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Abstract: Previous studies examining the molecular and genetic basis of cognitive impairment,
particularly in cohorts of long-living adults, have mainly focused on associations at the genome or
transcriptome level. Dozens of significant dementia-associated genes have been identified, including
APOE, APOC1, and TOMM40. However, most of these studies did not consider the intergenic interac-
tions and functional gene modules involved in cognitive function, nor did they assess the metabolic
changes in individual brain regions. By combining functional analysis with a transcriptome-wide
association study, we aimed to address this gap and examine metabolic pathways in different areas
of the brain of older adults. The findings from our previous genome-wide association study in
1155 older adults, 179 of whom had cognitive impairment, were used as input for the PrediXcan
gene prediction algorithm. Based on the predicted changes in gene expression levels, we conducted
a transcriptome-wide association study and functional analysis using the KEGG and HALLMARK
databases. For a subsample of long-living adults, we used logistic regression to examine the associa-
tions between blood biochemical markers and cognitive impairment. The functional analysis revealed
a significant association between cognitive impairment and the expression of NADH oxidoreductase
in the cerebral cortex. Significant associations were also detected between cognitive impairment
and signaling pathways involved in peroxisome function, apoptosis, and the degradation of lysine
and glycan in other brain regions. Our approach combined the strengths of a transcriptome-wide
association study with the advantages of functional analysis. It demonstrated that apoptosis and
oxidative stress play important roles in cognitive impairment.

Keywords: cognitive impairment; dementia; MMSE; long-living adults; TWAS; longevity;
functional analysis

1. Introduction

Genetic predisposition plays a significant role in the development of cognitive im-
pairment. Many genome-wide association studies (GWASs) have explored how genes and
their single nucleotide variants (SNVs) affect the likelihood and severity of this condition.
The APOE gene and its variants have been linked to different types of dementia, including
late-onset Alzheimer’s disease [1], vascular dementia [2], frontotemporal dementia [3], and
Lewy body dementia (LBD) [4]. In our previous GWAS, we discovered eight SNVs on
chromosomes 1, 4, and 19 and examined the effects of the missense mutation, rs429358, on
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the APOE protein’s structure and function, specifically its lipid-binding domain [5]. No-
tably, significant SNVs are not limited to missense mutations. Most of them are located in
non-coding regions. Hence, these SNVs do not directly affect protein structure or function
but exert regulatory effects. Their effects on the phenotype should be further examined in
studies other than GWASs.

Transcriptome-wide association studies (TWASs) enable the measuring of tissue-
specific changes in individual gene expression levels and provide additional benefits for
assessing SNV effects. Sampling a living brain with cognitive impairment poses a great
challenge, but in silico techniques help circumvent this limitation. Methods like PrediX-
can [6], Sherlock [7], and ENLOC [8] use GWAS findings to predict gene expression levels.
They generate coefficients reflecting the combined effect of SNVs on tissue-specific gene
expression levels. TWASs of Alzheimer’s disease have discovered dozens of “causal”
tissue-specific genes, such as ACE, APOE, APOC1, FAM241A, SAPCD1, FAM111A, and
TOMM40 [9]. However, these studies do not specify the type of tissue or the extent of
changes in gene expression levels, nor do they consider intergenic interactions or functional
gene modules involved in cognitive dysfunction. Therefore, no well-founded conclusions
about the biology of the respective phenotypes can be drawn from these results alone.
Functional analysis is used to determine how SNVs affect gene expression dynamics and
form a specific phenotype. It has been used as a standalone technique to find associations
between Alzheimer’s disease and functional signaling pathways from the Gene Ontology
Annotation (GOA) database and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [10]. In GOA, Alzheimer’s disease has been linked to plasma lipoprotein assem-
blies, reverse cholesterol transport (RCT), catabolic processing of amyloid precursor protein
(APP), and activation of the immune response [10]. Chouliaras et al. performed a gene
ontology (GO) analysis and KEGG pathway enrichment analysis that revealed a number of
pathways associated with cognitive dysfunction and dementia, such as “main axon” and
“β-amyloid binding” in GOA and “glutamatergic synapse” and “Alzheimer’s disease” in
KEGG. These findings suggest that the genes involved in these pathways may contribute
to cognitive impairment [11]. However, the above studies measured gene expression levels
in whole blood and not in brain tissue, which limits the applicability of their findings.

