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Abstract: Blast-induced neurotrauma (BINT) is a pressing concern for veterans and civilians exposed
to explosive devices. Affected personnel may have increased risk for long-term cognitive decline and
developing tauopathies including Alzheimer’s disease-related disorders (ADRD) or frontal-temporal
dementia (FTD). The goal of this study was to identify the effect of BINT on molecular networks and
their modulation by mutant tau in transgenic (Tg) mice overexpressing the human tau P301L mutation
(rTg4510) linked to FTD or non-carriers. The primary focus was on the phosphoproteome because of
the prominent role of hyperphosphorylation in neurological disorders. Discrimination learning was
assessed following injury in the subsequent 6 weeks, using the automated home-cage monitoring
CognitionWall platform. At 40 days post injury, label-free phosphoproteomics was used to evaluate
molecular networks in the frontal cortex of mice. Utilizing a weighted peptide co-expression network
analysis (WpCNA) approach, we identified phosphopeptide networks tied to associative learning
and mossy-fiber pathways and those which predicted learning outcomes. Phosphorylation levels
in these networks were inversely related to learning and linked to synaptic dysfunction, cognitive
decline, and dementia including Atp6v1a and Itsn1. Low-intensity blast (LIB) selectively increased
pSer262tau in rTg4510, a site implicated in initiating tauopathy. Additionally, individual and group
level analyses identified the Arhgap33 phosphopeptide as an indicator of BINT-induced cognitive
impairment predominantly in rTg4510 mice. This study unveils novel interactions between ADRD
genetic susceptibility, BINT, and cognitive decline, thus identifying dysregulated pathways as targets
in potential precision-medicine focused therapeutics to alleviate the disease burden among those
affected by BINT.

Keywords: low-intensity open-field blast; discrimination-learning index; phosphopeptides; label-free
DIA-PASEF quantitative proteomics; phosphoproteomic profiling; WpCNA; eigenpeptides

1. Introduction
1.1. Long Term Effects of Blast-Induced Neurotrauma

Primary blast-induced neurotrauma (BINT) remains a significant health concern for
veterans and servicemen during training operations and deployment missions, increasing
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risk for neuropsychiatric disorders such as post-traumatic stress disorder (PTSD) and/or
neurodegenerative diseases [1,2]. Primary BINT due to low-intensity blast (LIB) is caused
by the transmission of hypersonic shockwave energy [3,4] passing through the skull and
meningeal layers [5], then penetrating brain parenchyma, causing phonon decays and/or
stretch/strain in the neurovasculature [6,7], which contributes to a complex set of neu-
ropsychological sequalae [1,8–10].

1.2. Utility of Phosphoproteomics

In BINT, there is emerging evidence of global proteome dysregulation impacting
excitotoxicity [11], and hyperphosphorylation of tau [12,13]. However, there have been a
limited number of studies on phosphoproteomics in BINT [12,14]. Recent innovations in
mass spectrometry (MS) technology, such as the incorporation of collisional cross section
values [15,16], data-independent acquisition (DIA) [17], parallel accumulation-serial frag-
mentation (PASEF) [16,18], label-free technology, and titanium dioxide enrichment [19],
have led to increased coverage of the identified LIB-exposed animal global and phospho-
proteomes [7,11], uncovering brain signaling mechanisms related to BINT pathophysiol-
ogy [12]. In our previous work, BINT-induced differential changes to phosphoprotein
expression were most related to learning, axon guidance, and synaptic plasticity pathways;
however, few studies have investigated the impact of BINT on mice phosphoproteomes.
Although we identified hyperphosphorylation of the tau protein following BINT, it is
unknown whether these phosphorylation events occur at tau sites distinct from other
mechanisms of TBI, and how BINT alters the mutant tau interactome.

1.3. Linking Tau Hyperphosphorylation with Complex Behavioral Phenotypes and Synaptic
Pathology Following BINT

Tau pathology is a hallmark of brain injury associated pathogenesis. Transgenic human
tau mouse models such as the rTg4510 mice exhibit premature (≤7 months) tau histopathol-
ogy along the anterior-posterior (A-P) axis of the mouse brain with 20% forebrain loss by
7 months of age and accelerated tau pathology [20–24] with behavioral deficits such as
grooming, abnormal gait, loss of righting reflex, touch response, hanging behavior, forelimb
placing reflex, and hyperactivity, typically noticeable as early as 4 months of age [22,24]
or learning deficits even as early as 10 weeks of age [25]. TBI can increase tau oligomers
and induce cognitive deficits in human tau Tg mice [26], which can be reversed by admin-
istering doxycycline [27]. Thus, LIB-induced phosphoproteome alterations in rTg4510 mice
might reveal pathways involved in the interaction between BINT, tau aggregation, and
cognitive deficits.

In mouse brains, the tau protein is increased at hyperacute (3 h) and acute phases
(24 h) but not at the chronic phase (30 DPI) following a single blast exposure [12]. As we
previously described, BINT-induced tau hyperphosphorylation increased at 7- and 30-DPI
in the cortex of C57Bl/6J mice [13]. Ultrastructural analysis showed that these mice also
displayed reduced cortical synapses and active zone length at these same time points,
owing to a possible link between LIB-induced increased tau expression and nanoscale
synaptic dysfunction [11,13].

Although the tau protein is predominantly axonal, dendritic tau plays a crucial role in
mediating synaptic processes including exocytosis and excitability amongst others [13,28].
For example, Dr. Li Gan and colleagues unveiled the tau interactome in humans suffering
from TBI, which provided insights into the potential tau-dependent mechanisms related
to synaptic dysfunction [28]. They proposed that following injury, the C-terminus of tau
directly binds with munc-interacting proteins (mint), mediating munc18-SNARE protein
interactions, and thereby affecting synaptic vesicle exocytosis [28]. In its hyperphosphory-
lated, pathological state, tau is transported to synapses and has been identified in human
synapses, especially in Alzheimer’s disease (AD) cases [29–31]. At the presynaptic level,
kinases such as CaMKII, CDK-5, and GSK-3β can help induce tau oligomerization mediated
by 14-3-3 adapter proteins which can modulate synaptic tau clearance mechanisms with
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possible deleterious effects on SNARE protein expression and synaptic mitochondria bioen-
ergetics [28,29]. Additionally, in mice overexpressing the phosphorylated tau (p-tau) protein
in the brain, PSD-95 protein expression is increased along with glutamate-dependent neural
hyperexcitability [11,13].

1.4. Knowledge Gaps in Understanding the Role of Tau in Risk of BINT

The genetic and environmental risk factors predisposing certain individuals to neu-
rological disease in response to BINT are not well understood. Low-intensity blast (LIB,
<100 kPa) incidents, common in training operations, can induce concussive or mTBI-like
symptoms such as headache, tinnitus, sensorineural hearing loss, memory loss, mood
dysregulation, oculomotor symptoms, and cognitive dysfunction. Most personnel recover
within 6–12 months of LIB exposure [10]. Although a clear pathological link between a
single LIB exposure and chronic neurological disease risk such as dementia has not been
established, repetitive LIB can cause cumulative shear-strain effects on brain cells [3] re-
sulting in increased expression of dementia-related biomarkers such as amyloid β [32],
hyperphosphorylated Tau (p-Tau) [33], neurofilament light chain, and many others [34].
Moreover, emerging evidence has found blast-induced impairment of perivasculature in
the cerebellum, which also helps control complex cognitive functions besides its role in
movement [35]. Finally, accumulation of hyperphosphorylated tau aggregates can also
be central to symptoms and pathognomic. For example, perivascular and periventricular
tau accumulation is a hallmark of chronic traumatic encephalopathy (CTE) [36], while
more selective laminar distribution in the frontal and temporal cortices are hallmarks of
frontal-temporal dementia (FTD) [37,38]. The Alzheimer’s Disease Cooperative Study
Prevention Instrument Project found that modified Mini-Mental State Examination, anx-
iety, depression, irritability, and apathy levels at baseline were significant predictors of
AD diagnosis [39]. These insights illuminate the importance of contextualizing BINT
symptoms with individual-level molecular (e.g., genomic, transcriptomic, proteomic, and
metabolomic) profiles to identify molecular drivers of BINT-related clinical sequelae that
pose significant risk for future development of ADRDs.

1.5. Unveiling the Relationship between ADRD Genetic Markers and LIB-Induced
Behavioral Deficits

Our recent work comparing the position-dependent blast effects across brain regions
found the cortex proteome to be most affected relative to other regions in upright and
prone-positioned animals; however, effects on the proteome in the upright-positioned ani-
mals were seen in synaptic, mitochondrial, and metabolic functional pathways [40]. Cortex
pathology following BINT has also been indirectly linked with tauopathy and complex
behavioral deficits in animal models [12]. We previously found that cortex asymmetric
synapse count was reduced in BINT mice [13], which have been associated with poor cog-
nition and learning abilities [41–43]. These mice were found to have hyperphosphorylation
of the tau protein in the cortex [13]. Other behavioral deficits associated with BINT in
rodents include anxiety-like behaviors [44], poor cognition and cognitive flexibility [11],
learning deficits [11], reduced motor and sensorimotor function [12], weight loss [45], and
apnea [45], many of which have been observed in rTg4510 mice [22,46]. Three months
following BINT, mice displayed reduced discriminatory learning and reversal learning
abilities which correlated with protein expression changes related to synaptic plasticity in
the hippocampus [11]. There is, however, a paucity of studies that evaluate the dynamic
molecular events in the cortex and how these events influence behavior.

