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Abstract: Metagenomic sequencing has emerged as a transformative tool in infectious disease diagno-
sis, offering a comprehensive and unbiased approach to pathogen detection. Leveraging international
standards and guidelines is essential for ensuring the quality and reliability of metagenomic sequenc-
ing in clinical practice. This review explores the implications of international standards and guidelines
for the application of metagenomic sequencing in infectious disease diagnosis. By adhering to es-
tablished standards, such as those outlined by regulatory bodies and expert consensus, healthcare
providers can enhance the accuracy and clinical utility of metagenomic sequencing. The integration
of international standards and guidelines into metagenomic sequencing workflows can streamline
diagnostic processes, improve pathogen identification, and optimize patient care. Strategies in
implementing these standards for infectious disease diagnosis using metagenomic sequencing are
discussed, highlighting the importance of standardized approaches in advancing precision infectious
disease diagnosis initiatives.

Keywords: infectious disease diagnosis; next generation sequencing; metagenomics sequencing;
implementation and validation; ISO15189; ISO24420; ISO20397

1. Introduction

Infectious diseases caused by viruses, bacteria, parasites, or fungi, such as hepatitis B
and C, diarrheal diseases, HIV/AIDS, tuberculosis (TB), respiratory infections, pneumonia,
condylomas, etc., can be transmitted directly or indirectly from one person to another [1].
For many years, medical research and public health efforts have focused on identifying
and managing infectious diseases. However, the understanding and management of
infectious diseases have evolved. In the 20th century, molecular diagnostic technologies,
such as polymerase chain reaction (PCR) and other DNA-based methods, such as in
situ hybridization and Southern blot analysis, were used to identify specific RNA or
DNA sequences of infectious agents and revolutionized the field of infectious disease
diagnosis [2,3]. The utilization of next-generation sequencing (NGS) technology, also
known as metagenomics sequencing (mNGS), in combination with bioinformatics, has also
enabled researchers to identify pathogenic microorganisms more rapidly and accurately,
compared with the conventional approaches, such as culture-based methods and serology
methods like enzyme-linked immunosorbent assay (ELISA) [4–6]. In addition, genomic
analyses facilitated by NGS can offer valuable insights for viral quasispecies analysis [7–12],
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and for genomics-informed outbreak investigations, including epidemic dynamics, source,
and timing, and the geographical origin of pathogens [13–20]. By analyzing the genetic
information obtained through NGS, researchers can gain a deeper understanding of the
transmission patterns and genetic diversity of infectious agents, aiding in the development
of effective control and prevention strategies [21–24].

Clinical mNGS has proven to be an effective diagnostic tool for infectious diseases
due to its ability to detect a large range of pathogens. Recent advances in technology
have made it an invaluable diagnostic tool for clinicians. mNGS is particularly useful for
detecting infectious agents in cases of encephalitis and meningitis [25,26]. As an example,
some studies have demonstrated the potential of mNGS in the diagnosis of meningitis and
encephalitis. Fan et al. have demonstrated that by utilizing mNGS, infectious diseases
caused by pathogens that are less frequently encountered, such as Angiostrongylus canto-
nensis, can be accurately diagnosed, which in turn results in improved patient outcomes
and care [26]. Wilson et al. also demonstrated the comprehensive spectrum of potential
causes that can be identified by a single mNGS assay, including viral, bacterial, fungal, and
parasitic pathogens, showcasing its utility in diagnosing complex central nervous system
infections [25]. Clinical mNGS has also shown promise in diagnosing various infectious
diseases, including tuberculosis, HIV, and coinfections [27]. Wang et al. (2019) explored the
potential of mNGS in identifying pathogens causing tuberculous meningitis, highlighting
its potential to enhance tuberculosis-related infection diagnosis [27]. In addition, Liang
et al. (2023) demonstrated the utility of mNGS in identifying multiple pathogens simul-
taneously by detecting coinfections with SARS-CoV-2 and influenza A [28]. As well as
this, Xie et al. (2023) demonstrated that mNGS provided a sensitive and unbiased method
for detecting multi-pathogenic pneumonia in HIV-infected patients [29]. These studies
demonstrate mNGS’s versatility and effectiveness in diagnosing a variety of infectious
diseases, providing clinicians with a comprehensive and advanced diagnostic tool.

