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Abstract: Chronic rhinosinusitis (CRS) is characterized by sinonasal mucosal inflammation. Staphy-
lococcus aureus (S. aureus) is associated with severe CRS phenotypes. Different animal models have
been proposed to study the association of CRS and S. aureus. However, current animal models are
expensive due to the use of large animals, have high barriers to ethics approval, or require invasive
surgical intervention, necessitating a need for a model that can overcome these limitations. This study
aimed at establishing a reliable and efficient rat lymphoplasmacytic inflammatory model for rhinosi-
nusitis. Sprague Dawley rats received a daily intranasal application of 20 µL of saline, S. aureus CI-182
exoprotein (250 µg/mL), or exoprotein CI-182 in combination with S. aureus clinical isolate (CI-908
or CI-913) 108 colony-forming unit (CFU)/mL. The rats’ sinuses were harvested at 1 and 2 weeks
post-intervention. The CFU and histopathologic examination of inflammation were evaluated. S.
aureus clinical isolates CI-908 or CI-913 in combination with the exoprotein (CI-182) had higher CFUs
and caused persistently higher inflammation at both the 1 and 2-week post-intervention compared
to the exoprotein and saline group. The observed inflammatory cell type was lymphoplasmacytic.
This study provided evidence that the combination of a S. aureus exoprotein with S. aureus induces
inflammation that persists for a minimum of two weeks post-intervention. This model is the first
known animal model to create the lymphoplasmacytic inflammation subtype seen in CRS patients.
This offers a cost-effective, accessible, non-invasive, and easy-to-replicate model to study the causes
and treatment of such inflammation.

Keywords: Staphylococcus aureus; chronic rhinosinusitis; lymphoplasmacytic inflammatory response;
rodent model

1. Introduction

Chronic rhinosinusitis (CRS) is characterized by the inflammation of the mucosal
lining of the paranasal sinus [1–4]. Approximately 10% of Western populations are affected
by this disease [5]. Various studies have linked S. aureus to the CRS pathophysiology,
in particular the more severe disease phenotypes [6,7]. S. aureus is the most frequently
cultured bacteria in patients with CRS exacerbation [8] and influences inflammation by
disrupting epithelial barrier function, impairing mucociliary clearance and inducing innate
and adaptive immune responses, which may result in polyp formation [6]. Clinically,
rhinosinusitis can be classified according to the duration of symptoms, including acute,
subacute, or chronic [9,10]. Acute rhinosinusitis is typically virally mediated and lasts for
2–3 days. When symptoms persist beyond 5–7 days, secondary bacterial superinfection is
thought likely and, in these patients, neutrophilic inflammation predominates [11]. CRS, on
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the other hand, is characterized mainly by the Th1, Th2, and Th17 inflammatory responses.
Recently, focus on the understanding of CRS has shifted to endotyping, with further in-
vestigation into the underlying inflammatory types and the associated disease outcomes
intensifying. On a cellular level, five phenotypes of nasal polyps have been reported,
including eosinophilic, neutrophilic, lymphocytic, plasma cell, and a rarer lymphoplasma-
cytic predominant phenotype [12]. Attention has primarily surrounded eosinophilic driven
inflammation, as it is the most prominent type observed in the Caucasian population. Little
focus has been paid to the rarer mixed lymphoplasmacytic subtype. Eosinophilic driven
inflammation is characterized by its responsiveness to steroids, whereas non-eosinophilic
subtypes have low responsiveness to corticosteroids [13,14]. CRS with lymphoplasmacytic
infiltration is associated with early polyp recurrence post-surgery that is often steroid-
resistant. These patients often require long-term macrolide therapy for disease control [12].
Interestingly, patients treated with benralizumab for eosinophilic predominant CRS re-
sulted in a reduction in eosinophilic inflammation and a shift towards lymphoplasmacytic
inflammation, potentially suggesting underlying lymphoplasmacytic inflammation being
present beneath eosinophilic driven inflammation, warranting further exploration of lym-
phoplasmacytic inflammation in CRS [15]. The current literature on CRS endotypes and
biomarkers suggests that medical treatment should be tailored to the patients, including
corticosteroids, antibiotics, and biologics [16]. Further research into the lymphoplasmacytic
subtype is clearly needed to better understand the relationship between this inflammatory
infiltration and its association with CRS to guide disease management.