In this study, we used both a TWAS and functional analysis to measure the changes
in brain metabolic pathways (Figure 1). This dual approach helped address the gaps in
our understanding of the underlying molecular mechanisms of cognitive impairment in
long-living adults.
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Figure 1. Scheme of the study design [5].

2. Results
2.1. The Cohort

The study included 179 participants with cognitive impairment and 976 cognitively
healthy participants (n = 1155) (Figure 2). A total of 74.4% of the cohort were women.
Overall, 91.2% of men and 82.2% of women were cognitively healthy (p-value = 0.00013).

Table 1 shows associations between the blood biochemical markers and cognitive
status. A 1 µ/L increase in insulin resulted in a 6% decrease in the incidence of cog-
nitive impairment (OR = 0.94; p-value = 0.009). A one-unit increase in Apolipoprotein
A (OR = 0.97; p-value = 1.91 × 10−14), HDL (OR = 0.22; p-value = 5.76 × 10−7), IGF-1
(OR = 0.99, p-value = 0.0008), and 25(OH)D (OR = 0.89, p-value = 7.74 × 10−7) also showed
protective effects and decreased the incidence of cognitive impairment by 3%, 78%, 1%,
and 11%, respectively.

Notably, this study sample included long-living adults of a very advanced age
(90+ years). There are generally more women in this age group, as reflected in our cohort.
However, men over 90 years of age are cognitively healthier than their female counterparts.
Blood plasma biomarkers such as insulin, apolipoprotein A, HDL, insulin-like growth
factor, and vitamin D were associated with cognitive impairment.
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Table 1. Changes in the incidence of cognitive impairment in response to a 1-unit increase in the level
of serum biochemical markers.

Marker OR (CI) p-Value (Adjusted for
Multiple Testing)

Glucose, µmol/L 0.90 (0.77; 1.06) 1
Insulin, µIU/mL 0.94 (0.91; 0.97) 0.008956

Apolipoprotein A, mg/dL 0.97 (0.96; 0.98) 1.91 × 10−14

Apolipoprotein B, mg/dL 0.996 (0.990; 1.003) 1
Total cholesterol, µmol/L 0.86 (0.74; 0.997) 0.73916

LDL, µmol/L 1.01 (0.85; 1.2) 1
HDL, µmol/L 0.22 (0.12; 0.37) 5.76 × 10−7

IGF-1, ng/mL 0.99 (0.985; 0.995) 0.000763
Cortisol, nmol/L 1.0003 (0.9995; 1.001) 1
25(OH) D, ng/mL 0.89 (0.86; 0.93) 7.74 × 10−7

Note: Gender, age, and BMI were used as covariates in the logistic regression model. OR: odds ratio; CI:
confidence interval.

2.2. TWAS

Figure 3 shows the TWAS results for the anterior cingulate cortex. The most signif-
icant association was found between cognitive impairment and lower expression levels
of LRRC25 (z-score = −4.118; p-value = 3.83 × 10−5). The significance of the associations
between cognitive impairment and increased expression levels of DLX6 and PRB2 was
marginally below the threshold (z-score = 3.582; p-value = 3.41 × 10−4 PRB2; z-score = 3.699;
p-value = 2.17 × 10−4, respectively). Table S1 (Supplementary Materials) presents the most
significant differently expressed genes in all brain parts.

Figure 4 shows changes in the predicted expression levels of the selected genes in
various brain tissues. In cognitively healthy participants, the expression levels of most
genes did not change in any brain tissue. However, the expression levels of ADSL, CTSF,
LPIN1, BCS1L, and DISP1 mostly increased. In addition, adjacent areas of the central
nervous system formed separate clusters. For example, the spinal cord tissues at the level
of C1 and the brain tissues were in different clusters.