While mNGS holds immense potential for a wide range of applications, implementing
it into clinical settings for diagnosing infectious diseases poses several challenges. The
challenges associated with the standardization of workflows in mNGS have a significant
impact on the turnaround time and costs [30,31], data quality, reproducibility [32], com-
parability [33], and biological interpretation [34–36]. Therefore, recent studies have made
significant progress in standardizing metagenomics workflows both in the wet labora-
tory (wet lab) [37,38] and the dry laboratory (dry lab) [39–41]. For instance, Parker et al.
(2023) developed a sample-to-answer workflow called PanGIA that includes simplified,
standardized wet lab procedures and data analysis with an easy-to-use bioinformatics
tool [38]. In addition, the International Organization for Standardization (ISO) has also
published international standards for the data processing of shotgun metagenomic se-
quences (ISO24420:2023) [42] and for the workflow and quality evaluation of sequencing
data from massively parallel sequencing (ISO20397-1:2021 and ISO20397-2:2021) [43,44].
In this review, different mNGS approaches and challenges in infectious disease diagnosis
will be firstly discussed, along with the strategies and validation of mNGS, and then imple-
menting it into clinical settings will be discussed based on different published guidelines
and international standards.

2. Understanding the Role of ISO Standards in Workflow Standardization and Different
mNGS Approaches

The operation of mNGS is mainly divided into two areas, which are the bioinfor-
matics pipeline level (dry lab) and then the entire mNGS pipeline level (wet lab). A
well-established protocol for experiment design, starting from sample collection, process-
ing, nucleic acid extraction, library preparation, and sequencing in the web lab, to binning,
assembly, annotation, and visualization in the dry lab, is imperative to ensure reproducibil-
ity and accuracy of mNGS workflows. An integrated quality management approach, in line
with regulatory standards, is required for any NGS-based implementation in the clinical
laboratory [45]. The wet lab workflow and quality evaluation of sequencing data in the
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dry lab section should meet ISO20397 standards. The data processing specific to mNGS
should follow the general requirement under the ISO24420 standards. To be used in clinical
laboratories, assays should follow ISO15189 [46,47], a global quality standard for use in
clinical laboratories, and standardized standard operating procedures (SOP). Changing
any component of an assay should be validated and meet acceptable performance criteria
before testing on patients, including reagents, equipment, sequencing instruments, and
bioinformatics tools. Continual updating of the SOP, the reagent manual, the equipment
calibration, and participation in external quality assessment (EQA) schemes are necessary
to incorporate intermediate technological advancements. Besides that, laboratories must
define clearly the intended clinical use for unbiased metagenomic testing, as well as the
types of pathogens that will be detected and reported. There are many factors to be consid-
ered, including turnaround times, specimen requirements, library preparation protocols,
sequencing platforms, sequencing depth, quality control, data analysis, costs, and clinical
relevance [48]. Results review and reporting workflow should be clearly defined by labora-
tories, so they can choose the right data analysis solutions [48]. It is essential to be familiar
with all available options, along with upcoming protocols for validation, given that many
workflow components starting from the sample collection to reporting are constantly being
developed and optimized.

An important challenge of metagenomic pathogen detection is the validation of an
assay which cannot be declared validated until it has been applied to a wide variety of
microorganisms almost endlessly. Assays that are not validated may generate incorrect
results, leading to incorrect clinical interpretations and treatment decisions. There are
no definitive recommendations for the clinical implementation of mNGS testing, even
though the US Food and Drug Administration (FDA) has provided guidelines for clinical
validation of NGS-based infectious diseases testing [49]. It is therefore recommended to
learn from failed experiments and to use representative organisms to evaluate performance
characteristics, followed by ongoing monitoring of assay performance and independent
confirmation if unexpected results occur.

2.1. Understanding the Current mNGS Strategies and Challenges for Infectious Disease

A number of mNGS approaches have shown promise for clinical diagnosis of infectious
diseases based on metagenomics, including short-read sequencing, long-read sequencing,
and RNA sequencing.

2.1.1. RNA Sequencing

In metagenomics, RNA sequencing is useful for revealing the active gene expression
profiles of microorganisms, thereby revealing the functional activities of the microbes and
their responses to their environments [50]. Gene expression profiles within complex micro-
bial communities can be comprehensively analyzed using this approach, providing insights
into the functional activities and responses of microorganisms [51]. A major advantage
of RNA sequencing in metagenomics is its ability to capture real-time functional dynam-
ics of microbial communities, thus allowing the monitoring of gene expression changes
in various environments [51]. Additionally, RNA sequencing can also help detect novel
RNA viruses and provide insight into RNA viral diversity and evolution in metagenomic
samples [52]. However, RNA sequencing in metagenomics poses challenges, such as the
inherent instability of RNA molecules, which results in transcript degradation and biases in
transcript representation [53]. This instability can lead to inaccurate gene expression quan-
tifications and data analysis artifacts [53,54]. Moreover, microbial RNA samples containing
host-derived RNA can complicate the analysis and interpretation of metagenomic data;
therefore, robust bioinformatics pipelines are required for precise taxonomic and functional
analysis [54].