1.6. Identification of Phosphopeptide Co-Expression Networks Related to Cognitive Changes

In this study, we sought to identify differentially changed phosphopeptides that
can explain the LIB and tau effects on learning behavior in mice following a single LIB
exposure at both individual and group levels. At the individual level, the phosphoproteome
expression profiles of mice with the poorest learning abilities will be compared to other
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animals to identify distinct molecular responses to LIB that may confer learning deficits. At
the group level, we will compare the expression of learning-related phosphopeptides across
different LIB vs. sham comparison groups, which will unveil phosphopeptide candidate
biomarkers that may underly tau-blast interaction effects on learning abilities. Functional
characterization will be performed on these phosphopeptides to identify targetable brain
pathways that are altered molecular responses following LIB may underly poor learning.

2. Results
2.1. Quantitative Proteomics and Behavior Prediction by Ingenuity Pathway Analysis (IPA)

Of 17,637 phosphopeptides identified via MS2 (Supplementary Table S1a—MS2

raw data, MS2 raw data_rTg4510, and MS2 raw data_non-carriers), 706 and 550 were
significantly changed in rTg4510 and non-carrier LIB-exposed mice relative to unex-
posed sham controls, respectively. Among these changes, 360 and 367 phosphopeptides
were decreased and 346 and 183 phosphopeptides were increased in rTg4510 (Figure 1A,
Supplementary Table S1b—MS2 significant phosphopeptides_rTg4510) and non-carrier
(Figure 1A, Supplementary Table S1b—MS2 significant phosphopeptides_non-carriers)
LIB-exposed mice relative to unexposed sham controls (genotype-matched), respectively.
As expected, there was very low overlap (2.28%) between the rTg4510 and non-carrier
LIB-exposed mice phosphopeptidomes (Figure 1B). This is likely a result from the difference
in genetic makeup between the rTg4510 and non-carrier mice and their subsequent re-
sponse to LIB. Using machine learning (ML) driven capabilities in IPA (RRID: SCR_008653;
QIAGEN Ingenuity Pathway Analysis; Germantown, MD, USA), learning was predicted to
be reduced in LIB-exposed non-carrier and rTg4510 mice aged 14 weeks old (Figure 1C).
It should be noted that these predictions are inferred and should not be interpreted as
definitive due to the large influence of the phosphopeptide expression sign (Log2 fold-
change, ±). Intriguingly, the tau pSer262 site was selectively hyperphosphorylated in
rTg4510 LIB-exposed mice relative to unexposed sham controls (Supplementary Table
S1b—MS2 significant phosphopeptides_rTg4510) whereas many other sites were reduced
in non-carriers (Supplementary Table S1b—MS2 significant phosphopeptides_non-carriers).
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Figure 1. Quantitative phosphoproteomics and bioinformatic analysis of the cortical phosphopep-
tidomes in mice predicts impaired cognition and learning following LIB exposure. (A) Volcano
diagram summarizing the differential expression of phosphopeptides in LIB-exposed (A, left panel)
rTg4510 and (A, right panel) non-carrier mice compared to their respective unexposed sham controls.
Horizontal and vertical grey lines denote the cutoff threshold for p value (<0.05; horizontal line at 1.3)
and fold change (decreased < 0.77, increased > 1.3; left vertical line at −0.38, right vertical line at 0.38),
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respectively. (B) Venn-diagram of distinct rTg4510 and non-carrier phosphopeptides (p-peptides) as
well as common phosphopeptides in both groups in LIB-exposed animals vs. their genotype-matched
unexposed sham controls. (C) Ingenuity pathway analysis prediction of neurological behavior
outcome in rTg4510 and non-carrier LIB-exposed animals’ phosphopeptidomes based on log2 fold-
change. Surprisingly, relative to the response to LIB in non-carriers, in rTg4510 mice, there were
blunted responses in learning (z-score: −1.745 and −0.616 in non-carriers and rTg4510, respectively)
and cognition (z-score: −1.558 and −0.507 in non-carriers and rTg4510, respectively) deficits and
hyperlocomotion (z-score: 2.219 and 0.791 in non-carriers and rTg4510, respectively) and even
improvement in spatial learning (z-score: −0.213 and 0.396 in non-carriers and rTg4510, respectively).
However, relative to the response to LIB in non-carriers, in rTg4510, LIB showed pronounced memory
(z-score: −0.869 and −1.349 in non-carriers and rTg4510, respectively) and conditioning (z-score:
−0.4 and −2.593 in non-carriers and rTg4510, respectively) deficits and variables suggesting apathy
(less anxiety and social interaction).

2.2. Results from Automated Home-Cage Monitoring System on the CognitionWall Experiment

Discrimination learning ability in 20 mice was assessed 30 days following a single LIB
in an aHCM CognitionWall platform environment. Thirty days post LIB, during a 48-h
period, mice were tracked via aHCM video recording for correct entries (left entrance),
incorrect entries (middle or right entrances), and total entries (any entrance) (Figure 2A).
These parameters were selected amongst hundreds of the dynamic measurement within the
CognitionWall assessment to estimate the learning index, defined as the learning growth
over a 48-h period (Figure 2B; Supplementary Table S2—Cogwall data) (Equation (3)). The
learning index (continuous variable) was transformed into a learning level (categorical
variable; scale 1 to 5) on a 5-point scale (5 = fast learning, 4 = normal learning, 3 = mildly
slow learning, 2 = moderately slowed learning, and 1 = severely slowed learning) where
each category corresponds to a number of standard deviation(s) away from the mean
learning index (Mean learning index: 0.40) (Figure 2A). In this study, blast-exposed rTg4510
mice demonstrated a lower learning index than all other groups (Figure 1B), with the
lowest improvement in learning from day one to day two observed in the rTg4510 4 animal
(Figure 2B,C; red solid and red dashed lines). These findings were supported by average-
linkage clustering which identified the blast rTg4510 4 animal as an outlier (Figure 2C).
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Platform with three entrances—Left circled in red, Middle in black and Right in blue. (B) Three
CognitionWall parameters including correct entries, incorrect entries, and total entries were used
to compute the learning index for days 1 and 2 of the discriminatory learning test. (B, left panel)
The change in learning index from day 2 and day 1 was used to compute the learning index used for
WpCNA (red solid line: rTg4510 4 animal with the lowest increase in learning from day 1 to day 2).
(B, right panel) Standard deviation from mean (0.4) of learning index was used to transform learning
index from continuous to a categorical learning scale for post-WpCNA ROC analysis (red dashed line:
rTg4510 4 animal with lowest learning index). (C) Clustering tree dendrogram of phosphopeptide
expression data frame from 20 animals based on their average-linkage distances with all other animals
with a color representing their learning index (darker color = higher learning index; light colors
= lower learning index). The dendrogram shows one obvious outlier, the blast rTg4510 4 animal,
which displayed the lowest learning index of all 20 animals. The blast rTg4510 4 animal’s learning
performance appears to be “globally distinct” from all other animals.

Although bioinformatic predictions of blast vs. sham (genotype controlled) mouse
learning performances at the group level was inconsistent with real learning performances
at the group level (Figures 1C and 2B), WpCNA assessed whether there are any individual-
level phosphopeptidomic distinctions (e.g., module eigenpeptide values) that may con-
fer poor learning in the blast LIB groups or notably in the rTg4510 4 animal with more
serious impairment.

2.3. Weighted Peptide Co-Expression Network Analysis (WpCNA): Network Construction and
Topological Overlap Matrix

A total of 17,637 phosphopeptides identified by MS2 in 20 animals were imported
into RStudio as the expression data frame, and two columns into a .csv file containing
animal identifiers and learning index (continuous variable) were imported as a functional
outcome data frame for WpCNA analysis (See RMarkdown code for entire analysis in
Supplementary File S3—WpCNA code in RMarkdown). The continuous form of learning
index was chosen over the categorical learning scale due to greater statistical power. Prior
to conducting WpCNA, it is necessary to choose a β (Power parameter) that satisfies the
scale-free topology criterion [47,48]. We found that setting β to 8 was the only value of β
that produced a scale-free network shown by the right-skewed histogram plot (Figure 3A,
left panel) and the high model strength (Figure 3A, right panel) for Log10(p(k)) (Probability
of connectivity) vs. βLog10(k) (Connectivity), which is derived from Equations (4)–(6),
(Log10(Ak) vs. βlog10(sk)).