Based on the data presented in Figure 4, we were able to assess the quality of the
results obtained by comparing changes in the expression levels of the same genes across
different brain tissues. For this purpose, in addition to gene clustering, we also carried out
tissue clustering (Figure 4, Y axis). Given that the spinal cord tissues are brain tissues, the
patterns of gene expression changes in the spinal cord differed from those in all other tissues.
Tissues in the cerebellum formed a separate cluster, despite exhibiting slight differences
from each other, which is inevitable when using bulk RNA-seq data from GTEx. This
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finding partially validates our TWAS predictions of changes in gene expression levels that
occur in cognitive impairment.
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areas of the brain. The color scale reflects changes in expression levels (z-score) calculated using the
TWAS results.

Based on the TWAS, the LRRC25 gene was the only gene that showed a statistically
significant association with cognitive impairment. For an in-depth examination of the
results obtained, we carried out functional analysis.

2.3. Functional Analysis

Table 2 presents the results of the functional analysis.
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Table 2. Statistically significant results of the functional analysis and annotations from KEGG
and HALLMARK.

Brain Region
Functional Pathway p-Value (Adjusted for

Multiple Testing)Database Name ID

Spinal cord at the level of C1 KEGG Other glycan degradation hsa00511 0.041

Nucleus accumbens HALLMARK HALLMARK_P EROXISOME HALLMARK_P
EROXISOME 0.038

Cerebellum KEGG Apoptosis–multiple species hsa04215 0.016

Cerebellum KEGG Lysine degradation hsa00310 0.016

Cerebral cortex MKEGG
NADH

dehydrogenase (ubiquinone) 1
alpha subcomplex

M00146 0.047

Frontal cortex MKEGG
NADH

dehydrogenase (ubiquinone) 1
alpha subcomplex

M00146 0.003

We assessed the expression levels of genes, the products of which are involved in
significant functional pathways. In the lysine degradation pathway, the levels of most
enzymes increased (Figure 5). The levels of enzymes that catalyze glycan degradation
mostly decreased (Figure 6).
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Figure 5. Section of the functional lysine degradation pathway (KEGG: hsa00310). The color scale
reflects the predicted changes in gene expression levels in the cerebellum of participants with
cognitive impairment.

In participants with cognitive impairment, the expression levels of KEGG:M00146’s
NDUFA2, NDUFA3, NDUFA4, NDUFA6, NDUFA7, NDUFA10, and NDUFA12 increased,
but the expression levels of NDUFA5, NDUFA4L2, and NDUFAB1 marginally decreased
(Figure 7). The pathway for the synthesis of the NADH dehydrogenase 1-alpha subcomplex
was generally more active in the cerebral cortex and particularly in the frontal cortex.

The expression levels of genes in the hsa04215 functional pathway (apoptosis) changed
to varying degrees (Figure 8). The expression levels of BSL2L1, BSL2L11, and MAP10
marginally decreased, while those of BAK1, BCL2, CASP3, BOK, CASP8, MAPK8, BIRC6, and
BIRC7 increased. The expression levels of APAF1, BBC3, BIRC5, and MAPK9 did not change.
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Figure 7. Functional pathway for the synthesis of the NADH: ubiquinone dehydrogenase in the
cerebral cortex. The color scale reflects the predicted changes in gene expression levels in participants
with cognitive impairment.

The expression levels of genes in HALLMARK_PEROXISOME varied. The expression
levels of SOD1 and most ATP carriers decreased. The expression levels of the PEX genes
increased (Supplementary Table S2).

Thus, the functional analysis of the TWAS results revealed five metabolic pathways
that showed the most significant associations with cognitive impairment. Two of these
pathways (HALLMARK_PEROXISOME and NADH-ubiquinone oxidoreductase) are as-
sociated with cellular oxidative processes during energy metabolism, including oxidative
stress. The lysine and glycan degradation pathways are also associated with catabolism.
Apoptosis was the fifth most significant process associated with cognitive impairment.
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3. Discussion

Consistent with the well-known male–female health–survival paradox, there were
significantly more long-living women in our study. However, more men were cognitively
healthy (43.6% vs. 36.4%; p-value = 0.00013). This finding suggests that men may be less
susceptible to age-related cognitive impairment than women.