Int. J. Mol. Sci. 2024, 25, 3333 4 of 32

2.1.2. Long-Read Sequencing

Long-read sequencing in metagenomics involves the usage of sequencing technolo-
gies that produce longer DNA reads, such as those provided by Pacific Biosciences and
Oxford Nanopore, for analyzing the genetic contents of microbial communities present in
environmental samples. This approach offers several advantages in metagenomic studies.
In comparison to short-read technologies, long-read sequencing enables a more accurate
reconstruction of the bacterial genome by enabling the assembly of complete bacterial
genomes with a greater degree of contiguity [55]. Longer reads also enable better bridging
of repetitive sequences within and between genomes, resulting in more complete genome
assemblies [56]. Further, long-read sequencing improves the accuracy of metagenomic
annotations and profile recovery by allowing complete genes, operons, and repetitive ele-
ments to be retrieved before assembly [57]. Despite its advantages, long-read sequencing in
metagenomics also presents challenges. The higher cost of generating long reads compared
to short reads may limit the adoption of long-read technologies for metagenomic stud-
ies [58]. Furthermore, long-read sequencing may suffer from high DNA requirements and
sequencing errors, which can affect accurate gene prediction and assembly [56]. Moreover,
long-read sequencing for metagenome assembly may be limited by limitations such as
incomplete databases, insufficient read lengths, and high sequencing error rates [58].

2.1.3. Short-Read Sequencing

Short-read sequencing in metagenomics typically generates DNA sequences that are
relatively short, often around 50 to 300 base pairs. There are several advantages and chal-
lenges associated with this method, which is typically used by platforms like Illumina and
SOLiD. Some major advantages are greater throughput, lower cost, and well-established
data analysis pipelines [59], and the ability to target specific regions of interest using enrich-
ment methods such as amplicon sequencing [60,61] or capture-based techniques [62,63].
As a result of targeted sequencing, low-abundance pathogens within complex microbial
communities can be detected more sensitively, improving diagnostic capabilities [64]. In
addition, short-read sequencing with enrichment can provide higher coverage depth, allow-
ing for greater accuracy when it comes to the identification of microbial species and genes
for antimicrobial resistance [65]. As an example, Illumina amplicon sequencing enables
characterization of bacterial communities at a high resolution by targeting specific regions
of the 16S ribosomal RNA gene, providing valuable information about the diversity and
composition of bacterial communities [60,61]. Using microbiota from the gut, soil, and
bacterial infections has been crucial to the study of various ecosystems, providing valuable
insights into microbial populations and their interactions [60].

However, short-read sequencing can also pose challenges in metagenomics. One
significant limitation is the difficulty in assembling complex metagenomes due to the short
lengths of the reads, which can lead to fragmented assemblies [66]. It is especially difficult
to reconstruct individual genomes in mixed microbial communities when multiple genomes
are present [67]. Additionally, short-read sequencing may encounter repetitive regions and
structural variations, making genome assembly less accurate and complete [68]. For the
target sequencing, one key challenge is the risk of amplification bias during enrichment,
which causes the data to reflect a skew of certain microbial taxa or genomic regions,
which can affect microbial diversity quantification and prevent detection of rare or novel
organisms [69].

3. Idea of Metagenomics Sequencing Assay Implementation Workflow

Implementing metagenomics sequencing assays for infectious disease diagnosis in-
volves several key considerations. Currently, the FDA is actively assessing the components
necessary for the approval of NGS-based tests for infectious diseases, which are primarily
used to detect antimicrobial resistance and identify pathogens [70]. The FDA released
guidelines for designing, developing, and validating next-generation sequencing tests,
paving the way for routine NGS-based testing in clinical laboratories [71]. In the following
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sections, we will discuss how the workflow of mNGS implementation can be divided into
several steps, based on various studies, guidelines, and international standards, including
assay description and definition, workflow integration and optimization, assay validation,
and clinical evaluation (Figure 1).
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Figure 1. Overview of metagenomics sequencing assay implementation. Before implementing in the
clinical setting, the scope of the pathogen must be defined to decide the choice of sample type, the
need for equipment and reagents, and the test methodology. An error-based approach should be
used before assay validation to find the potential risks in the procedure. Clinical evaluation with real
samples is important before implementing into the clinical setting.

