF4 and MXD4/MADA4.

2. Results
2.1. Cellular Model

As previously described in our original articles [16,19], the cellular model of human
holoclone keratinocytes was used to decipher the molecular network responsible for the
regulation of human epidermal stem and precursor cell fate. These cells correspond to the
clonal progeny of single keratinocyte stem cells. They have been functionally characterized
ex vivo by their growth potential, exceeding 100 population doublings in long-term culture,
and their capacity for three-dimensional (3D) epidermis reconstruction. Additionally,
holoclone keratinocytes have the potential for long-term in vivo grafting. The functional
genomics approach designed to explore the regulatory roles of KLF4 and MXD4/MAD4
was based on the generation of stable targeted knock-down (KD) cellular contexts. These
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contexts were then used for comparative studies of KD cells versus their wild-type (WT)
equivalent. Lentiviral vectors driving expression of shRNAs directed against the KLF4 or
MXD4 transcripts were used to transduce holoclone keratinocytes and obtain stable KD
cells. Comparisons were performed versus cells transduced with a control vector. The
KLF4XD and the MXD4KP strategies converged to promote an augmented ex vivo cellular
expansion associated with improved maintenance of stem and precursor cell clone-forming
efficiency, together with preservation of potential for epidermis generation [16,19] (Figure 1).
Accordingly, the transcriptome datasets modulated in response to KLF4 and/or MXD4
KD constituted a relevant material for analyzing the transcriptional networks controlling
immaturity-stemness and self-renewal in human keratinocyte stem and precursor cells.

(A) Human keratinocyte precursor cells
(ex vivo)
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Control Knock-down
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S STRNA
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Figure 1. Schematic summary of the cellular model. (A) Keratinocyte precursor cells corresponding
to the progeny of a holoclone (i.e., keratinocyte stem cell) were transduced with a control lentiviral
vector driving GFP expression (control = wild-type) or with a vector designed for targeted gene
knock-down (driving expression of GFP and of a specific ShARNA). Transduced cells were sorted
by flow cytometry based on GFP fluorescence. (B) Wild-type (WT) and knock-down (KD) contexts
were generated for two candidate transcription factors: KLF4 and MXD4/MADA4. The two knock-
down contexts were documented to promote an augmented stemness cellular status (see the source
publications [16,19]).

2.2. RNA-Seq Dataset Processing

The raw RNA-seq datasets corresponding to KLF4"T and KLF4KP keratinocytes
are available in the Gene Expression Omnibus (GEO) database under accession num-
ber GSE111786. Those corresponding to MXD4"T and MXD4XP cells are available via the
accession code GSE202700. Each dataset was based on three biological replicates for both
wild-type (WT) and knock-down (KD) cellular contexts. A total of 17 RNA-seq libraries
including biological and technical replicates were sequenced for the KLF4 study, and six
libraries were sequenced for the MXD4 study (Table S1). Batch effects were evaluated
and corrected in the KLF4 dataset to group the technical replicates corresponding to each
biological replicate. This resulted in a count matrix with unique values for each biolog-
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ical replicate. KLF4 library sizes varied between 30 and 100 million reads per sample
(Figure S1A), whereas MXD4 library sizes were more homogeneous, with an average
of 62.7 million reads per sample (Figure S1B). All samples from both KLF4 and MXD4
datasets underwent extensive quality controls, including filtering lowly expressed reads,
multidimensional reduction methods (MDS), and TMM (trimmed mean of M-values) nor-
malization to adjust reads to library size. After filtering reads detected at too low a level
(under 10 reads), we obtained 18,003 and 21,315 expressed transcripts for the KLF4 and
the MXD+4 datasets, respectively. Comparable percentages of protein-coding transcripts
(pcRNAs) and IncRNAs were found for both datasets; these were around 70-78% and
15-20%, respectively (Figure S1C,D).

2.3. Protein-Coding Transcripts (pcRNAs) Responsive to KLF4 Knock-Down

In the KLF4 study, RNA-seq detected a total of 40,077 transcript sequences with at least
one read. From these sequences, transcripts detected with at least 10 reads in three samples
were kept for the next steps of the analysis. This selection led to the identification of
18,003 expressed transcripts, comprising 94.9% of pcRNAs. Then, transcripts differentially
expressed (DE) in KLF4"T and KLF4KP keratinocytes were extracted according to false
discovery rate (FDR) < 0.05 and absolute fold-change (FC) > 1.5. A total of 2712 DE
transcripts were identified, which accounted for 15% of the total expressed transcripts.
Among these, 2311 were pcRNAs (85.3% of DE transcripts). As expected, the KLF4 transcript
was found to be down-modulated in all three samples of anti-KLF4 shRNA-transduced cells.
The DE transcriptional signature consisted of 995 up-modulated pcRNAs and 1316 down-
modulated pcRNAs when comparing KLF4KP versus KLF4"T keratinocytes. (Figure 2A and
Table 1). The volcano plot representation shown in Figure 2B highlighted the robustness of
the KD principle, since —log;oP rose up to 6 for several DE pcRNAs. Increasing the selection
threshold to FC > 2 (with same FDR < 0.05) still identified a large set of DE transcripts,
which comprised 490 up-modulated pcRNAs and 377 down-modulated pcRNAs. The top
most significant DE pcRNAs are listed in Table 2.
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Figure 2. Protein-coding RNA (pcRNA) and IncRNA transcripts identified as differentially expressed
(DE) between KLF4XP and KLF4WT cells by RNA-Seq. (A) Heatmap of mean expression levels
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[logy (CPM)]) of 2712 IncRNA and protein-coding transcripts found DE. Blue are down-modulated
and red are up-modulated transcripts. The KLF4 expression is depicted on the right side of the
heatmap. (B,C) Volcano plot representation of log, fold change and —logj( p values resulting from
differential expression analysis. Statistically significant (FDR < 0.05) up-modulated transcripts with
Fold change (FC) > 2 are red dots and 1.5 < FC < 2 are orange dots. Statistically significant (FDR < 0.05)
down-modulated transcripts with FC < —2 are blue dots and —1.5 > FC > —2 are light blue dots.
The top differentially expressed transcripts are labeled. (B) A volcano plot of pcRNA transcripts
analysis. (C) A volcano plot of IncRNAs analysis. Expression modulation is classified following
the expression level in the KD condition. Differential expression follows FDR < 0.05 and absolute
FC > 1.5 (EdgeR package).

Table 1. Numbers of differentially expressed transcripts in KLF4"T and KLF4KP keratinocytes.

Number of Transcripts *

. Modulation in KLF4*P
Biotype versus KLFAWT Cells  Absolute Fold-Change  Absolute Fold-Change
(FO) >2 2>(FC)>15
Up-modulation 490 505
peRNAs Down-modulation 939 377
Up-modulation 136 39
IncRNAs Down-modulation 193 33

* False discovery rate (FDR) < 0.05.