Standard peptide screening (SPS) (analogous to standard gene screening) was
introduced to filter the large phosphopeptide expression data frame of 17,637 phos-
phopeptides to 564 phosphopeptides based on their marginal linear correlation co-
efficient (r) with learning index for all 20 animals (Threshold: r coefficient ≥ 0.05)
(Supplementary Table S4—Standard Peptide screening results) [49]. The next step was
to reduce our filtered multidimensional (≥3 expression columns) expression dataset of
564 phosphopeptides for each animal (n = 20) into modules that summarize the expres-
sion of 564 phosphopeptides from each animal into a single value (signed), the module
eigenpeptide (analogous to module eigengene) [50]. To identify modules, a hierarchical
clustering tree based on the weighted topological overlap matrix between phosphopeptides
was plotted directly over a color map where the tips of the ”tree-branches” correspond
to modules (Figure 3B) [51]. The height (y-axis) in which the tree is cut horizontally will
remove upstream branches and phosphopeptides, while sparing downstream branches [51].
Three different tree cutting methods (labels adjacent to colormap) were compared to one
another to determine which method successfully stratified most of the tree tips into distinct
modules (denoted as colors), indicated by the color map in Figure 3B (directly below cluster
tree) [51]. The colorstatic topological overlap matrix (TOM) tree-cutting method (first
colormap in Figure 1B) obtains few and large clusters based on the characteristic pattern of
fluctuations between the phosphopeptide pairs’ height (y-axis in Figure 3B) [51]. The color-
Dynamic TOM tree-cutting method first obtains a few small clusters from the colorstatic
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TOM method, then it splits the large clusters into subclusters by searching for patterns of
fluctuations between the cluster tips [51]. This approach considers information from the
dendrogram alone. Conversely, the colorDynamicHybrid TOM tree-cutting method defines
clusters by their proximity to “objects” [51]. The colorDynamic TOM method was chosen
as the preferred tree-cutting method because the largest cluster tips were separated into
different modules (see module assignment in Supplementary Table S5—Phospep module
assignment). Following network construction, network topology was computed based
on the TOM dissimilarity (TOM similarity is not an acceptable input) which is defined
as: 1 − TOMsimilarity (Topological overlap) (Equation (7)) [47]. The turquoise and black
modules had the greatest topological overlap indicating these modules contain highly
interconnected phosphopeptides (Figure 3C). Additionally, there was high intermodular
topological overlap between the turquoise and black modules indicating the weighted
co-expression of their phosphopeptides are high.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 30 
 

 

Supplementary File S3—WpCNA code in RMarkdown). The continuous form of learning 

index was chosen over the categorical learning scale due to greater statistical power. Prior 

to conducting WpCNA, it is necessary to choose a β (Power parameter) that satisfies the 

scale-free topology criterion [47,48]. We found that setting β to 8 was the only value of β 

that produced a scale-free network shown by the right-skewed histogram plot (Figure 3A, 

left panel) and the high model strength (Figure 3A, right panel) for Log10(p(k)) (Probability 

of connectivity) vs. βLog10(k) (Connectivity), which is derived from Equations (4)–(6), 

(Log10(Ak) vs. βlog10(sk)). 

 

Figure 3. Scale-free network construction and topological overlap visualization. (A) The left panel 

shows a histogram of network connectivity (k). The right panel shows a log-log plot of the same 

histogram. The approximate straight-line relationship and high model strength show approximate 

scale free topology in the phosphopeptide expression data frame. (B) Phosphopeptide clustering 

tree (dendrogram) obtained by hierarchical clustering of topological overlap matrix (TOM)-based 

dissimilarity. The color rows below the dendrogram indicate module membership identified by the 

three methods: colorStatic TOM, colorDynamic TOM, and colorDynamicHybrid TOM. Each color 

represents a distinct module. (C) Heatmap plot of the topological overlap matrix. In the heatmap, 

rows and columns correspond to single phosphopeptides, light colors (white) represent low topo-

logical overlap, and progressively darker orange, yellow, and green colors represent higher topo-

logical overlap. The corresponding phosphopeptide dendrograms and module assignment are 

shown on the left and top using the colorDynamic TOM tree cutting method. 

Standard peptide screening (SPS) (analogous to standard gene screening) was intro-

duced to filter the large phosphopeptide expression data frame of 17,637 phosphopeptides 

to 564 phosphopeptides based on their marginal linear correlation coefficient (r) with 

learning index for all 20 animals (Threshold: r coefficient ≥ 0.05) (Supplementary Table 

S4—Standard Peptide screening results) [49]. The next step was to reduce our filtered mul-

tidimensional (≥3 expression columns) expression dataset of 564 phosphopeptides for 

each animal (n = 20) into modules that summarize the expression of 564 phosphopeptides 

from each animal into a single value (signed), the module eigenpeptide (analogous to 

module eigengene) [50]. To identify modules, a hierarchical clustering tree based on the 

weighted topological overlap matrix between phosphopeptides was plotted directly over 

a color map where the tips of the ”tree-branches” correspond to modules (Figure 3B) [51]. 

The height (y-axis) in which the tree is cut horizontally will remove upstream branches 

Figure 3. Scale-free network construction and topological overlap visualization. (A) The left panel
shows a histogram of network connectivity (k). The right panel shows a log-log plot of the same
histogram. The approximate straight-line relationship and high model strength show approximate
scale free topology in the phosphopeptide expression data frame. (B) Phosphopeptide clustering
tree (dendrogram) obtained by hierarchical clustering of topological overlap matrix (TOM)-based
dissimilarity. The color rows below the dendrogram indicate module membership identified by
the three methods: colorStatic TOM, colorDynamic TOM, and colorDynamicHybrid TOM. Each
color represents a distinct module. (C) Heatmap plot of the topological overlap matrix. In the
heatmap, rows and columns correspond to single phosphopeptides, light colors (white) represent
low topological overlap, and progressively darker orange, yellow, and green colors represent higher
topological overlap. The corresponding phosphopeptide dendrograms and module assignment are
shown on the left and top using the colorDynamic TOM tree cutting method.

2.3.1. Weighted Peptide Co-Expression Network Analysis: Module–Module (Clustering
and TOM Dissimilarity) and Module–Learning (Pearson Correlation) Relationship

Module eigenpeptides (analogous to the module eigengene) represent the first prin-
cipal component of the expression (phosphopeptide Log2 intensity) data frame and sum-
marize the multidimensional expression profile into a single dimensional value (signed or
unsigned). Module eigenepeptides below 1 (blue boxes in Figure 4A) or above 1 (red boxes
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in Figure 4A) indicate that the peptides in a given module, for a given animal, are either
decreased or increased together.
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Figure 4. Turquoise and black linked module phosphopeptide expression profiles correlate with
learning index. (A) Complete-linkage clustering heatmap of module eigenpeptides across 20 animals
and 4 animal groups (Blast rTg4510, Blast NC, Sham rTg4510, and Sham NC). The eigenpeptide
range is shown in the color bar underneath the heatmap. (B) Peptide significance based on linear
correlation between module eigenpeptide and learning index (Null p value = 0.2) across 20 animals.
(C) Phosphopeptide intensity profiling of the rTg4510 4 blast animal (red star and red dashed line)
in relation to its group (rTg4510 blast; black circle) and both sham groups (non-carrier sham: green
downward arrow; rTg4510 sham: blue upward arrow). The sum difference between each turquoise
and black phosphopeptide in the rTg4510 4 animal and the three comparison groups were used to
identify 10 candidate phosphopeptides that may be related to the low learning index observed for
the rTg4510 4 blast animal following LIB exposure.

Nine module eigenpeptides across 20 animals (i.e., a total of 180 module eigenpeptides)
were detected using the colorDynamic TOM tree-cut method, complete-linkage clustering,
and Euclidian distance method, which are shown in Figure 4A (See module eigenpeptides
in Supplementary Table S6—Module eigenpeptides for each animal). Module eigenpeptide
dissimilarity, defined as 1—weighted correlation between module eigenpeptide in animal 1
and module eigenpeptide in animal 2 (iterated over all possible animal pairs), were used to
plot a cluster dendrogram (Figure 4B) where turquoise and black module–module linkage
(i.e., high correlation between module eigenpeptides) can be seen, amongst others.

In this study, the module significance (i.e., average of peptide significance for learning
index across 20 animals) was greatest in the linked turquoise and black modules (Figure 4B).
These modules may contain candidate phosphopeptides with expression patterns that
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represent phosphopeptidomic differences between animals (Figure 4A) and possibly BINT
sequelae following single LIB exposure.

These findings prompted us to inquire further into the significantly low turquoise and
black module eigenpeptides for the rTg4510 4 LIB-exposed animal (Figure 4A). This animal
also displayed the lowest learning index of all animals. The phosphopeptide intensities
in all 129 and 21 phosphopeptides in the turquoise and black modules, respectively, were
plotted for the rTg4510 4 animal and were compared with the average intensities of non-
carrier (n = 4) and rTg4510 unexposed sham controls (n = 5), and the remainder of the
rTg4510 animal group (n = 4) (Figure 4C). Larger distances of phosphopeptide intensities
between the rTg4510 4 blast animal and controls were identified as potential candidates
that may explain the poor learning performance in the rTg4510 4 LIB-exposed animal.

2.3.2. Weighted Peptide Co-Expression Network Analysis: Phosphopeptide Module
Connectivity Measure, Multidimensional Scaling, and Relationship with Learning Index

In order to elucidate the relationship between phosphopeptide expression profiles and
module assignment, a module eigenpeptide-based connectivity measure referred to as the
module membership (MM) was computed [48]. The MM was defined as the correlation
coefficient between the phosphopeptide Log2 intensities and the module eigenpeptide
across all 20 animals (Equation (1)):

(MM) kMEmodule(i) = cor(xi, MEmodule), (1)

where xi is the phosphopeptide expression profile of peptide i and MEmodule is the module
eigenpeptide of a selected module [48].