Experimental research many uses animal models in the context of understanding the
pathophysiology of diseases, and in preclinical studies to test the safety and effectiveness
of novel therapies [17]. The development of animal models for sinusitis dates to the rabbit
model developed by Hilding et al. [18]. Subsequent models have also been established
in mice and sheep [19]. To date, there is no established animal sinusitis model focusing
on lymphoplasmacytic inflammation. Currently, there is no perfect animal model that
faithfully replicates the pathophysiology of acute or chronic rhinosinusitis, with each
currently available model having their own deficiencies.

Ethical guidelines categorize research animals into two groups: small and large ani-
mals. Small animals only necessitate approval from a local animal ethics committee, while
larger animals, including sheep, require approval from both the central and local animal
ethics committees. Many existing sinusitis models entail invasive procedures and surgical
interventions, leading to potential harm and discomfort for the animals involved [20,21].

Although mice are commonly used in research because of their low cost, ease of
maintenance, and genetic modifications, their sinonasal anatomy differs substantially from
human anatomy. They lack a true sinus, and their small size can limit tissue sampling,
which also presents mechanistic limitations [20,22]. Furthermore, they lack essential genes,
such as the cystic fibrosis transmembrane regulator (CFTR) gene, important in mucociliary
clearance, limiting their use for studying the pathophysiology of CRS and other various
phenotypes [22,23].

Rabbit models present certain advantages, largely based on their size and well-
developed sinuses, allowing relatively easy sinus access to create inflammation and for
sampling tissues. Nevertheless, there are significant costs and ethical considerations that
need to be considered. These costs include dedicated housing facilities as well as the need
for well-trained and skilled large animal handlers. Complications from the instrumentation
of the sinuses, such as epiphora and pneumonia, are not uncommon and raise ethical
concerns regarding the impact of such models on a rabbit’s quality of life [20,24].

A S. aureus biofilm-sheep frontal sinusitis model was established and successfully
used in various preclinical safety and efficacy studies [25–27]. Sheep possess sinus anatomy
and physiology closely resembling that of humans. Nevertheless, they are subjected to
stringent ethical regulations and come with very high housing costs.

Considering the constraints outlined above regarding the currently available models,
this project sought to assess the suitability of a rat model for investigating lymphoplasma-
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cytic rhinosinusitis. By creating a rat model with rich lymphoplasmacytic infiltration, the
further characterization of this rarer subtype was possible and provided a viable in vivo
model for further investigation into potential underlying disease mechanisms and treat-
ment targets associated with this inflammation type. Although still considered small
animals, rats offer several advantages over mice. They are larger in size, translating into
easier access to their sinuses, and unlike mice, they also possess (rudimentary) paranasal
sinus cavities and an increased number of submucosal glands, which renders them more
physiologically akin to humans than mice [28].

2. Results
2.1. S. aureus Clinical Isolate Selection

Staphylococcus aureus (S. aureus) clinical isolates (CI-182, CI-908, and CI-913) were
obtained from patients with CRS. They were selected from patients with high CRS disease
severity scores, being symptomatic (22-item sino-nasal outcome test (SNOT-22)), radio-
logical (Lund–Mackay) and endoscopic (Lund–Kennedy) scores (Table 1), reflecting high
disease burden strains. All patients (1 male and 2 female) had CRS with nasal polyps
(CRSwNP) and asthma and one patient also had gastro-esophageal reflux disease (GORD)
and another aspirin sensitivity.

Table 1. S. aureus clinical isolate patient summary. CI = clinical isolates; yo = years old; GORD = gastro-
esophageal reflux disease; CRSwNP = chronic rhinosinusitis with nasal polyps; SNOT 22 = sino-nasal
outcome test; LM = Lund–Mackay; LK = Lund–Kennedy. S. aureus: Staphylococcus aureus.