Table 2. Top 20 most significant DE pcRNAs in KLF4"T versus KLF4KP keratinocytes sorted according
to increasing FDR values.

Gene Symbol Log,FC Log, CPM FDR Absolute FC

SPINK6 —4.08 423 6.6 x 107° 16.87
SAA1 2.71 6.53 1.4 x 107° 6.53
CLIC5 —5.23 2.26 2.6 x 1075 37.57
LCP1 —2.94 4.20 6.3 x 107° 7.68
GDA —2.52 3.26 13 x 1074 5.74
NAV3 —1.41 5.25 21 x107% 2.67
OLFML2A 2.69 3.48 2.1 x 1074 6.47
RGS4 —234 437 21 x107°% 5.05
RARRES1 247 434 21 x 104 5.55
STC1 —1.74 6.42 23 x 1074 3.33
LAMP3 2.57 3.23 2.6 x 107% 5.94
RAPGEFL1 1.81 5.74 3.6 x 1074 3.51
KDELR2 -1.29 7.62 36 x 1074 244
HAS2 —1.68 6.14 3.6 x 1074 3.21
DSG1 —2.01 6.74 3.6 x 1074 4.03
TNFAIPSL3 —2.57 2.29 3.6 x 1074 5.95
CD274 —1.18 5.45 3.6 x 1074 227
ADAMTS1 —1.49 7.50 36 x 1074 2.82
GBP2 2.05 3.69 3.6 x 1074 413
SPRR4 —3.30 1.44 3.6 x107% 9.86

2.4. Long Non-Coding Transcripts (IncRNAs) Responsive to KLF4 Knock-Down

In the RNA-seq dataset of the KLF4 study, sequences assigned to IncRNAs detected by
at least one read represented 23.1% of total transcripts. This percentage dropped to 5.1%
when considering transcript detection corresponding to at least 10 reads in three samples.
Among the 18,003 total expressed transcripts detected using this threshold, 918 IncRNAs
were identified. We then extracted DE IncRNAs in KLF4"T and KLF4XP keratinocytes,
according to FDR < 0.05 and FC > 1.5. From the total of 2712 DE identified transcripts,
401 sequences corresponded to IncRNAs. This DE transcriptional signature comprised
175 up-modulated IncRNAs and 226 down-modulated IncRNAs [KLF4XP versus KLF4WT
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keratinocytes] (Figure 2C and Table 1). From these, a total of 329 DE IncRNAs (136 up-
modulated and 193 down-modulated) were still identified when the absolute FC threshold
was increased to 2 (with same FDR < 0.05). The most significant DE IncRNAs identified in
the KLF4 study are listed in Table 3.

Table 3. Top 20 most significant DE IncRNAs in KLF4"T versus KLF4KP keratinocytes sorted accord-
ing to increasing FDR values.

Gene Symbol Log,FC Log, CPM FDR Absolute FC
LNCOG —2.41 2.01 0.00057 5.31
LINC02188 2.53 1.49 0.00067 5.78
ENSG00000250038 —3.34 —0.22 0.00110 10.16
LINC00707 —1.01 5.69 0.001 2.02
ENSG00000286853 —4.00 —1.04 0.001 16.04
ENSG00000225886 3.54 —1.14 0.002 11.62
ENSG00000255050 —2.05 0.66 0.002 415
DIRC3 —4.03 —0.97 0.002 16.39
LINC02984 2.48 0.70 0.002 5.59
LINC02035 1.13 3.32 0.002 2.20
WAKMAR?2 -1.39 2.77 0.002 2.63
CD27-AS1 1.18 2.68 0.003 2.26
LINC01559 -1.27 221 0.003 241
HAGLR —2.59 —0.08 0.003 6.04
LINC00968 —3.59 —0.12 0.003 12.04
HOXB-AS3 —4.33 —0.69 0.003 20.10
ENSG00000287963 -3.25 -1.29 0.003 9.54
TBX5-AS1 —3.33 0.69 0.003 10.06
ENSG00000224888 -3.79 —1.81 0.003 13.85
APCDDI1L-DT —1.41 2.04 0.003 2.66

2.5. Protein-Coding Transcripts (pcRNAs) Responsive to MXD4 Knock-Down

A similar analysis to that described for the KLF4 transcriptome dataset was conducted
on the RNA-seq datasets from the MXD4 study. A total of 45,766 transcripts were detected
with at least one read. However, only transcripts with detection levels of 10 reads or
more, corresponding to 21,315 transcripts, were considered for the subsequent analysis.
From these, 90.4% were pcRNAs. Extraction of DE transcripts in MXD4"WT and MXD4KP
keratinocytes according to FDR < 0.05 and FC > 1.5 identified a set of 6664 transcripts
(31.2% of total expressed transcripts) (Figure 3A), among which 5200 were pcRNAs (78.0%
of DE transcripts). As expected, the MXD4 transcript was down-modulated in anti-MXD4
shRNA-transduced cells (Figure 3A). The DE transcriptional signature comprised 3151
up-modulated pcRNAs and 2049 down-modulated pcRNAs [MXD4KP versus MXD4WT
keratinocytes] (Table 4). As observed for the KLF4 datasets, the volcano plot representation
of MXD4 data (Figure 3B) highlighted the confidence of the KD principle, since —logoP
rose up to 6 for several modulated RNAs. Using FC > 2 and FDR < 0.05, we still found
a large number of DE transcripts, with 1218 pcRNAs up-modulated and 1554 pcRNAs
down-modulated in MXD4XP cells (Figure 3B). The top most significant DE pcRNAs are
listed in Table 5.
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Figure 3. Protein-coding RNA (pcRNA) and IncRNA transcripts identified as differentially expressed
(DE) between MXD4XP and MXD4WT cells by RNA-Seq. (A) Heatmap of mean expression levels
[logy (CPM)] of 6664 IncRNA and protein-coding transcripts found DE. Blue are down-modulated
and red are up-modulated transcripts. MXD4 expression is depicted on the right side of the heatmap
(B,C) Volcano plot representation of log, FC and —logyg p values resulting from differential expression
analysis. Statistically significant (FDR < 0.05) up-modulated transcripts with FC > 2 are red dots
and FC between 1.5 and 2 are orange dots. Statistically significant (FDR < 0.05) down-modulated
transcripts with FC < —2 are blue dots and FC between —1.5 and —2 are light blue dots. The top
differentially expressed transcripts are labeled. (B) A volcano plot of pcRNA transcripts analysis.
(C) A volcano plot of IncRNAs analysis. Expression modulation is classified following the expres-
sion level in the KD condition. Differential expression follows FDR < 0.05 and absolute FC > 1.5
(EdgeR package).

Table 4. Numbers of differentially expressed transcripts in MXD4WT and MXD4KD keratinocytes.