This implies that the intramodular phosphopeptide hubs (hubs have the highest k
connectivity) in turquoise and black modules tend to also display high correlation with
the module eigenpeptide. It was also discovered that turquoise and black PS with learning
index was highly correlated with the k connectivity (Figure 5B).
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Figure 5. Intramodular hub relationship and multidimensional scaling. (A) Module membership
raised to power 6 (y-axis) vs. intramodular connectivity (x-axis) for (left panel) turquoise and (right
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panel) black modules. Intramodular hubs for each module are located near the limit of connectivity
axis. (B) Gene significance (y-axis) vs. intramodular connectivity (x-axis) for (left panel) turquoise
and (right panel) black modules. (C) Multi-dimensional scaling plot in which colors are coded
corresponding to different modules (colors: turquoise = turquoise module; black = black module; red
= red module; yellow = yellow module; brown = brown module; green = green module; pink = pink
module) tend to correspond to “fingers”. Intramodular hubs are in the fingertips. (D) Volcano plot of
top 30 phosphopeptides (labels) weighted correlation coefficients (vertical dashed lines at −0.5 and
0.5 indicate threshold for significant negative and positive correlation, respectively) and weighted
correlation p values (horizontal dashed line at −log10 p value of 1.3 (p value = 0.05)) with learning
index (functional outcome). Red data points significantly increase with higher learning index (better
performance) while blue phosphopeptides significantly decrease with higher learning index.

Classical multi-dimensional scaling (MDS) was performed based on the TOMdissimi-
larity to visualize module structure, particularly with special interest in the turquoise and
black modules (using standard R function cmdscale) [48]. Classical MDS is analogous
to principal component analysis with the exception that in MDS, the distance between
nodes (phosphopeptides i and j) on a cartesian plane are computed, whereas in PCA, the
correlation between two nodes (xi and xj) are computed. It was observed that in the first
two scaling dimensions (analogous to principal components), intramodular hub (fingertips
in Figure 5C) distances in the turquoise and black modules were mostly superimposed with
a few intramodular hubs in the turquoise module displaying extreme topological overlap
(Figure 5C).

To identify phosphopeptides in our filtered expression dataset (564 phosphopeptides)
that display high correlation with learning index based on MM (module-eigenpeptide-
based connectivity measure) and PS (Pearson correlation with learning index), we per-
formed network screening (NS). NS utilizes both standard and network methods to relate
expression of a gene, protein, or phosphopeptide to a trait (e.g., learning index). It was
discovered that the top 30 phosphopeptides that displayed high correlation with learning
index were mostly (20/30 phosphopeptides) assigned to the turquoise (Rubcn, Itsn1, Pcm1,
Dlgap2, Bcl11b, Eif5b, Speg, Rims2, Palm3, Pgrmc1, Sytl5, Atp1a2, Eif5, Camkv, Ctnna1,
Nlgn3, Cyb5b) and black modules (Atxn2, Prkar2a, Cobl) (Figure 5D) while the other
10 phosphopeptides, were assigned to modules with low module significance with learning
(See NS results in Supplementary Table S7—Network Screening).

2.4. Weighted Peptide Co-Expression Network Analysis: Functional Characterization of Turquoise
and Black Learning-Related Modules

To functionally characterize the learning-related turquoise and black modules, gene
ontology (GO) enrichment analysis within the clusterProfiler package (RRID: SCR_016884;
version 3.0.4) of each module, separately, was performed (Figure 6A,B; See results in
Supplementary Table S8—Black and turquoise module GO). The top biological processes
(BP) were associative learning (Bonferroni corrected p value = 5.60 × 10−5) and protein
import (Bonferroni corrected p value = 8.36 × 10−3) for turquoise and black modules,
respectively. The top cellular components (CC) were myelin sheath and hippocampal
mossy fiber to CA3 synapse for turquoise (Bonferroni corrected p value = 7.49 × 10−12)
and black (Bonferroni corrected p value = 4.6 × 10−2) modules, respectively. The molecular
functions that were the most enriched in the turquoise module were scaffold protein
binding (Bonferroni corrected p value = 1.63 × 10−6), signaling adaptor activity (Bonferroni
corrected p value = 1.64 × 10−5), and molecular adaptor activity (Bonferroni corrected
p value = 1.72 × 10−5).

2.5. Post-Weighted Peptide Co-Expression Network Analysis: Receiver Operating
Characteristic Analysis

To determine if modules can predict learning level (Categorical dependent variable)
based on module eigenpeptides across all 20 animals to explain rTg4510 transgene and blast
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effects, we performed receiver-operating characteristics (ROC) analysis. It was discovered
that the turquoise and black modules, defined by associative learning and hippocampal
mossy fiber to CA3 synapse, were most predictive of learning level given the genetic
differences between the mice.
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Figure 6. Associative learning and hippocampal mossy fiber pathways define turquoise and black
modules. Gene ontology (GO) enrichment analysis of all phosphopeptides within (A) turquoise
(129 phosphopeptides) and (B) black (21 phosphopeptides) modules. A total of 366 and 2 GO terms
were found to be enriched (BH corrected p value < 0.05) in the turquoise module and black modules
respectively. A mus musculus reference genome was used as background in the r package enrichGO.

The positive state for the learning level was set to 4 (≥mean learning index, Figure 7)
for ROC prediction. Under the nonparametric assumption, the area under the curve (AUC;
test accuracy) for the turquoise and black modules (Null AUC = 0.5) were 0.726 (Asymptotic
95% Confidence Interval = 0.498–0.954; Asymptotic p value = 0.052) and 0.619 (Asymptotic
95% Confidence Interval = 0.312–0.926; Asymptotic p value = 0.447), respectively. The
maximum value of the Kolmogorov-Smirnov (K-S) metric (to assess model effectiveness)
were 0.500 and 0.476 for turquoise and black modules, respectively. The overall model
quality for turquoise and black modules were 0.50 and 0.31, respectively. The remainder of
modules displayed poor model accuracy, significance, and model effectiveness (K-S).
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Figure 7. Turquoise and black module eigenpeptides predict learning behavior in LIB exposed mice.
Eigenpeptides in modules across 20 animals were exported from WpCNA and imported into SPSS to
perform receiver operating characteristic analysis to predict learning scale (categorical). The actual
(positive) state was set to a learning scale of 4 (mean).
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2.6. Individual Level Analysis Identifies Phosphopeptides in Modules That Confer an Increased
Risk for Learning Deficits Following a Single LIB Exposure

Thus far, the turquoise (associative learning) and black (hippocampal mossy fiber
pathway) modules appear to be most predictive of learning level across all 20 LIB-exposed
animals. Given that our conditions are mild (46.6 kPa static overpressure), it is not sur-
prising that few animals displayed low learning levels. We thereby sought to identify
the candidate phosphopeptides related to these modules whose expression may confer
an increased risk for learning deficits following a single LIB exposure, in subacute phase
following exposure for the rTg4510 4 animal relative to other animals (Figure 8A). This
animal’s enhanced behavioral response to LIB exposure was not due to blast experiment
setting differences (Supplementary File S9); thus, we postulate that molecular response
differences may be involved. The cumulative distance was computed using the following
equation (Equation (2)):

Cumulative Distance = (I0 − avgIbt) +
(
I0 − avgIst

)
+

(
I0 − avgIsn

)
, (2)

where I0 is the intensity of a given phosphopeptide in the rTg4510 4 animal, Ibt is the
average intensity of the phosphopeptide in the rTg4510 LIB-exposed group (n = 5), Ist is
the average intensity of the phosphopeptide in the rTg4510 unexposed sham group (n = 4),
and Isn is the average intensity of the phosphopeptide in the non-carrier unexposed sham
group (n = 6).
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Figure 8. Cumulative distance and circularized topological network for the rTg4510 4 blast animal.
(A) The cumulative distance was computed for each of the rTg4510 4 blast animal’s phosphopeptides
(i.e., compared with rTg4510 blast, rTg4510 sham, and non-carrier animal group’s average intensities
for each phosphopeptide) within the turquoise (associative learning module) and black (hippocampal
mossy fiber pathway module) modules to rank the phosphopeptides in each module (high cumu-
lative distance = higher rank, low cumulative distance = lower rank). A dot plot was constructed
to summarize these findings for (B) turquoise and black modules (red = increased expression in
rTg4510 4 animal relative to comparison groups; blue = decreased expression relative to comparison
groups). (B,C) The top ten phosphopepetides with the greatest magnitude cumulative distances were
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(B) enlarged and (C) the most enriched GO term (by p value) for each was plotted in a circularized
topological network based on TOMsimilarity matrix. Nodes correspond to individual phosphopep-
tides and edges (cutoff for network = 0.5) correspond to the topological overlap or co-expression
between connected phosphopeptides within and between modules.

A dot plot was constructed to visualize the cumulative distance in the turquoise and
black modules where the most changed phosphopeptides are highlighted (Figure 8B). The
top ten phosphopeptides were considered candidates that may explain the blast rTg4510
4 animal’s poor learning performance. To visualize the co-expression interconnectivity
(topological overlap) of the top ten candidates in relation to the entire phosphopeptide
network, a circularized TOM similarity plot was constructed where candidate phosphopep-
tide interconnectivities with all module phosphopeptides can be seen (Figure 8C). Nodes
correspond to individual phosphopeptides and edges represent the topological overlap
between two connected phosphopeptides with an edge threshold of >0.5 (i.e., 1 is maximum
and 0 is minimum topological overlap). Five of the ten phosphopeptides (Mapk8ip3, Gab1,
Arhgap33, Gap43, and Slc1a2) in the turquoise module were increased in the blast rTg4510
4 animal relative to comparison groups, four were increased (Otub1, Elmo1, Ccm2, and
Trip12), and one phosphopeptide in the black module was decreased (Bcl2l13) 40 days
following a single LIB exposure. The most enriched GO term for each candidate was
plotted as well. These signaling pathways may underly the link between LIB exposure and
subsequent learning deficits in P301L mutant tau protein overexpressing rodents.