CI-182 CI-908 CI-913

Male Female Female

62 yo 73 yo 53 yo

GORD and asthma Asthma Asthma and aspirin sensitivity

CRSwNP CRSwNP CRSwNP

SNOT 22–34 SNOT 22–71 SNOT 22–69

LM: 20 LM: 20 LM: 24

LK: 18 LK: 18 LK: 20

2.2. Rat Nasal Cavity CFU Count

The number of colony-forming units (CFUs) of S. aureus harvested from both nostrils
at day 37 and day 44 were investigated. The CFU results were similar between both time
points and hence the datapoints were merged. The rats challenged with only exoproteins
as well as with any of the CIs in the exoproteins had higher CFUs compared to the saline-
treated group, which did not grow any S. aureus strains (p < 0.05). The rats challenged with
CI-908 had significantly higher CFUs than those challenged with CI-913, and both were
higher than the exoprotein-only-treated rats or the control group. Long-read sequencing
identified S. aureus in the exoprotein-only-treated group as CI-913. This suggests the
presence and subsequent significant difference in CFUs between the exoprotein group and
the saline group, which was likely due to the cross-contamination of the exoprotein-only-
treated group with CI-913 (Figure 1).

2.3. S. aureus Clinical Isolates and Exoproteins Induced Significant Inflammation

The inflammatory infiltrate, primarily consisting of lymphoplasmacytic cells, was
prominent and infiltrated the epithelium, leading to the disruption of the lamina. Inflamma-
tion was present in both the respiratory and olfactory epithelium (Supplementary Figure S3).
There was non-specific peribronchial infiltration observed in the exoprotein and both
Staphylococcus groups. The kidney and spleen had no observable changes in any of the rats
(Supplementary Figure S4).
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Figure 1. S. aureus CFU. The CFUs of S. aureus strains CI-908 (S1), CI-913 (S2), exoprotein (Exo), and
the saline control in the nasal cavity were analyzed, and the significance was determined using an
ANOVA. The asterisk (***) denotes statistical significance at p < 0.001 and **** p < 0.0001. S. aureus:
Staphylococcus aureus; CFU: colony-forming units.

For the assessment of inflammation, ten areas with the highest degree of inflammation
were selected from each animal. The severity of lymphoplasmacytic infiltration in the
lamina propria was graded by a pathologist blinded to the treatment groups on high-power
(X40) fields ranging from 0 to 3, indicating no inflammation, mild, moderate, or severe
inflammation, respectively. Representative images for each grade (0 to 3) are presented
in Table 2. The examination revealed significant inflammation in the rats inoculated with
S. aureus and/or the exoprotein, particularly in the S. aureus CI groups when compared
to the exoprotein and saline control group. Additionally, the exoprotein group exhibited
significantly greater inflammation than the saline control group (Figure 2A and Table 2). In-
flammation was observed both anteriorly and posteriorly without any significant difference
between both locations (Figure 2B).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. S. aureus and exoprotein-induced inflammation in vivo. (A) Inflammation scores of the 
sinonasal cavities for rats challenged with CI-908 (S 908), CI-913 (S 913), exoprotein or control (sa-
line). (B) Anterior (A) and posterior sections (B) were compared with the samples from different 
segments of the same rat. S 908 n = 6; S 913 n = 6; Exo n = 4; and control n = 3. The significance was 
determined by comparing the results with the saline control. The asterisks indicate statistical signif-
icance (**: p < 0.01; ****: p < 0.0001), ns = not significant. S. aureus: Staphylococcus aureus. 

2.4. S. aureus Invades the Nasal Mucosa 
The results of the gram staining procedure confirmed the presence of S. aureus. This 

bacterium was observed to colonize the epithelial layer of the sinuses, which constitutes 
the outermost cellular lining of the nasal passages and was identified within epithelial 
cells. Further investigation revealed that S. aureus also possessed the capability to infiltrate 
the subepithelial region and breach the lamina propria, a thin layer of connective tissue 
located beneath the epithelium. These findings suggest that the bacterium exhibits the 
capacity to penetrate “damaged” nasal tissue (Table 3). 

Table 3. Representative inflammation for the control (saline), exoprotein, CI-908, and CI-913-treated 
rats. There are three representative areas of inflammation for each sample, with a low-powered (10×) 
view and high-powered (40×) view of each of those areas. 