Number of Transcripts *

. Modulation in MXD4KP
Biotype versus MXD4"WT Cells  Absolute Fold-Change  Absolute Fold-Change
(FC) >2 2> (FC) > 1.5
Up-modulation 1218 1713
pcRNAs Down-modulation 1554 715
Up-modulation 151 69
IncRNAs Down-modulation 1122 122

* False discovery rate (FDR) < 0.05.
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Table 5. Top 20 most significant DE pcRNAs in MXD4"T versus MXD4KP keratinocytes.
Gene Symbol Log,FC Log, CPM FDR Absolute FC
ATP13A4 —6.49 3.02 3.65 x 107° 89.86
FKBP5 3.18 5.48 9.27 x 107° 9.04
H2BC14 3.68 4.92 2.29 x 107> 12.85
TRIP13 2.66 5.13 229 x 107° 6.32
H2BC7 291 5.02 2.29 x 107> 7.53
H2BC10 3.73 5.36 2.29 x 107° 13.31
VTCN1 —4.84 2.68 229 x 107° 28.73
H2BC15 2.71 4.56 2.29 x 107> 6.53
H2BC9 3.25 5.68 229 x 107° 9.54
AURKA 2.35 5.50 2.29 x 107> 5.12
H2BC6 2.82 412 2.29 x 107> 7.04
MELTF —291 5.63 229 x 107° 7.52
SKA1 2.84 3.50 2.29 x 107> 7.16
GLDC 524 457 229 x 107° 3791
CPVL 291 2.95 2.29 x 107> 7.49
CDC20 3.39 6.43 2.29 x 107> 10.45
SKA3 2.54 3.40 229 x 107° 5.82
FAMS3D 2.65 4.62 229 x 107> 6.29
MAPK4 —5.77 1.31 229 x 107° 54.60
MCM10 2.22 442 2.29 x 107> 4.65

2.6. Long Non-Coding Transcripts (IncRNAs) Responsive to MXD4 Knock-Down

Analysis of the non-coding MXD4 RNA-seq dataset assigned 28% of the sequences
detected by at least one read to IncRNAs. This percentage dropped to 9.6% when the
threshold of 10 reads was applied to consider only significant transcript detections, which
identified 2046 IncRNAs among the 21,315 total expressed transcripts. Then, extraction of
modulated transcripts according to FDR < 0.05 and FC > 1.5 identified 1464 DE IncRNAs,
which corresponded to 21.9% of the 6664 total DE transcripts. This DE transcriptional
signature comprised 220 up-modulated IncRNAs and 1244 down-modulated IncRNAs
[MXD4XD versus MXD4"T keratinocytes] (Figure 3C and Table 4). From these, a total
of 1273 DE IncRNAs (151 up-modulated and 1122 down-modulated) were still identified
when the absolute FC threshold was increased to 2 (with same FDR < 0.05). The top most
significant DE IncRNAs identified in the MXD4 study are listed in Table 6.

Table 6. Top 20 most significant DE IncRNAs in MXD4"T versus MXD4KP keratinocytes.

Gene Symbol Log,FC Log, CPM FDR Absolute FC
LINCO01127 2.19 3.70 0.00002 4.57
IGFL2-AS1 —2.80 3.41 0.00006 6.96
LINC02263 —5.30 —0.07 0.00008 39.33

ENSG00000260978 —2.34 1.08 0.00009 5.05
TMEM51-AS1 —1.64 2.83 0.00010 3.11
ENSG00000268460 —2.70 1.21 0.00010 6.49
MALAT1 —2.36 7.70 0.00010 5.12
DANCR 1.52 4.90 0.00011 2.87
LINC02159 —4.49 —0.22 0.00012 22.53
LINCO01503 1.77 4.02 0.00012 3.42
ENSG00000280206 1.65 2.93 0.00012 3.13
ENSG00000261324 —2.06 2.64 0.00013 417
LINC02958 —2.96 1.43 0.00014 7.77
ENSG00000285831 1.88 2.30 0.00014 3.69
LINC00707 1.18 4.86 0.00015 227
ENSG00000259354 —2.57 0.40 0.00015 5.94
LINC02593 —3.78 —0.21 0.00016 13.69
ENSG00000266088 2.32 2.34 0.00017 4.99
ENSG00000205890 -1.92 2.11 0.00020 3.77

ELF3-AS1 —2.50 2.34 0.00020 5.67
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2.7. Functional Enrichment Analysis of DE pcRNAs Identified in the KLF4 and M XD4 Datasets
by Over-Representation Analysis (ORA)

In order to identify transcriptional pathways modulated in association with the cellular
character of augmented immaturity-stemness status, a functional enrichment analysis of DE
pcRNAs was performed. The DE transcript sets for the KLF4 and MXD4 studies, consisting
of 2311 and 5200 pcRNAs, respectively, underwent Over-Representation Analysis (ORA)
using seven gene set databases: KEGG, GO Biological processes, MSigDB Hall-marks,
Reactome, ChEA ChipX Experiment Analysis, Bioplanet, and Tabula Muris. ORA is a
statistical method used to determine whether transcripts from a priori defined set are over-
represented in a particular transcript selection or signature. Numerous pathways were
highlighted for each dataset (Table S2). Interestingly, convergences were found between
the transcriptional pathways modulated in the KLF4 and the MXD4 studies (Figure 4).
In particular, the Bioplanet and GO Biological processes databases revealed modulation
of transcripts involved in growth factor signaling. These included the epidermal growth
factor (EGF), the brain-derived neurotrophic factor (BDNF), and the wingless-int1 (WNT)
pathways. Of note, functional enrichment analysis using the ChipX Experiment Analysis
database pointed on modulated transcripts that are under the control of transcription
factors with documented regulatory functions in epidermal keratinocytes, such as the tumor
protein p63 (TP63), the forkhead box protein M1 (FOXM1), and the estrogen receptors 1
and 2 (ESR1 and ESR2).
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Prolactin regulation of apoptosis| [ J {
OncostatinM| @ O g
EGFR1 pathway/ o o g
BDNF signaling pathway: @ o
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Figure 4. Functional enrichment analysis of differentially expressed transcripts in the KLF4 and
MXD4 datasets using Over-Representation Analysis (ORA). The dot plot displays the p-adjusted
values (p.adjust—dot color ramp) of 17 pathway terms found enriched in DE pcRNA transcripts
identified in the KLF4 and MXD4 datasets. Seven pathway gene sets were downloaded from the
Enrichr database and used for ORA with ClusterProfiler package on R. Kyoto Encyclopedia of Genes
and Genomes (KEGG), Reactome pathways, Gene Ontology Biological Processes (GOBP), Bioplanet,
MiSigDB Hallmarks of genes (HM), ChIP Enrichment Analysis 2013 (ChEA) databases were analyzed.
Pathway terms were considered enriched when p adjusted values < 0.05. Dot size represents the
number of enriched transcripts for each pathway (Count).
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2.8. Functional Enrichment of pcRNAs Identified in KLF4 and MXD4 Datasets by Unsupervised
Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analysis (GSEA) is a rank-based computational approach that de-
termines whether predefined groups of transcripts show statistically significant, concordant
differences between two biological conditions. We used GSEA as an alternative method to
ORA, in order to strengthen our analysis. GSEA was performed using MSigDB Hallmarks,
KEGG, Reactome, Immunologic Signature, and GO-based gene sets and the entire normal-
ized expression signals of pcRNAs identified in the KLF4 and in the MXD4 studies, which,
respectively, comprised 15,228 and 18,189 transcripts. Focusing on KEGG-based functional
exploration, the lists of transcripts from the two studies were compared to 160 KEGG
pathway-associated gene sets, in order to view the top 50 most significant pathways modu-
lated in response to KLF4 or MXD4 KD. Notably, 50% of them were common to the two
datasets, thus documenting convergence in the transcriptional networks modulated in the
two KD contexts. Shared pathways represented with positively co-modulated transcripts
(up-modulated in KLF4XP and MXD4KP) concerned cell-cycle (8 of the 50 most signifi-
cant KEGG gene sets), amino-acid metabolism (8 KEGG gene sets), fatty-acid metabolism
(4 KEGG gene sets), and sugar biosynthesis (3 KEGG gene sets). In contrast, shared path-
ways represented with negatively co-modulated transcripts (down-modulated in KLF4KP
and MXD4KP) concerned cell adhesion and cell—cell junctions (12 KEGG gene sets), and
signaling by cytokines and growth factors (12 KEGG gene sets). As examples, most of
the transcripts assigned to the KEGG pathways related to cell cycle (Figure 5A) and to
glycolysis—gluconeogenesis (Figure 5B), were detected as up-modulated both in the KLF4KP
and in the MXD4KXP contexts. In contrast, most of the transcripts assigned to the KEGG
pathways related to extracellular matrix and receptor interactions (Figure 5C), and to trans-
forming growth factor-beta (TGFB) signaling (Figure 5D), were found down-modulated in
the two cellular contexts.