2.7. Group Level Analysis Using Protein Prioritization Identifies Blast-Relevant Phosphopeptides
Related to Abnormal Behavorial and Molecular Phenotypes

One-hundred and fifty phosphopeptides in the turquoise and black modules were
ranked (from 1 to 150) across five different comparison groups (or rank sets) by log2 fold
change and −log10 p-value in each rank set (Figure 9A). The integrative rankings for each
phosphopeptide were computed based on the sum of all their individual ranks in for each
rank set (i.e., 5 rank sets × 2 ranks per rank set = 10 ranks). The top 40 integrative ranks
were imported into STRING for peptide–peptide functional network construction and
annotation to identify the most enriched mammalian phenotypes (using Mammalian Phe-
notype Ontology (MPO)). These 40 identified phosphopeptides were among the turquoise
module, which is unsurprising given its size and predictive capabilities of cognitive perfor-
mance. Among these, the Arhgap33 phosphopeptide was the top ranked, and deemed the
most blast-relevant (Figure 9B). Other notable phosphopeptides identified were enriched
in abnormal synaptic transmission (MP: 0003635; FDR: 0.0247; Top ranked constituents:
Tbr1, Cacnb3, Stx7, Mapk8ip3, and Palm3), homeostasis/metabolism phenotype (MP:
0005376; FDR: 0.0044; Top ranked constituents: Tbr, Irs2, Prkra, Elmo1, Ccm2, Cacnb3,
Gab1, Fabp3, Csde1, Adcy6, Stx7, Atg4c, Hmgcl, and Mapk8ip3), and abnormal learn-
ing/memory/conditioning phenotypes (MP: 0002063; FDR: 5.5 × 10−4; Top ranked con-
stituents: Tbr, Cacnb3, Itsn1, Sipa1l1, and Pebp) (Figure 9C). Tbr (Rank: 14) and Cacnb3
(Rank: 24) were present in all three phenotypes and may be the link between LIB-induced
cognitive decline driven by metabolic disruption and synaptic pathology (Figure 9D).
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Figure 9. Identifying abnormal mammalian phenotypes in top-ranked phosphopeptides. (A) Scheme
of the rank-order statistics workflow to query the phosphoproteomic dataset for the most blast-
relevant phosphopeptides in the turquoise and black modules. (A) Functional annotation was then
performed to identify disease pathways representing abnormal phenotypes. (B) Rank-order statistics
was performed on five ranking sets (representing comparison groups: all blast vs. all sham; rTg4510
blast vs. rTg4510 sham; NC blast vs. NC sham; rTg4510 blast vs. NC sham; rTg4510 blast vs. NC
blast) containing two individual ranks in each (k = 10 ranking columns) for log2 fold-change (Red
bars; Fold-change) and −log10 p-value (Grey bars; p-value). (B) An integrative rank was assigned to
each molecular constituent based on the sum of their individual rankings (smaller sum = higher rank).
(C) Protein–protein networks were constructed based on functional and physical associations between
the phosphopeptides in STRING and edited in Cytoscape. (C) The top 40 ranked phosphopeptides
are colored blue while all other lower ranked phosphopeptides were colored in grey. (C) The edges
indicate the level of confidence supporting the association between two nodes (phosphopeptides).
(D) Venn diagram illustrating the distinctions and overlap of molecular constituents (labels inside
circles) between three enriched mammalian phenotypes (labels outside circles).

3. Discussion
3.1. General Overview

The findings presented in this study shed light on the intricate molecular networks
underlying BINT and its impact on cognitive function, particularly in the context of genetic
susceptibility to tauopathies. Through a comprehensive analysis integrating phosphopro-
teomics with behavior performance and network modeling techniques, several key insights
have emerged.

First, the study revealed significant alterations in phosphopeptide profiles following
LIB exposure, particularly in mice overexpressing the human tau P301L mutation. These
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alterations were distinct between LIB-exposed rTg4510 and nc mice, highlighting the
interplay between genetic predisposition and environmental insult in shaping molecular
responses to BINT. The observed hyperphosphorylation of tau at the pSer262 site in rTg4510
mice post-BINT suggests a potential mechanism linking blast exposure to tauopathy, which
warrants further investigation.

The study utilized machine-learning-driven capabilities to predict cognitive outcomes
based on phosphopeptide expression profiles. While predictions indicated reduced learning
in LIB-exposed mice irrespective of genotype, actual learning performances revealed
inconsistencies, particularly in rTg4510 mice where blunted responses to LIB were observed.
This disparity unveils the complexity of the relationship between molecular changes and
behavioral outcomes, highlighting the need for further refinement of predictive models.

Importantly, WpCNA identified distinct phosphopeptide modules associated with
cognitive function, including modules linked to associative learning and mossy fiber
pathways. These modules emerged as the most predictive of learning levels, highlighting
their potential as biomarkers for cognitive impairment following BINT.

Furthermore, individual-level analysis identified specific phosphopeptides within
these modules that conferred an increased risk for learning deficits following LIB ex-
posure, particularly in rTg4510 mice. The identification of candidate phosphopeptides,
such as Mapk8ip3 and Arhgap33, provides potential targets for future therapeutic in-
terventions aimed at mitigating the cognitive sequelae of BINT, especially in genetically
susceptible populations.

Group-level analysis using protein prioritization methods identified blast-relevant
phosphopeptides, most notably Arhgap33, associated with abnormal behavioral and molec-
ular phenotypes. These findings further unveil the multifaceted nature of BINT-induced
learning deficits and provide insights into potential therapeutic targets for mitigating its
adverse effects on cognitive function.

Taken together, this study elucidates the complex molecular mechanisms underlying
BINT-induced cognitive decline, particularly in the context of genetic susceptibility to
tauopathies. By integrating advanced analytical techniques, it offers valuable insights into
potential therapeutic targets and biomarkers for assessing and mitigating the long-term
consequences of BINT, thus advancing our understanding and management of this pressing
public health concern.

3.2. Elevated Tau-ser262 Following LIB Exposure

As expected, most rTg4510 tau phosphopeptides were increased by mutant tau trans-
gene expression, but surprisingly, we identified one LIB-induced tau phosphopeptide
(SKIGSTENLK, Supplementary Table S1b—MS2 significant phosphopeptides_rTg4510),
which reflected increased ser262 phosphorylation in the second microtubule (MT) binding
domain. Increased tau ser262 phosphorylation prevents MT binding and could indicate ac-
tivation of one of the MARK family proteins. Although we did not find direct phosphosite
evidence of increased activation of a MARK, studies have found that CamKIIa phospho-
rylation at the autoactivation site (Thr286) was significantly elevated in the LIB rTg4510
consistent with elevated Ca++ flux and glutamate-dependent excitotoxicity [52]. CamKIIa
can directly or indirectly increase tau ser262 phosphorylation [53] and tau-dependent neu-
rodegeneration which was reported to occur with axonal mitochondrial insufficiency [54],
a feature at the intersection of tauopathy and post-TBI metabolic deficits.

3.3. WpCNA Module Eigenpeptides Predict and Correlate with Learning Behavior

Studies using this weighted co-expression network approach in the open-field blast set-
ting have not been reported as of yet. Weighted co-expression network analysis has been used
to predict prognosis in patients with colorectal adenocarcinoma and glioblastoma [55,56], to
identify key genes related to HBV-associated hepatocellular carcinoma [57], and to classify
individual humans into TBI or control groups based on WGCNA results [58]. Using this
approach, we identified a key phosphopeptide module (turquoise module) that predicted
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learning index (Figure 7). Interestingly, functional annotation of the 129 phosphopeptides
in this module revealed associative learning and myelin sheath to be the most enriched
GO biological process and cellular component (Figure 6A). This is consistent with TBI
and tauopathy-induced axonal damage reflected in individual phosphopeptide expression
linked to disrupted axonal transport [59].

Our findings provide support that WpCNA is sufficient to identify groups of phos-
phopeptides, represented as co-expression modules, that correlate with, and can predict
real learning trends in animals. The turquoise and black modules (described below in
Sections 3.4.1 and 3.4.2, respectively) displayed the greatest correlation strength with learn-
ing index and were clustered together based on their high intermodular topological overlap
(Figure 4B). Support for these observed correlations with learning is that they were vali-
dated using MDS, which showed significant overlap between the molecular hubs of these
two modules (Figure 5C). These modules displayed high predictive ability for learning
levels. However, the overall ROC model accuracy and quality was most significant in the
turquoise module.

3.4. WpCNA Individual-Level Analysis

This study identified individual-level phosphopeptidomic changes that may confer
learning deficits following a single LIB exposure. The rTg4510 4 animal was found to
have a globally distinct learning index, indicating that this mouse exhibited heightened
vulnerability in tau-blast interactions, which was associated with more severe learning
deficits (Figure 2C). Notably, in the rTg4510 BINT reduced absolute value of the module
eigenpeptide, but lowered it disproportionately in this animal. This animal also displayed
the lowest learning index for all 20 animals. Our blast experimental results suggest this
animal experienced near-identical static and reflective overpressures as other animals and
is not a justification for its distinct response (Supplementary File S9). This suggests that
not only are there significant group and transgene effects of LIB in mutant tau mice on
phosphorylation (Figure 2A), but even with consistent pressures, mice within the rTg4510
BINT group show differential vulnerability to a single LIB exposure in learning defects and
the phosphopeptidome.