Magnification Saline Exoprotein Staph CI908 Staph CI913 
10×#1 

 
40×#1 

 
10×#2 

 

Figure 2. S. aureus and exoprotein-induced inflammation in vivo. (A) Inflammation scores of the
sinonasal cavities for rats challenged with CI-908 (S 908), CI-913 (S 913), exoprotein or control
(saline). (B) Anterior (A) and posterior sections (B) were compared with the samples from different
segments of the same rat. S 908 n = 6; S 913 n = 6; Exo n = 4; and control n = 3. The significance
was determined by comparing the results with the saline control. The asterisks indicate statistical
significance (**: p < 0.01; ****: p < 0.0001), ns = not significant. S. aureus: Staphylococcus aureus.
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Table 2. Inflammatory infiltration scoring. The representative image (×40) was selected to represent
each score.

Histology Grade
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the outermost cellular lining of the nasal passages and was identified within epithelial cells.
Further investigation revealed that S. aureus also possessed the capability to infiltrate the
subepithelial region and breach the lamina propria, a thin layer of connective tissue located
beneath the epithelium. These findings suggest that the bacterium exhibits the capacity to
penetrate “damaged” nasal tissue (Table 3).

Table 3. Representative inflammation for the control (saline), exoprotein, CI-908, and CI-913-treated
rats. There are three representative areas of inflammation for each sample, with a low-powered (10×)
view and high-powered (40×) view of each of those areas.

Magnification Saline Exoprotein Staph CI908 Staph CI913

10×#1
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3. Discussion

In this study, our objective was to develop a rat sinonasal inflammation model that
mimics the inflammation seen in S. aureus CRS in humans. This is the first animal model
that reflects the inflammatory milieu of the less common and less well-described lympho-
plasmacytic subtype of CRS. As the focus on CRS shifts towards endotyping and targeted
treatment options, this model provides value in establishing the first in vivo model charac-
terized by inflammation, reflective of that seen in lymphoplasmacytic predominant CRS
and can be used to help further characterize its rarer inflammatory subtype. By abstaining
from surgical procedures and invasive techniques, we not only prioritized the well-being
and comfort of the rats but also aimed to create an easy-to-replicate inflammatory model,
different to previous animal models which often require surgical interventions. We delib-
erately chose a rat model given its smaller size than rabbit and sheep, meaning that the
animals were easier and cheaper to house, also mitigating many of the availability and
ethical concerns that occur with using larger animals.

We utilized a S. aureus exoprotein, both individually and in conjunction with two
distinct strains of S. aureus. The results demonstrated that both the exoprotein alone and
the combination of exoprotein with the S. aureus strains induced notable and widespread
inflammation. The combination of the exoprotein with the S. aureus strains demonstrated
markedly elevated levels of inflammation in comparison to both the control group and the
exoprotein-alone group. This suggests that although the exoprotein can in itself generate
an inflammatory response, additional bacterial factors produced by live bacteria further
exacerbated the inflammation. We indeed observed significantly higher CFU counts in
the rats treated with both CIs of S. aureus compared to both the control group and the
exoprotein-alone group. This finding was corroborated via gram staining, which confirmed
that the inoculated S. aureus bacteria successfully colonized and invaded the sinonasal
mucosal membrane. Even though S. aureus was also cultured in the exoprotein-only group,
likely due to the contamination of the exoproteins by live bacteria, the CFUs were lower
along with significantly reduced levels of inflammation compared to the groups treated
with the clinical isolates. This suggests that the level of inflammation is indeed linked to the
bacterial load. These findings align with microbiome studies that showed that the severity
of CRS is directly related to an increased bacterial load [19,29,30].

The histopathological analysis revealed significant lymphoplasmacytic infiltration
with goblet cell hyperplasia in both the anterior and posterior segments of the nasal tissue
in the S. aureus-infected rats. Although there was no overall difference between the anterior
and posterior regions, there was a tendency for the inflammation to be more widely
distributed in the former, possibly due to the anatomical differences between these two
regions, with the anterior segments receiving more consistent exposure compared to the
deeper segments.