2.9. Shared Differentially Expressed Transcripts Identified in Both Analyses

To identify all transcripts modulated in both cellular models, DE transcripts identified
independently in each analysis were compared (2712 sequences for the KLF4 and 6664
for the MXD4 study). A set of 1115 DE shared transcripts (FDR < 0.05 and FC > 2) was
identified (Figure 6A,C). Repartition of pcRNA sequences indicates that over the 6555 total
DE sequences, 4244 were specific to the MXD4 model, 1355 to the KLF4 model, and 956
were modulated in both models (Figure 6A). Regarding IncRNA sequences, from a total of
1706 DE sequences, 1305 were specific to the MXD4 model, 242 to the KLF4 model, and 159
were modulated in both models (Figure 6C).

Concerning shared DE pcRNAs (956 transcripts) (Figure 6B), 175 were found down-
modulated in the KLF4KP and up-modulated in the MXD4KP cellular models, 268 were
found up-modulated in the KLF4KD and down-modulated in the MXD4KP models; whereas
322 were identified in both cellular models as down-modulated (Figure 6B, dark blue dots)
and 191 as up-modulated (Figure 6B, red dots). The same analysis was performed for
shared DE IncRNAs (Figure 6D). Over the 159 common DE IncRNAs (Table S3), 21 were
found down-modulated in the KLF4XP and up-modulated in the MXD4KP cellular models,
43 were found up-modulated in the KLF4XP and down-modulated in the MXD4KP models;
whereas 75 were identified as down-modulated (Figure 6D, dark blue dots) and 20 were
identified as up-modulated (Figure 6D, red dots) in both cellular models.
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Figure 5. KEGG-based functional exploration by Gene Set Enrichment Analysis (GSEA). Enrichment
plots of four KEGG pathways found enriched in DE transcripts identified both in the KLF4 (left panel)
and the MXD4 model (right panel). (A) Cell cycle, (B) glycolysis—gluconeogenesis, (C) extracellular
matrix (ECM) receptor interaction, and (D) TGFB signaling pathway. In each graph, the red left part
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Figure 6. Shared DE transcripts identified both in the KLF4 and the MXD4 datasets. Individual
differential expression analyses of the KLF4 and MXD4 datasets were integrated. Upset plots display
the intersection of DE transcripts of (A) pcRNAs and (C) IncRNAs. Shared DE transcripts are
visualized as light blue bars. Scatter plots are the representation of log,FC results of KLF4 dataset
analysis (x-axis) and MXD#4 dataset analysis (y-axis) for pcRNA (B) and IncRNA (D) transcripts.
Transcripts found down- or up-modulated in both models are visualized as blue and red dots,
respectively. Transcripts with opposite modulation in KLF4XP and MXD4KP cells (down- versus
up- or up- versus down-modulated) are visualized as green dots. DE transcripts identified only in
the KLF4 model are visualized as tan dots and DE transcripts identified only in MXD4 model are
visualized as light blue dots.

2.10. Functional Enrichment Analysis of DE pcRNAs Common to the KLF4XP and MXD4XP
Models by Over-Representation Analysis (ORA)

For this analysis, IncRNAs were not included as there is currently no database available
for functional annotation on this category of transcripts. ORA was performed on 956 DE
pcRNAs common to KLF4 and MXD4 studies using the seven databases: KEGG, GO Biolog-
ical processes, MSigDB Hallmarks, Reactome, ChEA ChipX experiment analysis, Bioplanet,
and Tabula Muris. This analysis was highly convergent with that performed by GSEA as
several pathways were identified independently using the two methods (Figure 7). Path-
ways down-modulated in both KLF4XP and MXD4KP keratinocytes comprised transcript
groups related to extracellular matrix organization (Figure 7A,D), cell adhesion, growth
factor signaling and notably transforming growth factor-beta/bone morphogenic protein
(TGFB/BMP) signaling network (Figure 7B). On the contrary, cell cycle-related transcripts
were pointed out as up-modulated in both KLF4KP and MXD4KP cells. Specificities in the
regulatory networks affected by KLF4 or by MXD4 expression levels are highlighted by the
presence of pathways significantly modulated in one KD context, and not in the second; for
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example, the interferon signaling pathway that was only found up-modulated in KLF4KP
cells (Figure 7C). Notably, regulators with a documented pro-stemness function in the
keratinocyte lineage such as FOXM1 were found within the transcripts up-modulated in
both KLF4XP and MXD4XP contexts (Figure S2A), which is in accordance with our working
model proposing that promotion of immaturity-stemness is obtained by down-modulating
KLF4 and/or MXD4 expression. Finally, our transcriptomic signature of up-modulated
transcripts, which was defined by studying human cells, exhibited a strong convergence
with the transcript set designed as “stem cell of epidermis” from the murine single-cell tran-
scriptome database Tabula Muris (Figure S2B). These analysis result in a selected signature
of 218 shared DE pcRNAs (Table S4).
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Figure 7. Over-Representation Analysis (ORA) of common modulated transcripts in the KLF4 and
MXD4 models. Dot plots for (A) Gene Ontology Biological Processes (GOBP), (B) Kyoto Encyclopedia
of Genes and Genomes (KEGG), (C) MiSigDB Hallmarks of genes, and (D) Reactome pathways terms
found enriched on pcRNA transcripts modulated both in the KLF4KP and the MXD4XP contexts.
Pathway terms were considered enriched when p adjusted values < 0.05. Dot size is proportional to
the number of enriched transcripts for each pathway (Count). Dot color ramp represents the adjusted
p-value (p.adjust).