4. Assay Description

Assay description and definition are crucial components in the process of assay inte-
gration, as they provide a clear understanding of the assay methodology and parameters
before its integration into a real system and the establishing of standardized protocols.
According to the guidelines from the FDA, “Infectious Disease Next Generation Sequenc-
ing Based Diagnostic Devices: Microbial Identification and Detection of Antimicrobial
Resistance and Virulence Markers”, because of the large diversity of specimen types and
infectious disease agents that can be present in samples, straightforward pre-analytical,
biochemical, or bioinformatics processes are not allowed. Each unique specimen type may
require a different protocol for nucleic acid extraction and library preparation, as well
as a unique bioinformatics algorithm to generate the final clinical result; therefore, the
completed assay description needs to be defined clearly [49].

4.1. Deciding on Laboratory Space Organization and the Arrangement of Equipment

Since mNGS is unbiased and there is an increased risk of detection and interference
caused by cross-contamination, proper laboratory organization and diagnostic workflow
are essential [37]. Workflow must be unidirectional between the pre-amplification and
post-amplification areas. Reagent preparation rooms must be clean, free of samples, and
separated from post-amplification and pre-amplification areas to avoid any contamination
of the reagent and the mastermix. A laboratory’s equipment, such as freezers, refrig-
erators, pipettes, safety cabinets, thermocyclers, vortexers, centrifuges, etc., should be
clearly labeled and assigned to different rooms. All equipment must be calibrated by
accredited bodies and the calibration intervals of all equipment should be based on the
ISO15189 standards.

4.2. Defining the Scope of Pathogens

The laboratory should first define the pathogens that will be detected by the assay,
based on the intended use, the type of specimen, and the characteristics of the patient.
The choice of pathogens influences the choice of extraction method, sequencing strategies,



Int. J. Mol. Sci. 2024, 25, 3333 6 of 32

target enrichment or host nucleic acid depletion, reference database, sequencing depth
and coverage, and data analysis tools. Besides that, there are several factors to consider
when determining the scope of pathogens. These factors include genotype characteristics,
environmental conditions, and non-random factors that influence pathogen damage to
varieties [72]. Additionally, the transmission dynamics of pathogens can be influenced by
challenges encountered in zoonotic disease surveillance, insufficient spatial information,
and a lack of understanding of surveillance scope [73]. Emerging infectious diseases are
significantly correlated with socioeconomic, environmental, and ecological factors, provid-
ing a way to identify regions that are likely to develop new diseases [74]. An integrated
approach to zoonotic spillover requires an alignment of ecological, epidemiological, and
behavioral factors influencing pathogen exposure, as well as factors influencing susceptibil-
ity to infection within humans [75]. Furthermore, the vector-to-host ratio plays a pivotal
role in determining the severity of pathogen transmission and infection risk [76]. Moreover,
microbial pathogens’ vulnerability affects their resistance and pathogenicity, making them
crucial in determining the scope of pathogens [77]. Factors such as human connectivity,
increasing antimicrobial resistance, and dynamic human behavior influence prevention
and control, affecting the scope of pathogen dynamics [78].

4.3. Defining the mNGS Strategies

mNGS strategies should be determined according to the application before implement-
ing mNGS assays. To improve the detection and analysis of microbial DNA in complex
samples, mNGS strategies primarily use sensitivity and enrichment or depletion methods.
mNGS has a major limitation with the presence of a high background, either from the host
or from the microbiome. As an example, Wilson et al. evaluated the clinical effect of mNGS
in diagnosing meningitis and encephalitis, highlighting the limitations associated with low
sensitivity when the human host or microbiome background is high [25]. Furthermore,
Salipante et al. were able to show the limitations of low sensitivity due to high background
from the microbiome when they compared the performance of Illumina and Ion Torrent
sequencing platforms for bacterial community profiling [79]. Additionally, the importance
of monitoring low-biomass samples for background contamination was also highlighted
by Weyrich and colleagues [80].

To efficiently perform mNGS and improve microbial DNA detection in different sam-
ples, a host depletion approach is crucial. A variety of approaches have been used to over-
come host contamination, including capture probes for subtractive hybridization [21,81],
CRISPR-Cas9 cleavage on target sequence [82] and ribonuclease (RNase) H-based depletion
methods [83], as well as nanopore adaptive sequencing [84]. In the case of RNA libraries,
DNase I treatment should be performed after extraction to remove residual human back-
ground DNA [85]. Aja-Macaya et al. have recently developed an efficient method for
enriching the mNGS of monkeypox viruses using saponin/NaCl combination DNase treat-
ments, combined with high g-force centrifugation, resulting in 96% of reads being classified
as not human DNA using the enrichment method, and 5–10% using the non-enrichment
method [86].