The inflammation observed was consistent with prior studies showing increased in-
flammation in the subepithelial layer and lamina propria of the nasal mucosa after exposure
to S. aureus [27,31]. Such severe inflammation with goblet cell hyperplasia is also indicative
of epithelial remodeling after chronic antigen exposure [32], and was observed in CRS,
chronic airway diseases, cigarette smoke exposure, and cystic fibrosis [33–36]. The lym-
phoplasmacytic infiltrate was observed most prominently in the S. aureus-infected groups,
consistent with the inflammatory milieu observed in CRS [10]. Although lymphoplasma-
cytic infiltrate is considered rarer compared to the eosinophilic subtype, Mariano et al. [37]
examined 277 CRS patients and found lymphoplasmacytic infiltration to be the prominent
infiltrate in 111 patients, potentially rendering it a more important inflammatory subtype in
CRS than originally believed. Plasma cells (effector B cells) originate from B lymphocytes
and secrete antibodies in response to antigens [38]. B cell activation and excess antibody
production is associated with CRS, most prominently with CRSwNP [39–41] and is con-
sistent with increased levels of plasma cells and B cells in the polyp tissue from CRSwNP
patients [39,40,42–45]. T-lymphocytes (T cells) differentiate into effector T cells, such as
CD4+, CD8+, regulatory, cytotoxic, or helper T cells. Different effector T cell subtypes are



Int. J. Mol. Sci. 2024, 25, 3336 8 of 13

involved in CRSsNP and CRSwNP [46–48]. A meta-analysis by Shen et al. [49] showed
different inflammatory infiltrates and treatment responsiveness based on the country of
origin, with nasal polyps in the Asian population characterized by infiltrates more linked
to type one inflammation, which exhibited a greater response to macrolides. In contrast,
the Western population’s polyps are more associated with type two inflammation, which
demonstrates better responsiveness to steroids. Further investigation into the lympho-
plasmacytic cell subtype could improve the understanding of the pathogenic relationship
between S. aureus and CRS, and further exploration could lead to more accurately targeted
therapies tailored to this subgroup of patients. Interestingly, in our study, there was no
significant difference in the extent of inflammation that was observed between the two
time points taken one week apart, even though the rats did not receive further S. aureus
during this time. Together, our findings indicate the activation of a more chronic immune
response in the rats with robust lymphoplasmacytic immune cell infiltration and goblet
cell hyperplasia.

The use of the exoprotein alone induced significant inflammation, suggesting the
importance of secreted inflammatory proteins in the development of this response. This
could be due to the effect of the exoprotein impairing mechanical barriers, such as tight
junctions, which contribute to the development of CRS or possibly due to antibodies
to the S. aureus exoprotein acting as a superantigen [44,50,51]. S. aureus enterotoxins
(SAEs) are a well-described component of the S. aureus exoprotein. They can function as
superantigens, resulting in the production of SAE-specific antibodies that can potentially
establish sustained inflammation. Our study’s findings support this in addition to the direct
disruptive effect the exoprotein has on the nasoepithelium. This breach is likely to promote
the subepithelial colonization of S. aureus in patients with sinusitis and possibly prolongs
the duration of inflammation. To minimize contamination, the exoprotein and the S. aureus
groups were prepared separately, the saline treatment was administered before the infected
groups, the rats in the saline group were kept at other ends of the room, the isoflurane box
was cleaned between usages, and the room was cleaned pre-treatment and post-treatment.
However, our finding of the presence of S. aureus in the exoprotein-only-treated group
suggests cross-contamination, possibly due to the rats also being housed in the same room
despite being in separate cages. The extent to which this contributed to the inflammation
seen in this group cannot be discounted, forming a limitation of this study, and does suggest
that further experiments mitigating contamination are required to confirm our results.

While the inflammatory environment observed in this study aligns with that observed
in the context of CRS in humans, it is important to note a limitation. Although the cell types
present in the inflammatory milieu mirror those seen in CRS, the designated time interval
of three months of symptoms, as outlined by current guidelines for humans, was not met.
As a result, future investigations should aim to determine if the inflammation persists three
months post-intervention. Similarly, the inflammation milieu is only representative of that
observed in CRS, inflammation is complex, and the underlaying pathology observed and
factors interacting may be different in an in vivo sinonasum compared to humans. This is a
limitation of this model, which hinders insight into human CRS pathology. The grouping
of the 21 rats into different experimental groups resulted in a limited number of animals
per group, which could potentially affect the statistical power of the findings, acting as a
further limitation.