2.11. Prospective Definition of Regulons Comprising IncRNAs and DE pcRNAs Common to
KLF4KP and MXD4KP Cells Using Transcriptional Regulatory Networks (TRNs)
Since the pcRNA-IncRNA interaction databases are currently limited, co-expression

networks were constructed to describe pairwise relationships between transcripts. There-
fore, we explored the meaning of the IncRNA modulations observed in our KD models
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building IncRNA-centered regulatory networks independently for each model (KLF4 and
MXD4). We applied the transcriptional regulatory network (TRN) analysis that consists of
two steps: first, a transcriptional network inference (TNI); followed by the transcriptional
networks analysis (TNA). TNI was used to establish the association between the expression
of each of the 159 IncRNAs commonly identified in the KLF4 and the MXD4 datasets, and
1115 potential RNA targets (956 shared DE pcRNAs and 159 shared DE IncRNAs). Network
inference analysis resulted in the construction of 159 regulatory units called regulons, a
regulatory unit formed by a regulatory element (IncRNA) and its potential regulatory
partners (pcRNAs or IncRNAs). These regulons comprised 159 IncRNA and 1100 RNAs for
KLF4P model, and 159 IncRNAs and 1007 RNAs for MXD4XP model.

Then, TNA was applied to test the expression association between the regulons with
the ORA selected signature (218 pcRNAs). TNA results in the identification of 132 regulons
for KLF4 model and 107 for MXD4 model. The intersection of regulons between the
two models leads to the identification of 57 regulatory units formed by 57 IncRNAs and
104 pcRNAs. The complete TNR analysis produced interaction networks involving pcRNAs
and IncRNAs, their known targets, and the pathways in which the targets are involved. Two
main networks were constructed. A first one, based on 47 regulons containing 47 IncRNAs
and 82 pcRNAs, was related to the control of the balance between immaturity-stemness and
differentiation in the keratinocyte lineage (Figure 8A). A second one, based on 10 regulons
containing 10 IncRNAs and 22 pcRNAs, was related to the cell cycle (Figure 8B). Notably, as
expected, a regulon related to the TGFB pathway emerged as a component of these networks
(Figure 8A). Co-regulation analysis pointed to seven IncRNAs potentially interacting with
four pcRNAs (BAMBI, ID4, PITX2, and TGFB2) in this pathway:.
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Figure 8. Transcriptional Regulatory Networks (TRNs) based on DE pcRNAs common to KLF4XP and
MXD4KP cells, in association with IncRNAs. (A) Coregulatory network of 47 regulons (47 IncRNAs
associated to 82 pcRNAs) and their corresponding enriched pathways terms. (B) Coregulatory
network of 10 regulons (10 IncRNAs associated to 22 pcRNAs) and their enriched pathways terms.
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2.12. Weighted Gene Co-Expression Network Analysis (WGCNA) of DE pcRNAs Common to
KLF4XP and MXD4XP Cells with IncRNAs

In parallel with the TRN analysis, we applied the method of gene co-expression net-
work analysis (WGCNA) to identify consensus clusters (modules) of highly correlated
transcripts common to the KLF4 and MXD4 studies. After normalization and checking for
outliers in both datasets, transcripts with at least 10 reads in three samples were considered
for WGCNA analysis. We thus obtained 49 consensus co-expression modules with tran-
script numbers ranging from 70 to 4359 (Figure 9). We then considered the cellular contexts
(WT or KD) to establish the module-trait relationships within the network. Some modules
exhibited significant relationships with the WT or KD (Figure 9). We then filtered each
module using our signature of 159 DE IncRNAs and the ORA selected signature of 218 DE
pcRNAs identified in common in the KLF4 and MXD4 studies. We selected three distinct
consensus networks (correlation p-value < 0.05) comprising 36 transcripts (18 IncRNAs
and 18 pcRNAs), 69 transcripts (16 IncRNAs and 53 pcRNAs), and 20 transcripts (11 IncR-
NAs and 9 pcRNAs); these are visualized in dark orange, maroon, and yellow modules,
respectively (Figure 10A-C).
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Figure 9. Relationships of consensus module genes with DE transcripts from the KLF4 and MXD+4
datasets. Each row in the heatmap corresponds to a module, and each column to each cell context and
the network consensus. Numbers in the heatmap report the correlation p values of the corresponding
module and the cellular context, and the heatmap is color-coded by correlation values according to
the color legend. NA indicates not applicable consensus between the two models.
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Figure 10. Transcript modules common to the KLF4 and MXD4 cellular models, defined by consensus
WGCNA. Tree-and-leaf representation of the consensus modules identified in common from the KLF4
and MXD4 models. (A) Dark orange, (B) maroon, and (C) yellow modules. Diamond and ellipse
nodes represent IncRNAs and protein-coding RNAs (pcRNAs), respectively. Branch ramifications
represent the clustered nodes and distances between nodes (edges) represent the calculated distance
from consensus correlation values obtained with WGCNA.

2.13. Prospective Search of Competitive Endogenous pcRNA-miRNA-IncRNA
Interaction Networks

Since databases concerning IncRNA biological activities and interactions with pcRNAs
are not yet available, the drawing of interaction networks based on functional annotations
concerning the two transcript classes was not possible. In order to initiate an interaction
map, we took advantage of known interactions of IncRNAs with miRNAs due to doc-
umented biological functions of IncRNAs, such as miRNA sponging. Cross analysis of
the signatures identified by TRN and WGCNA led to a selection of 14 shared IncRNAs
(Table 7). These IncRNAs were submitted to the StarBase ENCORI tool and only five
of them (CD27-AS1, DNM3OS, MIR503HG, PCBP1-AS1, and TBX5-AS1) were listed for
having documented interactions with miRNAs. Selection of miRNAs with a target-directed
microRNA degradation (TDMD) score > 0.8 resulted in a list of 18 miRNAs. Each IncRNA-
associated miRNA was submitted to miRTargetLink, resulting in different independent
transcript networks documented by experimental validations. The sum of specific net-
works was merged to draw a global competitive endogenous pcRNA-miRNA-IncRNA
interaction network (Figure 11). Notably, several pcRNAs involved in TGFB signaling,
together with other growth factor pathways, were highlighted. Interestingly, miR-92a-3p,
miR-25-3p, which is linked to the IncRNA TBX5-AS1; and miR-15a-5p, which is linked to
the IncRNA MIR503HG, are described to interact with KLF4 transcript.
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Table 7. Signature of 14 common modulated IncRNAs in the KLF4 and MXD4 models, identified as
coregulatory elements by WGCNA and TNA methods.