LRRC25 was the most significant gene in many areas of the brain, including the
anterior cingulate cortex, cerebellum, cerebral cortex, hypothalamus, spinal cord at the
level of C1, and the substantia nigra (Figure 3). It is located on chromosome 19 and
encodes a leucine-rich repeat protein (LRR). This gene has been shown to inhibit NF-κB
signaling [12]. Elevated levels of NF-κB and the resulting increased signaling have been
observed in patients with Alzheimer’s disease [13]. The expression of LRRC25 in microglial
cells is reduced in Alzheimer’s disease patients carrying disease-associated SNVs [14]. We
obtained similar results. Thus, reduced LRRC25 expression may enhance NF-κB signaling,
induce apoptosis, and cause pathological conditions such as inflammation. Moreover, a
recent study by Feng et al. demonstrated an association between LRRC25 and autophagy
activation [12]. Lower expression levels of LRRC25 may inhibit autophagy, hindering
cells from eliminating misfolded proteins and aggregates, such as amyloids typical of
Alzheimer’s disease. Therefore, this pathway could be a valuable therapeutic target. This
assumption, however, requires experimental verification. Increased LRRC25 expression in
the cell model of cerebral ischemia has been shown to have a specific effect on this disease
that is known to contribute to cognitive deficits [15]. In our study, cognitive impairment
was probably associated with neurodegenerative processes rather than vascular disorders.
Interestingly, APOE and APOC1, which showed genome-wide significance in the GWAS [5],
were less significant in the TWAS.

A number of KEGG and HALLMARK pathways were highly significant for the spinal
cord at the level of C1, the cerebellum, and the nucleus accumbens (Table 2). One of
these functional pathways is involved in apoptosis, which may underlie the decrease in
LRRC25 expression levels described above (Figure 8). Previous studies have shown that
apoptosis is often associated with neurodegenerative diseases such as Alzheimer’s [16].
Both the buildup of amyloid plaque and neurofibrillary tangles and severe oxidative
stress can cause neuroapoptosis [16]. In Alzheimer’s disease, caspase-8 and caspase-9
become colonized in the brain, resulting in mitochondrial dysfunction [16]. This correlates
with the elevated CASP8 levels in our study (Figure 8). The predicted expression level
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of BAK1 is higher in participants with cognitive impairment. A BAK1-encoded protein
promotes the opening of the mitochondrial voltage-dependent anion channel. This results
in loss of mitochondrial membrane potential, cytochrome C release, production of reactive
oxygen species (ROS), and activated apoptosis. Increased BAK1 expression has been
linked to auditory dysfunction in patients with Alzheimer’s disease [16,17]. Gene products
involved in apoptosis are potential therapeutic targets for this condition [18,19]. However,
necroptosis and other forms of cell death have also been explored as potential targets [19].

The HALLMARK_PEROXISOME pathway includes genes involved in peroxisome
assembly and function. This pathway was highly significant, indicating an association
between the production of reactive oxygen species (ROS) and CI. Peroxisomes contain many
ROS-producing oxidases; however, they also contain antioxidant enzymes [20]. We found
decreased SOD1 expression levels, indicating an impaired protective mechanism against
oxidative stress in peroxisomes (Supplementary Table S2). In murine models, peroxisome
dysfunction has been implicated in neurodegenerative disorders, including Alzheimer’s
disease. Peroxisomes are the main target of amyloid plaques and ROS-mediated dam-
age [21].

ROS and mitochondrial dysfunction have been linked to dementia [22]. Notably,
the pathway for increased NADH-ubiquinone oxidoreductase (mitochondrial complex I)
expression was significant in the cerebral cortex and, particularly, in the frontal cortex
(Figure 7).

These findings may indicate that this complex is hyperactive in patients with dementia,
resulting in increased ROS production and oxidative stress. Complex 1 has been a potential
therapeutic target for metabolic dysfunction. For example, metformin is an antidiabetic
that inhibits NADH oxidoreductase [23]. A meta-analysis has shown that this drug can also
have a neuroprotective effect in older adults [24]. Therefore, complex 1 is also considered a
therapeutic target for dementia, including Alzheimer’s disease [25]. Many hormonal and
metabolic factors affect oxidative stress and, thus, cognitive status. For instance, androgens
can inhibit oxidative stress [26], which may account for higher MMSE scores among older
men compared to older women.