4. Materials and Methods
4.1. Animals

The animal procedures were conducted in accordance with the Australian Code for
the Care and Use of Animals for Scientific Purposes and were approved by the Animal
Ethics Committee of the University of Adelaide, Australia (Approval ID M-2022-059). The
rats were housed under standard conditions. The lights were on for 12 h daily, and the
cage temperature was 22 ± 1 ◦C, with continual access to water and standard regular chow
and libitum. To minimize animal distress, music was provided, and the animals were



Int. J. Mol. Sci. 2024, 25, 3336 9 of 13

handled regularly to habituate the animals to noise and being handled. The enrichment
of the animal’s environment was provided through the use of cardboard boxes, rolls, and
shredded paper for the animals to hide in, chew, and play with. Furthermore, daily checks
for any signs of distress were conducted.

4.2. Staphylococcus aureus Clinical Isolates Cultured from Patients

Ethics approval for obtaining the bacterial swabs was granted by The Central Adelaide
Local Health Network Human Research Ethics Committee (reference HREC/15/TWEH/132).
Patients were recruited if they were undergoing endoscopic sinus surgery for chronic
rhinosinusitis. The diagnostic criteria were based on the European Position Statement
on CRS [9]. Written informed consent was provided by all the patients before the study
commenced. The clinical histories and demographics of patients along with the severity
of CRS were recorded. The disease severity was based on the completion of the Lund–
Kennedy (LK), Lund–Mackay (LM), and the 22-item sino-nasal outcome test (SNOT-22) [52–
56].

The bacteria were harvested using a Transwab (Medical Wire & Equipment, Corsham,
Wiltshire, UK) after brushing gently against the middle meatus. The bacteria were then
cultured on 1.5% trypticase soy agar (TSA) (Oxoid, Thebarton, SA, Australia) overnight at
37 ◦C. Individual colonies were re-streaked on 1.5% TSA plates and incubated overnight
at 37 ◦C again. Individual colonies were identified using MALDI-TOF. The isolates of S.
aureus were stored in 50% glycerol stock (Merck, Life science, Bayswater, Victoria, Australia)
at −80 ◦C for future use.

4.3. Staphylococcus aureus Biofilm Exoprotein Preparation

S. aureus CI-182 was streaked onto a 1.5% TSA plate and incubated overnight at 37 ◦C.
A single colony was then resuspended in 0.9% saline to obtain 1 McFarland (McF) units,
followed by dilution in tryptic soy broth (TSB) (Oxoid, Thebarton, SA, Australia) at a ratio
of 1 in 15. The cultures were then incubated at 37 ◦C for 48 h in 6-well plates at 70 rpm
to form biofilms. The biofilm supernatants were harvested and filtered using a 0.22-µm
syringe filter (PALL Acrodisc, New York, NY, USA) to eliminate any planktonic bacteria
and bacterial debris and obtain the exoproteins. The exoproteins were concentrated using a
3k MWCO Pierce Protein Concentrator PES (Scoresby, Victoria, Australia) at 3000 rpm and
4 ◦C to concentrations of 200 µg/mL.

4.4. Bradford Protein Assay

The Bradford protein assay (Biorad, Hercules, CA, USA) was performed according
to the manufacturer’s instructions to determine the exoprotein concentration. The Brad-
ford protein assay was performed in triplicates for each sample, and the average protein
concentration was reported.

4.5. Selection and Preparation of S. aureus Clinical Isolates for Inoculation

Two days prior to inoculation, the S. aureus clinical isolates, CI-908 and CI-913, were
streaked onto 1.5% TSA plates. A single colony was resuspended in 0.9% saline to achieve
a concentration of 0.5 McF units, then cultured overnight in TSB at a 1:100 dilution. The
pellets from CI-908 and CI-913 were then harvested and resuspended in the exoprotein
harvested from CI-182 (as mentioned above) to achieve 2.5 × 109 CFU/mL.