3.4.1. Turquoise Module

The turquoise-module-derived combined analysis across all the mice highlighted
five increased phosphopeptides (Mapk8ip3, Gap43, Gab1, Arhgap33 and Slc1a2) and four
decreased phosphopeptides (Otub1, Elmo1, CCM2 and Trip12) in the turquoise module
for the rTg4510 4 animal relative to all other animals (Figure 8A). Mapk8ip3 (JIP-3) is a
scaffold protein regulating JNK activation with rare missense mutations causing cognitive
deficits [60] implicated in the regulation of axonal transport of dynein and kinesin-1 and
bi-directional cargo [61,62], including lysosomes [63]. ROS-responsive ASK1 phosphory-
lates JIP-3 to enhance scaffolding interactions with SEK1/MKK4, MKK7, and downstream
JNK3, promoting neurodegenerative JNK3 activation [64]. Consistent with a role in our
model, TBI induces Rock1-dependent neurodegeneration [65] and phosphorylation at
three sites in JIP-3:Ser318, Ser368, and Ser369 [66], resulting in JNK activation. Gap43 is
well known as a primary JNK-targeted axonal phospho-protein [67] with elevations in
AD CSF associated with tauopathy that predict progression [68]. Gab1 is also an adaptor
protein with phospho-site-mediated coupling to SHP2 upstream of excitatory neuronal
ERK activation and synaptic plasticity [69]; it is implicated in cognitive deficits in AD [69].
Arhgap33/Snx26 interacts with Sort1 to play a central role in axonal–synaptic TrkB traf-
ficking [70] required for BDNF neuroprotective signaling. As a brain-enriched RhoGEF,
it also interacts with rac>Cdc42 and control of dendritic spine formation and synaptoge-
nesis [71]. Slc1a2 (Eaat2) is a glutamate transporter with a primary role in presynaptic
and astrocytic glutamate reuptake and protection from excitotoxicity associated with TBI,
tauopathy, and AD. PKCalpha is elevated by impact [72] and blast TBI [73] and phospho-
rylates Slc1a2/EAAT2 at Ser562/563 which induces glutamate excitotoxicity [74]. Otub1
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is a Tau deubiquitinase in vitro and in vivo, involved in the formation of pathological
tau, including small soluble oligomeric forms [75]. CK2 phosphorylation of cytosolic
Otub1 at ser16 induces nuclear translocation [76]. ELMO1 is a Dock-regulated RacGEF
that regulates Rac activation and control of actin assembly in dendritic spines [77], while
NMDAR-mediated LTD induces KIF21B binding with Elmo1 and its translocation out of
dendritic spines [78]. Known phospho-regulation is through Tyro3, Axl, and Mer receptor
tyrosine kinases that phosphorylate Tyr18 and Tyr48 to promote RAC activation. TBI-
induced Rock1 phosphorylation (for example of JIP-3) is inhibited by CCM2 [79] which acts
as a scaffold for Rac1, actin, MEKK3/MAP3K3, and MKK3/MAP2K3 upstream of MAPKs
and has multiple phosphorylation sites that bind major tau kinases including GSK3beta,
CDK5, CK2, and Erk2. Finally, Trip12 is an E3 ubiquitin ligase with rare loss-of-function
mutations implicated in cognitive deficits and autism [80]. Trip12 expression is elevated in
human blood samples after controlled exposure to moderate blast in vivo [81]. Trip12 has
3 known phospho-sites and 76 interactors; however, its mechanistic role in LIB-induced
cognitive deficits in rTg4510 remain unclear.

3.4.2. Black Module

In the black module, Bcl2l13 was reduced in the rTg4510 4 animal relative to all other
animals (Figure 8B). The brain deficiency of Bcl2l13 causes reduced mitophagy [82], while
loss of an active p-Bcl2l13 predicts downstream reduction in mitophagy that could con-
tribute to increased mitochondrial damage in tauopathy models and human tauopathies.
Overall, our individual level phosphoproteomic analysis suggests plausible roles for mul-
tiple pathways potentially contributing to tau-related, BINT-induced cognitive deficits
worthy of more detailed confirmation and follow-up exploration.

3.5. WpCNA Group-Level Analysis by Blast-Relevance Identified Phosphopeptides Related to
Cognitive Decline, Synaptic Dysfunction, and Metabolic Disruption

Group-level analysis was performed to identify the turquoise and/or black module
phosphopeptides that were most changed across five different blast vs. sham comparison
groups (Figure 9B). Rank order statistics identified 40 blast-relevant phosphopeptides,
17 of which were related to abnormal learning and memory, synaptic dysfunction, and
homeostasis and metabolic disruption phenotypes (Figure 9B). Among these, Otub1, Ccm2,
Mapk8ip3, and Gab1 were also identified in the individual-level analysis to have high
cumulative distance in the rTg4510 4 animal (Figure 8A). Notably, these phosphopeptides
were all related to metabolic disruption in the group-level analysis (Figure 9C,D), though
the literature supports their additional contribution to tauopathy, cognitive decline, and
synaptic dysfunction [60,69,75]. Arhgap33 was not related to the selected phenotypes
in Figure 9C,D; however, it is important to mention that this phosphopeptide was the
top ranked (Figure 9B) and also identified through individual level analysis (Figure 8A).
The most significant changes were in the rTg4510 blast vs. nc sham and rTg4510 blast
vs. nc blast comparison groups (Figure 9B), indicating this phosphopeptide is associated
with tau-blast interactions and possibly driving the distinct response in the rTg4510 4
animal. Arhgap33 interacts with sortilin cooperatively to facilitate trafficking of TrkB to
synapses which is impaired in schizophrenia [70]. Functional knock-out of this protein
in mice alters social behavior and cognition related to an autism-like phenotype [70].
These mice also have reduced dendritic spine density in the dentate gyrus and reduced
firing frequency which have been linked with working memory deficits, learning deficits,
habituation abnormalities, and anxiety [70]. This may be linked to the altered expression
of phosphopeptides in the CA3 mossy fiber pathway network (Figure 6B; black module).
Additionally, Arhgap33 displayed high diagnostic prediction of metabolic syndrome in
patients with polycystic ovarian syndrome, which may be due to disrupted regulation of
glucose transport, supporting its role in metabolic disruption [83]. However, this is the first
study demonstrating its potential role in tau-related, BINT-induced cognitive decline.
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3.6. Limitations
3.6.1. Other Genetic Risk Factors Related to BINT-Induced Cognitive Decline

It is important to consider whether genetic markers other than tau play a role in BINT-
induced cognitive decline. Dr. T. Wooten and colleagues (Boston VA and Tufts University)
assessed neuropsychiatric function in 488 post-9/11 veterans with chronic blast exposure
and discovered that those with a positive Apolipoprotein ε4 (Apo ε4) displayed significantly
worse performance in the domain of memory than Apolipoprotein ε4 negative veterans [84].
Furthermore, Apoε4 positive veterans exposed to close-range (<10 m) blast overpressures
were found to have significantly more white matter degradation than Apoε4-negative blast
exposed veterans, thus unveiling a potential interaction between blast physics and AD
genetic markers [85].

3.6.2. Ongoing External Validation

Limitations of the study also include that only males were studied. The samples
sizes allowed only statistical detection of medium effects. It is important to consider
whether using biochemistry methods such as Western blot, enzyme-linked immunosorbent
assay (ELISA), and/or immunoprecipitation as our ongoing studies. Due to the inherent
limitations in omics-based biomarker detection from brain tissues, external validation in the
circulating biofluids is required to confirm that a candidate biomarker’s altered expression
is not a false positive.

3.6.3. CognitionWall Platform

The use of the CognitionWall platform for assessing learning abilities in mice post-blast
introduces inherent limitations. While this system provides a controlled and monitored
environment, it may not fully represent the complexity of cognitive functions impacted
by TBI. Additional behavioral paradigms and cognitive assessments should be consid-
ered to obtain a more comprehensive understanding of the cognitive sequelae following
blast exposure.

3.6.4. WpCNA Approach

WpCNA relies on correlation metrics for network construction, and its outcomes are
influenced by the choice of parameters such as soft-thresholding power (β). While we
utilized a β value that resulted in a scale-free network, the robustness of this choice may
vary in different experimental settings. Readers should exercise caution in interpreting
results and consider the sensitivity of the analysis to parameter adjustments. WpCNA
assumes linear relationships between variables, and the biological processes underpinning
phosphoproteome changes and learning abilities may exhibit non-linear dynamics. This
assumption limits the ability of WpCNA to capture intricate non-linear associations within
the data. Integrating complementary analytical approaches may provide a more holistic
understanding of the complex relationships involved.