KLF4 MXD4 ] _
Gene Symbol Expression Modulation
Log,FC FDR Log,FC FDR
CD27-AS1 1.18 0.003 —0.59 0.031 Up in KLF4/Down in MXD4
PCBP1-AS1 —0.78 0.032 —0.69 0.009 Down in both
LINC00887 2.93 0.004 —1.47 0.013 Up in KLF4/Down in MXD4
ENSG00000214546 1.33 0.046 1.46 0.016 Up in both
MIR503HG —2.45 0.003 —-1.27 0.000 Down in both
DNM30S —2.69 0.003 —1.31 0.020 Down in both
ENSG00000248964 —1.54 0.006 1.18 0.005 Down in KLF4/Up in MXD4
LIPT2-AS1 1.09 0.016 —1.03 0.033 Up in KLF4/Down in MXD4
TBX5-AS1 —3.33 0.003 —1.61 0.007 Down in both
RUNDC3A-AS1 1.04 0.011 —0.95 0.009 Up in KLF4/Down in MXD4
ENSG00000272622 —-1.76 0.026 —1.30 0.023 Down in both
ENSG00000282057 —-2.15 0.009 —2.21 0.008 Down in both
ENSG00000289386 1.58 0.030 —2.21 0.004 Up in KLF4/Down in MXD4
ENSG00000290931 —3.38 0.009 —-1.25 0.041 Down in both
DNM30S
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Figure 11. The IncRNA-associated competitive endogenous RNA (ceRNA) network. Illustration
of the in silico constructed IncRNA/miRNA /mRNA ceRNA network. The diamonds represent
IncRNAs, the ellipses represent pcRNAs, and the rectangles represent miRNAs. LncRNA-miRNA
interactions are solid gray lines and miRNA-pcRNA interactions are dashed gray lines.

3. Discussion

Deciphering molecular networks that ensure the regulation of the immaturity-stemness
versus differentiation fate is a common challenge in the domain of stem cell biology. In
this study, we investigated this issue taking advantage of the model of human stem and
precursor cells from human interfollicular epidermis. A sum of transcriptional studies
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were already conducted using bulk or single cell transcriptome analysis [20] on cellular
models in culture [16,19,21,22] or on fresh tissue [23,24]. Of note, the majority of these
studies were carried out with a focus on the gene fraction that ensures the proteome coding
(i.e., protein-coding RNAs/messenger RNAs). The development of knowledge on epige-
netic regulation mechanisms (i.e., chromatin compaction and structure, DNA methylation,
acetylation, etc.); and on epigenomic effector classes (i.e., micro-RNAs, circular RNAs, long
non-coding RNAs, etc.) is changing our perception of cell fate regulatory mechanisms. In
particular, IncRNAs are involved in a sum of regulatory processes, including modulation
of protein-coding gene expression [6], and much remains to be discovered regarding their
roles and regulatory functions in physiological processes and pathophysiological contexts.
Elucidation of complex constellations of regulatory components and effectors will certainly
result from the combination of studies addressing complementary levels of information:
(1) researches developed for the functional characterization of specific candidates or mech-
anisms; (2) molecular profiling dedicated to large-scale data acquisition, such as global
transcriptomic, proteomic, and/or metabolomics studies; (3) prospective computational
approaches aiming at opening avenues for experimental researches, as performed here.

The possibility of addressing mechanistic questions inherent to the understanding
of cellular and tissue functions is conditioned by the availability of relevant experimental
models. A difficulty in studies involving adult stem cells is that their immature phenotype
can be altered when they are removed from their in vivo niche and placed in an ex vivo
culture environment. As illustrated here, human keratinocyte precursor cells driven or not
to an augmented immaturity-stemness state by controlling the levels of the transcription
factors KLF4 [19] or MXD4/MADA4 [16] was a suitable model for prospective investigation
of the molecular networks involved in the regulation of this stem cell-associated character.
The biological significance of the KLF4- and MXD4-based cellular models was supported
by data published by different groups, including ours.

Firstly, a regulon centered on TGFB signaling was identified within the common tran-
scriptional signatures detected as modulated in both models (Figure 12). This can be linked
to functional data showing that a fine tuning of TGFB1 signal and response modulates the ex
vivo expansion of human keratinocyte precursor cells and their immaturity degree [19,25].
Moreover, TGFB signaling inhibition associated with ROCK signaling inhibition synergisti-
cally supports long-term expansion of epithelial precursor cells from prostate, bronchial
tissue, and skin [26]. In addition, Activin/TGFB signaling is also involved in the quiescence
of hair follicle keratinocytes in mice [27]. Interestingly, the key role of TGFB signaling in the
regulation of progenitor cell fate has been also documented in the human hematopoietic sys-
tem [28]; notably, in the control of cell-cycling and self-renewal [29], and in the equilibrium
between immaturity and erythroid differentiation [30]. Secondly, regarding the possible
cross-talk between the EGF, BDNF, and WNT pathways (see Figure 12), as suggested by
our in silico analysis, no published data are available to directly address this point in inter-
follicular keratinocytes. It is worth noting that EGFR has been shown to play a critical role
in attenuating Wnt/ 3-catenin signaling during postnatal mouse hair follicle development
by directly acting on stem cell-specific markers such as SOX9 and NFATc1 [31]. A compa-
rable mechanism cannot therefore be excluded in interfollicular epidermis keratinocytes.
However, there are no available data to confirm the contribution of BDNF in this potential
cross-talk among keratinocytes. Finally, the signature defined through the computational
approach described in this study exhibited significant convergence with the molecular
profile of human keratinocyte holoclones and paraclones established independently (i.e.,
progeny of stem cells and progeny of less immature progenitors, respectively) [21]. This
transcriptional signature identifying holoclones from paraclones (1044 protein-coding (pc)
RNAs), and the signatures that we established by comparative profiling of the KLF4 and
the MXD4 knock-down contexts versus a control keratinocyte precursor state (respectively,
2311 and 5200 pcRNAs), pointed to a list of 118 common pcRNAs. This common transcript
set thus represents a relevant basis for understanding the molecular features associated
with the keratinocyte immaturity-stemness character.
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Figure 12. LncRNAs potentially involved in the immaturity-stemness regulation processes in the

human keratinocyte lineage. Schematic representation of the hypothetical IncRNAs participation
on TGFB, PI3K/MAPK, and WNT pathways. Activator and repressor pathway proteins are green
and purple, respectively; IncRNAs are loop RNA structures; and involved miRNAs are small dark
blue structures. Confirmed molecule interactions are black arrows, co-expression interactions are
orange arrows.