4.6. Rhinosinusitis Rat Model

Sprague Dawley rats (n = 21, all male, 6 weeks of age) were divided to receive once per
day, into each nostril, applications of 20 µL of saline for 30 days (group 1, n = 3), 20 µL of
250 µg/mL S. aureus CI-182 exoprotein for 30 days (group 2, n = 6), or 20 µL of 250 µg/mL
of S. aureus CI-182 exoprotein for 13 days (groups 3 and 4), followed by 108 CFU/mL
CI-908 (group 3, n = 6) or 108 CFU/mL CI-913 into 20 µL of 250 µg/mL of S. aureus CI-182
exoprotein from day 14 to 30 (group 4, n = 6) (Figure 3). The rats were monitored daily, and
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the intervention was stopped on day 30. The rats were humanely euthanized at two time
points, on days 37 and 44 (7 and 14 days after stopping the intervention), respectively. The
nasal cavities were rinsed with 200 µL 0.9% saline and collected for establishing the CFUs.
The nasal tissues were then harvested and placed in 10% EDTA for decalcification for four
weeks. After decalcification, the nasal tissues were fixed in 10% neutral buffer formalin for
histopathological examination.
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4.7. CFU Counts

The nasal rinses were kept on ice, serially diluted with 0.9% saline, and spotted
in triplicates on sheep blood agar (Beckton Dickenson, Franklin Lakes, NJ, USA), then
incubated at 37 ◦C overnight. The CFUs were counted and calculated.

4.8. Histopathology Examination with Haematoxylin and Eosin and Gram Staining

The decalcified rat heads were embedded in paraffin, and 6 µm sections were cut and
stained with haematoxylin and eosin (H&E) or gram staining using standard protocols. Ten
areas were selected and graded from 0 to 3 for inflammation for both the anterior and pos-
terior segments in accordance with Houtak et al. (Supplementary Figures S1 and S2) [57].

4.9. Genomic DNA Extraction and Sequencing

For the S. aureus isolates from the exoprotein group as well as CI-182, CI-908, and
CI-913, whole genome sequencing was performed before and after the intervention. The ge-
nomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen, 69504, Hilden,
Germany) following the manufacturer’s guidelines. The genomic DNA was sequenced
using the Oxford Nanopore Technologies (ONT) Gridion Device (Oxford Nanopore Tech-
nologies, Oxford, UK). The SQK-RBK 114.96 Rapid Barcoding Kit (Oxford Nanopore
Technology) was used with R10.4.1 MinION flowcells (Oxford Nanopore Technology).
Base-calling was conducted with Dorado v 0.4.0 in the super accuracy mode, using the
‘r10.4.1 e8.2 400bps_sup@v4.2.0’ configuration (Oxford Nanopore Technology).

4.10. Bioinformatics

Adapters and barcodes were removed from long reads using Porechop [58], with long-
read-only assemblies created using Flye v2.9.2 with the option “–nano-hq.” [59]. Sequence
types were assigned using multi-locus sequence typing (MLST) in the MLST program [60]
(Supplementary Table S1).
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4.11. Statistical Analysis

The statistical analysis of the data was performed using GraphPad Prism 8.0 (Graph-
Pad Software, La Jolla, CA, USA). The statistical significance was determined using a
one-way (analysis of variance) ANOVA with Tukey’s multiple comparisons, which was
used to test for differences in single independent variables (i.e., inflammation scores and
log10 CFU among the different treatment groups). Tukey’s multiple comparisons was used
as a Tukey test compares the means of one group with every other treatment group. A
p-value of <0.05 was considered significant.

5. Conclusions

Our study successfully establishes the first rat model with a focus on lymphoplas-
macytic inflammation in the sinuses. The combination of the S. aureus exoprotein with
live S. aureus bacteria induces inflammation that persists for a minimum of two weeks
post-intervention. This model suggests the possible creation of a self-sustaining inflam-
matory response at least in the short term. Through the effective generation of robust
lymphoplasmacytic infiltration, this model opens the door for additional research into this
rarer inflammatory subtype. It presents a valuable tool for investigating mechanisms and
interventions related to sinusitis in a preclinical setting.
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