3.7. Future Studies

Future studies should aim to address the limitations identified in this investigation
to advance our understanding of BINT and its impact on cognitive function. Firstly,
further exploration of genetic risk factors beyond tau, such as Apo ε4, is warranted to
elucidate their role in BINT-induced cognitive decline. This could involve large-scale cohort
studies to validate the interaction between blast physics and AD genetic markers. Ongoing
external validation of identified disease-modified phosphopeptides is essential to confirm
their significance as biomarkers for poor cognitive outcomes. While the CognitionWall
platform provides valuable insights into learning abilities post-blast, additional behavioral
parameters and cognitive assessments should be considered to capture the full spectrum of
cognitive impairments following BINT. Additionally, we will pursue the study of sex and
age impacts on behavioral and molecular responses to BINT. The limitations of the WpCNA
approach should be addressed by integrating complementary analytical methods. Future
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studies could explore non-linear associations within the data and assess the sensitivity of the
analysis to parameter adjustments, thus providing a more comprehensive understanding
of the complex molecular networks underlying BINT-induced cognitive decline.

4. Materials and Methods
4.1. Open-Field Primary LIB in Mice

All animal experiments were conducted in accordance with the approved protocols
for the Care and Use of Laboratory Animals and the Animal Research: Reporting of In Vivo
Experiments (ARRIVE) guidelines at the University of Missouri. The mice were housed in
standard home-cages with bedding, maintained on a 12-h light/dark cycle, and provided
with ad libitum access to food and water throughout the study period. The open-field LIB
exposures were performed at the Missouri University of Science & Technology, following
established procedures as previously reported [4,11,13,14,40,43,44,86]. The study included
a total of 20 male mice: 10 rTg4510 (RRID: IMSR_JAX:024854) [Tg(CaMKIIa-tTA)/Mmay
and Fgf14/Tg(tetO-MAPT·P301L)4510 mice] and 10 non-carrier (RRID: IMSR_JAX:019019)
mice in the same C57BL/6J background recommend by and purchased from Jackson
Laboratory (Bar Harbor, ME, USA), both aged 2 months. The mice were randomly divided
into four experimental groups: five rTg4510 mice and six non-carrier mice exposed to LIB;
five rTg4510 mice and four non-carrier mice were subjected to sham procedures. Mice in
the sham control groups underwent identical anesthesia procedures without LIB exposure.
Prior to the LIB exposure, the mice were anesthetized using an intraperitoneal injection of
a ketamine/xylazine mixture, with a dosage of 8 µL/g bodyweight (12.5 mg/mL ketamine
and 0.625 mg/mL xylazine). To immobilize the mice during LIB exposure, they were
placed in upright positions in 3D-printed chairs made of carbon reinforced nylon (Nylon X;
Matterhackers, Lake Forest, CA, USA), as previously described [40]. Elastic mesh bands
were employed to restrict head and body movements. The chairs were designed with
a streamlined structure to minimize shock impingement and reflection while providing
adequate thoracic support and preventing head and trunk movements during primary LIB
exposure. The mouse holders within the 3D-printed chairs were positioned 3 m away from
the detonation site of a 350 g C4 explosive generating a magnitude of 46.6 kPa (6.67 psi) peak
overpressure, a maximal impulse of 60 kPa·ms (8.70 psi·ms) (Scheme 1, #1) [40]. Following
LIB exposure, the mice were returned to their original cages. After a recovery period from
anesthesia, mice were closely monitored for at least 15–30 min, during which they were
allowed access to food and water ad libitum to facilitate their post-exposure recovery.
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4.2. Automated Assessments of Learning Ability in a Home-Cage Environment

Learning index in the four animal groups was measured using the PhenoTyper home-
cages (Model 3000; Noldus Information Technology, Wageningen, The Netherlands) and
CognitionWall system (Noldus Information Technology, The Netherlands), as previously
described (Scheme 1, #2) [87–89]. Prior to conducting the CognitionWall assessments, all
mice were acclimated to the PhenoTyper home-cages. They were placed in the PhenoTypers
for three days to familiarize them with the home-cage environment. At 3:00 p.m., regular
food chows were removed, and at 3:45 p.m., the CognitionWall devices were inserted
into the PhenoTypers at the back-left corner. The CognitionWall had three entrances
(left, middle, and right) placed in front of the food dispenser. Mice were required to
enter the CognitionWall through the left entrance to receive a reward of one food pellet
every fifth time of the correct entry, following a Fixed Ratio 5 schedule (FR5 schedule)
during the experiment. Mouse behavior was automatically recorded using a 24/7, infrared-
sensitive video-based observation system located on the top unit of the PhenoTypers.
The mice were continuously monitored for 48 h. All animal tracking data were acquired
through EthoVision XT software v14 (RRID: SCR_000441; Noldus Information Technology,
The Netherlands) and sampled at a rate of 15 fps. Learning index for day 1 and 2 of
discrimination learning was calculated as previously described [88]; however, to evaluate
the growth in learning over the course of 48 h, we subtracted learning index day 1 from
learning index day 2 (Equation (3)).

Learning Index (Day2 − Day1) =
(CED2 − IED2)

(TED2)
− (CED1 − IED1)

(TED1)
, (3)

where CE = correct entries; IE = incorrect entries; TE = total entries; D2 = day 2; D1 = Day 1.
For logistic regression only, the learning index continuous variable was transformed into a
categorical learning “scale” by plotting a normal distribution of the learning index where
each learning level was determined by the number of standard deviations to the left or
right of the mean.

4.3. Tissue Collection and Protein Extraction

Mice were sacrificed at 40 days post-injury (dpi). Brains were dissected and processed
as described previously [43,90]. The brain tissue of the frontal cortex was collected for
analysis (Scheme 1, #3). Briefly, sample lysis buffer (2% sodium dodecyl sulfate [SDS], 0.5
M tetraethylammonium bicarbonate [TEAB], pH 8.5 and protease inhibitor cocktail) was
added to each tissue specimen. Specimens were homogenized by Glas-Col stringer 099C
K43 (Glas-Col LLC, Terre Haute, IN, USA) and centrifuged at 17,000× g for 20 min at 4 ◦C.
The supernatant was collected and then precipitated by cold acetone.

4.4. Protein Digestion for 4-D Tandem Mass Spectrometry

Each protein sample (n = 20) was centrifuged and washed with 80% acetone twice, and
protein pellets were then resuspended with 6 M urea, 2 M thiourea, and 100 mM ammo-
nium bicarbonate. Protein was quantified using the Pierce 660 nm Protein Assay method
following the microplate measure instructions in the manual. A total of 700 µg of protein
from each sample was reduced and alkylated. Then trypsin (ratio 1:50 trypsin: protein,
w/w) was added for digestion at 37 ◦C overnight. Digested peptides were purified by
Pierce C18 tips. A total of 5% digested peptides were used for total proteome analysis. The
remaining 95% peptides were subjected to phosphopeptide enrichment by High-Select™
TiO2 Phosphopeptide Enrichment Kit (Cat #: A32993; Thermo Fisher Scientific, Waltham,
MA, USA) (Scheme 1, #4). The pooled samples were fractionated by Pierce High pH
Reversed-Phase Peptide Fractionation Kit according to the manual instructions. For phos-
phorylated peptides, five fractions were collected (5%, 7.5%, 10%, 15% and 50% ACN). One
microliter of suspended peptide was separated on a C18 column (20 cm × 75 µm × 1.7 µm)
with a step gradient of acetonitrile at 300 nL/min. Initial conditions were 1% B (A: 0.1%
formic acid in water, B: 99.9% acetonitrile, 0.1% formic acid), followed by 34 min ramp
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to 17% B, and then 17% to 25% B over 8 min, 25–37% B over 6 min, gradient of 37% B to
80% B over 4 min, hold at 80% B for 4.5 min, back to 1% in 0.5 min, hold at 1% B for 3 min.
Total run time was 60 min. For data-dependent acquisition (DDA), MS data were collected
in positive-ion data-dependent PASEF mode over an m/z range of 100 to 1700 Da and
ion-mobility range of 0.57 to 1.6 1/k0. During MS/MS data collection, each TIMS cycle
included 1 MS + an average of 10 PASEF MS/MS scans, the total time per cycle is 1.16 s.
For DIA MS data were collected in positive-ion data-independent PASEF mode over an
m/z range of 400 to 1200 Da and an ion-mobility (IM) range of 0.57 to 1.47 1/k0. A total of
64 DIA-PASEF windows were used (25 m/z steps and 0.18 IM steps) with two collision
energies based on IM.

4.5. Spectral Library Generation, Phosphopeptide Identification, and Raw Data Processing

Five fractions (5%, 7.5%, 10%, 15% and 50% ACN) analyzed by DDA acquisition were
used for library build-up. The library was built using DDA data by Pulsar in Spectro-
naut, filtered with PSM/peptide/protein FDR 1%. The protein database of Uniprot mouse
protein database of up00000589 (17,058 items) and human tau protein sequence was em-
ployed. The following parameters were used: trypsin-specific digestion, 2 missed cleavages,
carbamidomethylation on Cys as fixed modification, acetylation on protein N-term, and
oxidation (M) as variable modifications. (For phosphopetides library, phospho(STY) was
also added to the variable modification. DIA data were searched using Spectronaut with
the spectra library generated by Pulsar. The precursor/protein Q-value cutoff was 0.01.
Quantitation type of MS2 area was chosen. Data filtering was set to Q-value sparse (for
phosphopetides analysis, PTM localization probability cutoff was set to 0.75). The data
were normalized using the sum-normalization method. Raw output data including a col-
umn for phosphopeptide identifiers and 20 columns for phosphopeptide log2transformed
intensities across all 20 samples were used as input for WpCNA. Prior to WpCNA, behavior
prediction was performed based on phosphoprotein expression using IPA machine learning
capabilities (Scheme 1, #5).