This list includes the stem cell-related Forkhead box transcription factor M1 (FOXM]1)
transcript, and various transcripts of the mitogen-activated protein kinases (MAPK), phos-
phoinositide 3-kinase (PI3K), and ras-related protein 1 (RAP1) signaling pathways. Cell
cycle-related transcripts were also present in the three datasets, which is consistent with
described signatures of epidermis basal keratinocyte subpopulations obtained by single-
cell RNA-seq from human skin [23]. Interestingly, transcripts of the TGFB pathway were
found in common in the three datasets. Concerning the soundness of the principle of
immaturity-stemness promotion by lowering KLF4 or MXD4, a clear link is observed be-
tween transcripts associated with this effect and those found in the transcriptome profile
characteristic of holoclones, which correspond to keratinocyte stem cells endowed with the
regenerative potential required for long-term graft perennation in clinics [11,12,21]. Of note,
some transcript groups and pathways appeared modulated in an opposite manner in our
two cellular models (for example, transcripts assigned to “interferon signaling pathways”),
which can be interpreted as the result of specificities distinguishing the regulatory networks
of KLF4 and MXD4/MADA4.

Beside protein-coding transcripts, the revisiting of our datasets detailed in this study,
integrating a recent state of knowledge on the different classes of transcripts, opens original
perspectives to approach the understanding of the positioning of IncRNAs in the control
of immaturity-stemness in the keratinocyte lineage. This hitherto poorly explored field
will certainly have an impact on the domain of stem cells, notably in the skin model.
Previously published profiling studies were focused on the search of IncRNAs involved in
inflammatory skin diseases [32,33]. Moreover, in skin, the IncRNA MALAT1 was shown
to interact with the transcription factor MYC and bind to the promoter region of the
Kinectin 1 (KTN1) gene, thus contributing to enhancement of epidermal growth factor
(EGF) signaling in cutaneous squamous cell carcinoma [34]. Another IncRNA, WAKMAR1,
has been documented as a regulator of keratinocyte migration, its deficiency impairing
wound re-epithelialization, in the context of the diabetic foot [35]. Different approaches
have been applied to attempt prediction of IncRNA biological functions. The approaches
developed for this purpose include analyses of proximity with coding genes [6], machine
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learning co-expression analyses [33,36], and analyses based on sequence features such as
k-mer profiles [37].

The computational approach developed in this study tended to link IncRNA signatures
to functionally annotated pcRNA pathways. Co-expression correlation led us to propose
prospective interacting maps depicted as regulation units or regulons centered on a partic-
ular IncRNA in potential interactions with a network of functionally associated pcRNAs
(Figure 8). As a complementary approach, we also used Weighted Correlation Network
Analysis (WGCNA) to depict dendrograms according to proximity matrixes (Figure 10). In-
terestingly, these analyses pointed to a selection of candidate IncRNAs potentially involved
in the immaturity-stemness regulation processes in the keratinocyte lineage, available for
dedicated comprehensive functional studies. Notably, transcripts related to the TGFB/BMP
signaling network—including those of BMP, activin, membrane-bound inhibitor (BAMBI),
Bone Morphogenetic Protein Receptor Type 1B (BMPR1B), DNA-binding protein inhibitor
(ID4), and paired-like homeodomain transcription factor 2 (PITX2)— were associated with
IncRNAs whose functions are not known. The same was true with transcripts linked to
extracellular matrix biology, including those of collagen type X alpha 1 chain (COL10A1),
matrix metallopeptidase 15 and 16 (MMP15 and MMP16), and fibronectin (FN1). For
example, the IncRNA referenced as ENSG00000290931 that came out in our computational
approach (gene localization on chr22 q11.1) is considered as a novel transcript. Another
candidate IncRNA identified in our study, MIR503HG, has been previously described to
be deregulated in tongue squamous cell carcinoma [38]. Of note, MIR503HG has been
also associated with the promotion of pathophysiological processes mediated by dermal
fibroblasts, including hypertrophic scar progression [39], and skin fibrosis, via interaction
with TGFB/SMAD signaling [40].

Now, a major challenge in IncRNA biology is to define their specific biological func-
tions. While we have a significant amount of experimental data and in silico methods
for making function predictions based on the primary sequence for pcRNAs, we know
little about the vast majority of IncRNAs, and no validated tool is available for perform-
ing sequence-based function predictions. Development of novel bio-informatics tools
is thus greatly needed to enrich existing catalogs in functional annotation (for review,
see [7]). In skin, IncRNA have retained attention as biomarkers and as modulators of
biological pathways via miRNA sponging and regulation of pcRNA expression, in the
context of cancer [41]. LncRNAs also retained attention in the contexts of skin ageing [42],
wound healing [43], and inflammatory responses [44]. Concerning inflammatory skin
diseases, a collection of RNA-seq datasets from in vitro and in vivo material was analyzed
in silico through machine-learning methods, linking IncRNAs with cytokine signaling
pathways [33].

Regarding future prospects for new candidates (IncRNA or other), the same strategy
used for KLF4 and MXD4 studies will be implemented using functional genomics tools
suitable for targeted known-down or over-expression, including shRNAs, small-interfering
RNAs, antisense oligonucleotides, and over-expression systems. This experimental phase
will be necessary to move from the stage of prospective identification to that of demon-
strated biological functions, as we did for the KLF4 and MXD4/MAD#4 transcription factors.

To conclude, concerning the primary topic of this study, which is deciphering the
transcript network that regulates immaturity-stemness in human epidermal keratinocytes,
the prospective computational approaches described here will give rise to the selection of
candidates for classical experimental approaches, based on functional models.

4. Materials and Methods

Architecture of the computational approach is schematized in Supplementary Figure S3.

4.1. Library Pre-Processing and Read Quantitation

The RNA-seq transcriptome datasets corresponding to the KLF4 and the MXD4/MAD4
studies model were obtained from the Gene Expression Omnibus (GEO) database under
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accession numbers GSE111786 and GSE202700, respectively [16,19]. Both KLF4 and MXD4
datasets were based on 3 biological replicates corresponding to the 2 cellular contexts:
3 wild type (WT) and 3 knock-down (KD) cellular contexts. A total of 17 RNA-seq libraries,
including biological and technical replicates, were sequenced for the KLF4 study, and 6 for
the MXD4 study Supplementary Table S1. The .sra files corresponding to each sample were
downloaded using the prefetch tool v2.11.0 from the SRA Toolkit [45]. Subsequently, all
.sra files were converted into .fastq files with the help of the fasterq-dump v2.11.0 from the
SRA Toolkit. Samples were submitted to fastQC tool v.0.11.9 to perform quality control
checks, before and after RNA-seq pre-processing [46]. The fastp tool v0.20.0 was used to
remove Illumina adapters (Illumina, Inc., San Diego, CA, USA) and filter low-quality reads
and bases [47]. Reads were aligned to the human genome (GRCh38 release 43) using STAR
v2.7.10b [48]. Reads were quantified using the feature Counts tool v2.0.1 from the SubRead
package [49]. Protein-coding transcripts (pcRNAs) long non-coding transcripts (IncRNAs)
were identified using annotation from GENCODE GTF files.