The protective effects of elevated 25-OH vitamin D (calcidiol) levels may result from
ROS-related processes that underlie dementia. Calcidiol was reported to have antioxidant
properties [27]. However, clinical trials of 25-OH vitamin D supplementation have not
conclusively confirmed its antioxidative effect [28]. We found that a 1 ng/mL increase in
25-OH vitamin D reduced the risk of cognitive impairment by 11% (Table 1).

In our study, increased insulin levels were negatively correlated with cognitive im-
pairment. High circulating insulin levels and insulin resistance are known to contribute
to cognitive impairment in the old and oldest-old [29]. Substantial oxidative stress has
been observed in the brains of older people under 90 years of age with diabetes and el-
evated insulin levels, which may underlie the link between diabetes and dementia [30].
This is not the case over the age of 90, when a negative correlation between insulin and
cognitive impairment arises, suggesting its protective property in this age group [31]. The
link between insulin levels, oxidative stress, and dementia requires further research. In
people aged 90 and older, cognitive impairment is correlated only with HDL, whereas
correlations with total cholesterol, triglycerides, and LDL do not reach the significance
threshold [32]. Apolipoprotein A is a major structural protein in high-density lipoproteins.
Therefore, HDL and Apo-A have similar effects on cognitive impairment (Table 1). Stud-
ies in animal models have shown that ApoA1 knockdown increases inflammation and
vascular amyloid-beta deposition in the brain. Our results and the published literature
suggest that Apolipoprotein A has a protective effect against various diseases, including
neurodegenerative disorders.

IGF-1 levels tend to decrease with age and negatively correlate with cognitive impair-
ment. IGF-1 is believed to affect the morphology and function of synapses as well as the
excitability of neurons via signaling pathways [33]. Moreover, IGF-1 has been shown to
have a neuroprotective effect. For example, it promoted the survival of primary cerebellar
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neurons in rats and hypothalamic cells in immortalized GT1–7 rats after hydrogen per-
oxide (H2O2)-induced oxidative stress [34]. This effect is mediated by nuclear factor-κB
(NF-κB) [34]. In our study, high IGF-1 levels significantly reduced the risk of cognitive
impairment. Notably, IGF-1 has a critical effect on apoptotic processes [35].

There was a significant association between cognitive impairment and another glycan
degradation pathway, hsa00511. Yu et al. proposed using N-glycans as biomarkers for
the early diagnosis of Alzheimer’s disease [36]. Glycan degradation is known to promote
macroautophagy [37]. Most genes associated with this process (Figure 6), such as FUCA1,
NEU1, MAN2C1, GLB1, HEXA, AGA, and MAN2B2, had lower expression levels in the
TWAS. Consistent with previously published data [38], this finding may indicate impaired
autophagy in the analyzed brain tissues of patients with cognitive impairment.

We observed increased expression levels of almost all enzymes involved in the L-
lysine degradation pathways (Figure 5). L-lysine is an essential amino acid. Its impaired
catabolism can cause disorders such as Glutaric aciduria type 1 (GA1) [39,40], leading
to damaged subcortical brain structures. Interestingly, an increased rate and intensity of
amino acid metabolism may be a compensatory response to glucose deficiency. This is often
observed in patients with Alzheimer’s disease [41]. Thus, the predicted higher expression
levels of enzymes involved in amino acid catabolism may constitute a compensatory
mechanism for supplying energy to neurons. This suggestion requires further investigation
and experimental verification.

The detected associations between cognitive impairment and the expression levels
of certain genes were statistically significant. However, to establish the causality, if any,
underlying these associations, the presented findings need to be tested in future studies.
The presented findings may facilitate future experiments on the molecular and genetic
bases of cognitive impairment.

4. Materials and Methods
4.1. Participants and Examination Procedures

This non-interventional, cross-sectional study analyzed a sample of 1155 long-living
individuals aged 90 years and older who were recruited between 2019 and 2021 with
the assistance of social and geriatric facilities in Moscow and the Moscow region. The
participants completed geriatric scales and questionnaires with the assistance of a physician
and registered nurse at their places of residence and had their biomaterials collected
(including whole blood for the GWAS). Blood samples were analyzed for key biochemical
markers: LDL, HDL, cholesterol, glucose, glycosylated hemoglobin, apolipoproteins Apo-
A1 and Apo-B, insulin-like growth factor 1 (IGF-1), cortisol, 25(OH)D, and insulin using
the enzymatic method, the Friedewald formula (FF), photometry, capillary electrophoresis,
immunoturbidimetry, and chemiluminescence detection, respectively. A more detailed
description of the study design is provided in our previous study [42].