4.6. Processing of Expression (Phosphopeptidome) and Functional Outcome (Learning Index)
Datasets for WpCNA

WpCNA was conducted in accordance with previously described methods [47]. Raw
MS2 expression data (log2transformed phosphopeptide data) and learning index data
frames were imported into RStudio (RRID: SCR_000432; version: 2023.12.1+402) for
WpCNA (RRID: SCR_003302) (Scheme 1, #6). Prior to module detection, a cluster tree
dendrogram using hierarchical clustering methods was created to conceptualize the relation-
ship between blast conditions and different genotypes with learning index, highlighting the
functional outcome differences within and between all 4 animal groups. Marginal Pearson
correlation was adopted as a standardized gene screening method, to screen phosphopep-
tides that do not correlate with learning index across all 20 animals. Phosphopeptides were
removed from the expression data frame if Pearson coefficient was I ≤ 0.5.

4.7. Adjacency Matrix Construction and Validation of Scale-Free Topology

An adjacency matrix (A) or connection matrix can be defined as applying a soft-
thresholding power parameter (β ≥ 1) to the absolute value of the pairwise correlation
(similarity matrix, sij) between phosphopeptides (xi, xj) (Equations (4) and (5)). This has
proven to yield more robust results than unweighted networks [50]. An adjacency matrix
converts the original expression matrix [x1, x2 . . . xn] to a symmetrical square matrix (xn · xn)
with values 0 and 1 indicating no connection or connection between two phosphopeptides.
This will be referred to as the “co-expression” matrix

sij =
∣∣cor

(
I, xj

)∣∣ (4)

Aij = (sij)
β (5)
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where β is chosen according to scale-free topology criterion; if data meets scale free topology
criterion, the power law is achieved, indicating that the vast majority of nodes (phospho-
peptides) have very few connections, while a few important nodes (hubs) have a huge
number of connections as is the case in most biological samples [50]. To determine whether
the phosphopeptide expression data frame meets the scale-free topology criterion, a new
variable, k (network connectivity), was used in place of Aij and sij. Applying a logarith-
mic transformation to Equation (5), one can see that the adjacency network connectivity
is directly proportional to the similarity network connectivity (Equation (6)). Scale-free
topology is achieved where plotting Log(Aij) vs. Log(sij) or Log(Ak) vs. Log(sk) yields a
straight line. Importantly, β = 8 was used for this proteomic study because it was the only
value for β where scale-free topology was achieved.

Log(Ak) = β(Log(sk)) (6)

4.8. Construction of Topological Overlap Matrix (TOM)

While the adjacency matrix considers two pairs of phosphopeptides in isolation to
assess weighted similarity, the topological overlap matrix considers two pairs of phospho-
peptides in relation to all other phosphopeptides in the dataset. If two nodes (xi and xj)
are said to have topological overlap, they are connected to the same group of nodes (xu).
The TOMdist function in r computes the topological overlap of the xn · xn square adjacency
matrix using Equation (7).

TOMij(A) =
∑u ̸=i,j aiuauj + aij

min
(

∑ u ̸=iaiu, ∑ u ̸=jaju

)
+ 1 − aij

(7)

where the topological overlap between nodes i and j is a function of the adjacency between
nodes i and j (aij), adjacency between node i and another node u (aiu), and the adjacency
between node j and node u (aju). TOM is a measure of weighted interconnectedness
between two phosphopeptides and similar to adjacency, in that it also outputs values of 0
and 1. For WpCNA, TOM is referred to as the TOM similarity.

4.9. Detection of Phosphopeptide Module Membership

Modules in the weighted gene co-expression network analysis (WGCNA) create new
variables (e.g., eigengene, eigenpeptide) within the first principal component that rep-
resents the expression of a subset of interconnected nodes [50]. Hierarchical clustering
was used to cluster phosphopeptides by topological overlap. Phosphopeptide clusters
were grouped into modules based on the cutting method chosen and the tree cut height.
Three cluster tree cutting methods such as colorstaticTOM, colorDynamicTOM, and col-
orDynamicHybridTOM were compared. Phosphopeptides that do not fit into a distinct
module are grouped into the grey module. Phosphopeptide expression profiles within a
given module can be summarized by the module eigenpeptide which can be utilized in
linear-mixed models and Bayesian networks [50]. Phosphopeptide module members were
characterized using a STRING (RRID: SCR_005223; version: 12.0).

4.10. Relating Module Eigenpeptide to Learning Index

Peptide screening was performed to correlate phosphopeptide expression with learn-
ing index for all 20 animals by computing the marginal Pearson correlation and p value
between phosphopeptide Log2 transformed intensities and learning indices. To identify
modules that are related to learning index, WpCNA performs a standard Pearson correla-
tion between each log2-transformed phosphopeptide intensity for each module and the
learning level across all 20 animals which we refer to as the peptide significance, identical
to gene significance; the module significance is computed by taking the average of all
of its peptides significances (Scheme 1, #6). Network screening was then performed to
identify module phosphopeptides with high individual weighted and unweighted Pearson
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correlation with learning index (Scheme 1, #6). The weighted Pearson correlation factors in
peptide significance and module membership features of each phosphopeptide for each
module. To determine whether module eigenpeptides (independent variables) can predict
a learning index, a multiple logistic regression was performed (Scheme 1, #6). And a plot
of the receiver-operating characteristics (ROC), which predicts outcome (or dependent
variable, e.g., learning index) based on the value of the independent variables (module
eigenpeptides for each module), was constructed to visualize model fitness and the area un-
der the curve (AUC); AUC p value and goodness-of-fit were computed to identify modules
that were predictive of learning index.

4.11. Statistical Methods
4.11.1. Behavioral Analysis

The discriminatory learning index was computed using Equation (3). Group-level
statistical comparison tests for leaning index differences were assessed using a One-Way
ANOVA (RRID: SCR_002798; GraphPad Prism; version: 10).

4.11.2. MS2 Quantitative Proteomics

DIA-PASEF MS2 data was searched using Spectronaut (version: 15.6) with the spectra
library generated by Pulsar. The precursor/protein Qvalue cutoff was 0.01. Quantitation
type of MS2 area was chosen. Data filtering was set to Qvalue sparse (for phospho-
petide analysis, PTM localization probability cutoff was set to 0.75). Raw output data
including a column for phosphopeptide identifiers and 20 columns for phosphopeptide
log2transformed intensities across all 20 samples were used as input for WpCNA. Group
level LIB phosphoproteomic MS2 intensity differences were assessed by performing a
two-tailed Student’s t-test between blast and sham animal groups for both genotypes. Fold
change was calculated by dividing LIB-exposed non-carrier or rTg4510 Log2transformed
intensity by unexposed sham non-carriers or rTg4510 mice, respectively.

4.11.3. ROC Analysis

To assess whether module eigenpeptides (i.e., summary values of each animal’s phos-
phopeptide expression in that module) can sufficiently discriminate between non-carrier
and rTg4510 LIB-exposed and unexposed sham controls’ learning level, we performed ROC
analysis under nonparametric assumption. Independent and dependent variables were set
to the module eigenpeptides for each animal (n = 20) and their learning level, respectively.
The positive “actual state” was set to 4.0, the mean learning level (Figure 2A). Evaluation
of the models’ strength was assessed by observing the area under the curve (AUC), where
if AUC = 0.5, the model performs no better than at random. Overall model quality was
assessed using the Kolmogorov-Smirnov (K-S) metric. The K-S statistic is often used to
quantify the separation between the true positive rate (sensitivity) and the false positive rate
(1 − specificity) across different classification thresholds [91]. The K-S statistic is calculated
by identifying the maximum vertical distance between the ROC curve and the diagonal
line (representing random chance). The combination of the Kolmogorov-Smirnov (K-S) test
and the AUC/ROC curve provides a more detailed evaluation of model performance [91].
These analyses were performed in SPSS (RRID: SCR_002865; version 29.0.2.0).

5. Conclusions

In conclusion, our study demonstrates that the WpCNA module eigenpeptides derived
from the phosphoproteomic landscape effectively predict learning behavior in rTg4510
mice, a model exhibiting accelerated tau pathology. The identified turquoise and black mod-
ules, characterized by increased phosphopeptides associated with learning deficits, were
validated through ROC modeling, affirming WpCNA’s ability to discern phosphopeptide
patterns indicative of cognitive decline. Notably, our investigation into the molecular mech-
anisms following LIB exposure revealed elevated phosphorylation of tau at Ser262, coupled
with increased CamKIIa phosphorylation, indicating a potential link between BINT, tau
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aggregation, and synaptic excitotoxicity. The WpCNA analysis further uncovered key
phosphopeptides including Arhgap33 through individual and group level analysis that
were associated with cognitive decline and tauopathy, synaptic dysfunction, and metabolic
disruption, shedding light on potential therapeutic targets guided at associative learning
and CA3 mossy fiber pathways. Our findings reveal the potential of phosphoproteomic
approaches, particularly WpCNA, in unraveling intricate molecular networks underlying
learning deficits in the context of tauopathy and BINT. Further validation and exploration
of these identified pathways hold promise for advancing our understanding of the interplay
between ADRD genetic risk factors, phosphoproteomic network alterations, and cognitive
outcomes following BINT.
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