4.2. Count Exploratory Analysis and Transcript Filtering

For each dataset, an expression matrix was built, filtering out the transcripts with no
attributed reads in any sample. Then, all transcript detection corresponding to low signals
were removed using the filterByExpr function (read counts per transcript < 10 in at least
3 samples) from the edgeR package version v3.42.4 [50]. Technical variation was checked
using dimension reduction analysis (principal component and multidimensional scaling
analysis). In the absence of variation, technical replicates were combined by cumulating
the counts. Batch effects were adjusted using the ComBat function from the R package
sva version v3.36.0 [51], and a final expression matrix of 6 samples for each dataset was
prepared in view of differential expression analysis.

4.3. Differential Gene Expression Analysis

Differential gene expression analysis (DGE) was performed on each dataset, comparing
the WT and KD cellular contexts using the edgeR package version v3.42.4. DGEList
objects containing the raw expression matrix, data information, and gene annotation
were first created for each dataset. Then, normalization factors were calculated using the
calcNormFactors function and the trimmed mean of M-values (TMM) method, in order
to scale the library sizes. The mean—variance relationship was then estimated using the
estimateDisp function. Moderated p-values were calculated by fitting a quasi-likelihood
negative binomial generalized log-linear model to the count data, using the empirical
Bayes method (glmQLFit function). Transcripts that satisfied the following criteria were
tagged as differentially expressed (DE): absolute fold change (| fold-changel) > 1.5 and
False Discovery rate (FDR) < 0.05. Visualization plots were constructed with the ggplot2
and pheatmap packages, on the R platform.

4.4. Functional Enrichment Analysis and Gene Set Enrichment Analysis of pcRNAs

To investigate the biological significance of pcRNAs detected as differentially ex-
pressed (DE) in KD versus WT cells, in the KLF4 and the MXD#4 transcriptome datasets,
both Over-Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) were
conducted. ORA is a statistical method used to determine whether transcripts from a
priori defined set are present more than one would be expected (over-represented) in a
particular subset of transcripts of interest [52]. The hypergeometric tests were applied
using the function enricher from the clusterProfiler package v4.8.2 from the R platform.
Seven different gene set libraries downloaded from from Enrichr database [53] were used
for ORA: Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathways, Gene
ontology biological processes (GOBP), Bioplanet, Hallmarks of genes, ChIP Enrichment
Analysis 2013 (ChEA), and Tabula Muris. Enrichment p-values < 0.05 were considered as
statistically significant. Graphical representation was performed using the ggplot pack-
age from the R platform. GSEA is a rank-based computational approach that determines
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whether pre-defined groups of transcripts show statistically significant and concordant
differences between two biological states [54]. Analysis and graphical representation were
performed using the GSEA desktop application v4.1.0. This unsupervised GSEA algorithm
was applied to the study of the entire normalized expression signals of pcRNAs from
each RNA-seq dataset. Pre-selected transcript sets were from the Hallmarks of genes and
MiSigDB databases.

4.5. Functional Enrichment Analysis of DE Transcripts Common to the KLF4 and MXD#4 Datasets

A Venn diagram analysis was applied to the complete list of DE transcripts from the
KLF4 and MXD4 datasets, using the Venndetail package from the R platform. In order to
compare the effect of the Log, Fold change and visualize the sense of the regulation (up or
down) on DE transcripts identified in common in the KLF4 and MXD4 datasets, we built
scatter plots for pcRNAs and for IncRNAs, using the ggplot package from R. Concerning the
signature of commonly identified DE pcRNAs, ORA was applied to the KLF4 and MXD4
datasets for functional interpretation, using the compareCluster function with the option
enricher from the clusterProfiler package. Up-modulated and down-modulated pcRNAs
identified in both sets were distinguished. A manual classification of enriched terms
selected for their relevance for the topic of the study was made for functional interpretation.

4.6. Prospective Building of IncRNA-pcRNA Transcriptional Regulatory Networks (TRNs)

A first approach implemented for interpretation of IncRNA-pcRNA signatures con-
sisted in the prospective building of Transcriptional Regulatory Networks (TRNs), using
the RTN v.2.24.0 R package [55]. The RTN package tests the association of given elements
and potential targets, based on expression modulations. Here, the tested elements were
the DE IncRNAs identified in common from the KLF4 and the MXD4 models, and the
potential targets were the common DE pcRNAs. The TRN approach comprised two main
steps. The first step was Transcriptional Networks Inference (TNI) that results in the defi-
nition of regulatory units called regulons. The TNI analysis included the computation of
Mutual Information (MI) between particular candidate regulators and the potential targets,
removing non-significant associations by permutation analysis (n = 1000 permutations).
The removal of unstable interactions is achieved by bootstrapping and application of the
reconstruction of Accurate Cellular Networks (ARACNe) method. The second step was
Transcriptional Network Analysis (TNA). Regulons that comprised at least 15 interactions
or more were tested for expression association with the pcRNA signature by GSEA. The
resulting networks were visualized using the Cytoscape software v3.7.2. Venn diagram
analysis was applied to integrate the results from both datasets.

4.7. Prospective Definition of IncRNA-pcRNA Interactions by Consensus Weighted Gene
Co-Expression Network Analysis (WGCNA)

As a second approach implemented for interpretation of IncRNA—pcRNA signatures
consisted in Consensus Weighted Gene Co-expression Network analysis (WGCNA), which
aims at identifying significant modules and hub genes associated with particular pheno-
types, using correlation analysis among transcripts across RNA-seq samples. Consensus
co-expression network analysis differs from the standard co-expression network analysis
workflow by constructing individual networks across distinct datasets, and then computing
an integrated co-expression network. The consensus WGCNA was computed using the
entire expression datasets from the KLF4 and MXD4 studies, following the step-by-step
network construction and module detection of consensus network analysis from WCGNA
package [56]. The soft threshold was set at 8 for the adjacency calculation, since it is the
lowest value for which the scale-free topology index reaches 0.90 and the connectivity
measures decrease for both datasets (Supplementary Figure S4). Then, modules correlated
with the two KD contexts were considered for network visualization. Graphical network
visualization was performed using the RedeR v2.4.3 and the TreeAndLeaf v1.12.0 packages
from the R platform [57,58].
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4.8. Prospective Search of pcRNA—-IncRNA Interactions Using Databases of miRNAs

A list of common IncRNAs identified by TRN and WGCNA analysis was submitted to
the StarBase ENCORI tool [59]. A resulting set of predicted IncRNA associated-miRNA was
obtained using the miRNA-IncRNA interaction networks obtained from this encyclopedia
of RNA interactomes. A threshold of target-directed microRNA (miRNA) degradation
(TDMD) score > 0.8 was applied. The global set of miRNAs identified for each IncRNA
was submitted to miRTargetLink 2.0 with a “strong validated” edit network (validated
by experimentation such as luciferase reporter assays, qRT-PCR, Western Blot, etc.). The
resulting networks were visualized using the Cytoscape software v3.7.2.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25063353 /s1.
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