Cognitive status was assessed using the Mini-Mental State Examination (MMSE), with
a score of ≤9 indicating cognitive impairment (encoded as 1) and a score of >24 indicating
cognitive health (encoded as 0) [43,44]. Cognitive impairment was encoded as 1, and
cognitive health was encoded as 0. Due to the many confounders typical of the examined
age range (sensory deficit, easy fatigability, etc.) and hard-to-interpret cutoff values, this
binary approach was applied in all further analyses, including GWAS, TWAS, the functional
analysis, and the analysis of associations between the biomarkers and cognitive impairment.

4.2. Statistical Analysis

The associations between the blood biochemical markers and cognitive impairment
were assessed using logistic regression in Statsmodels [45] (Python 3.9.12) (Table 1). Body
mass index (BMI), gender, and age were used as covariates, and Bonferroni adjustment
was applied for multiple testing correction. Each logistic regression coefficient was expo-
nentiated to calculate odds ratios (ORs). The significance threshold was set at ≤ 0.05.
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The clustermap function in Seaborn 0.12.2 was used for data clustering and visu-
alization (Figure 4) [46]. The images show genes that are expressed in all brain tissues.
These genes have been associated with cognitive impairment-related disorders, such as
Alzheimer’s disease, autism, and congenital brain malformations, and have “reviewed by
expert panel” status in ClinGen [47].

4.3. Transcriptome-Wide Association Study (TWAS)

The GWAS results (SNVs, logistic regression coefficients, and p-values) [5] and eQTL
data from GTEx [48] were used as input. Gene expression levels were predicted using
PrediXcan (https://github.com/hakyimlab/MetaXcan (accessed on 7 March 2023)), an
algorithm that computes gene expression changes, or z-scores, in a specific tissue type.

The algorithm predicted gene expression levels in 49 tissue types. The following brain
areas with available tissue-specific gene expression levels in GTEx were selected for further
analysis: the spinal cord at the level of C1 (first cervical vertebra), the cerebellum, the basal
ganglia, the hypothalamus, the hippocampus, the cerebral cortex, and the anterior cingulate
cortex. Z-scores and p-values were calculated to measure the statistical significance of the
predicted gene expression levels in each tissue type.

4.4. Functional Analysis

Functional pathway analysis was carried out in clusterProfiler v. 4.6.0 [49]. For gene
set enrichment analysis (GSEA) in each tissue type, the algorithm was fed a list of genes
from KEGG [50] (Release 105.0; 1 January 2023) and the Human Molecular Signatures
Database (MSigDB) (H: hallmark gene sets) ranked by their p-values in ascending order. A
set of functional pathways associated with cognitive impairment was generated for each
brain area. The p-value adjusted for multiple testing was set at ≤0.05. The pathways were
visualized using the R Data Visualization Package v. 4.2.2.

5. Conclusions

In this study, we combined the advantages of a transcriptome-wide association study
and a functional analysis to investigate the molecular and genetic mechanisms of cognitive
impairment in people aged 90 and older. This approach allowed us to detect changes in gene
expression levels in different brain tissues and assess the overall effect of these changes on
cellular metabolism. An autophagy-related decrease in LRRC25 expression in the cerebral
cortex may be associated with cognitive impairment. The results also indicate that there are
associations between cognitive impairment and cell apoptosis, impaired autophagy, and
oxidative stress. Together, these processes reflect brain aging and contribute to the higher
susceptibility of older people to neurodegenerative diseases. The increased expression
level of NADH oxidoreductase in the cerebral cortex of patients with cognitive impairment
is of particular interest. The presented findings may facilitate future in silico and in vitro
studies of cognitive impairment.

6. Limitations

The associations between functional signaling pathways and cognitive impairment
were clinically significant. However, some limitations apply to the findings of this study.
Since it is impossible to sample a living human brain, the conclusions are based solely on
predicted changes in gene expression levels and genomic factors. The present study did
not consider other factors that may affect gene expression levels.
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