4.4. Defining the Test Methodology

A complex and computationally intensive process is involved in transforming raw
sequence data into actionable information in NGS, starting with sample collection, extrac-
tion, fragmentation, library preparation, sequencing, data analysis, and interpretation of
the results (Figure 2). As a brief overview, the DNA/RNA are first extracted from the
samples. Following the extraction of DNA/RNA, a library is constructed where the DNA
of each organism is sheared into fragments and inserted into adapters containing barcodes
to allow multiplexing of hundreds of samples based on the quality criteria for the selected
NGS platforms and applications. Using a preferred NGS technology, these individual
libraries are pooled together and submitted for analysis. After the sequencing has been
completed, several bioinformatics steps need to be performed, including quality control,
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read alignment or assembly, variant calling, and annotation, which is dependent on the
specific application [87]. An analysis of the assembled genome against reference strains
facilitates the identification of pathogens, strain typing at high resolution, and prediction of
important phenotypic characteristics (e.g., virulence, resistance to antibiotics) [88]. There
is a need for well-curated and up-to-date reference databases since microorganisms are
constantly evolving and plasmids encoding traits of virulence and antimicrobial resistance
can be exchanged across strains and species. By comparing assembled genomes with others,
we can look for evidence of transmission based on phylogenetic clustering [88]. Different
bioinformatics tools are required for each step, including assembly, strain typing, pheno-
typing, and clustering. Therefore, bioinformatics expertise and computational resources
are required to perform the analysis using various software tools and pipelines [87,88].
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Figure 2. Overview of different sequencing approaches for infectious disease diagnosis. The wet lab
workflow is based on ISO20397-1:2021, which included sample collection, DNA/RNA extraction,
library preparation, target capture, sequencing, and bioinformatics analysis. The dry lab workflow is
based on ISO24420:2023 and ISO20397-2. Three main metagenomic analysis approaches, including
marker gene analysis, binning, and assembly, are described in this figure.

4.5. Defining the Possible Risk/Errors in the Whole Workflow
5M1E Methodology

The 5M1E methodology (manpower, method, machine, material, measurement, and
environment) was mainly involved in the process of the root cause analysis to enhance
problem-solving capabilities, optimize procedures, and maintain high-quality assurance
standards. A systematic approach, the Plan–Do–Check–Act (PDCA) cycle, was also incor-
porated into the 5M1E methodology, which involves four stages: planning, implementing,
evaluating, and action-taking based on the evaluation. Therefore, the 5M1E methodology
needs to be applied to the whole process, starting from pre-implementation to imple-
mentation steps, including assay design, quality control matrix determination, and assay
validation. An overview of the subject, action, and objective based on the 5M1E methodol-
ogy using an NGS assay is shown in Table 1. The 5M1E methodology can also be applied
in molecular laboratories. The potential reasons for errors are listed in Table 2.
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Table 1. Overview of the subject, action, and objective based on the 5M1E methodology using on NGS assay.

Manpower Machine Material Method Environment Measurement

Subject Well-trained personnel,
compliance with SOP Automation extraction machine Raw materials, reagent

and samples
Procedures, method,

and protocols

Environment conditions
such as humidity, lighting,

temperature,
and cleanliness

Instrument, techniques,
data, and tools

Action
Training, skill development,

and monitoring of
ongoing performance

Calibration, routine maintenance;
adhering to equipment specification

Verification; sample acceptance
criteria, reagent specification

checking, storage and handling
Validation Adequate

controls, monitoring
Calibration, validation, and
routine performance check

Objective Minimize human-related
variation, human error

Minimize variations in test results;
ensure that the equipment is

performing within acceptable limits
and meets the required

specifications; reduces the risk of
errors and inaccuracies in test results

Ensures the integrity and
traceability of materials, prevents
contamination and degradation,

and ensures high-quality
materials are acquired

Ensure reliable and
accurate result

Minimize variations caused
by environmental factors

Ensure precise
measurement

Table 2. An error-based approach using 5M1E methodology on NGS assay.

mNGS Procedure Error/Risk Consequence 5M1E Means of Minimizing Risk

Sample collection
Improper storage [89] and handling of
samples, such as higher freezing and

thawing cycle

• Degradation of nucleic acids
• Inaccurate representation of the

microbial community present in
the sample [89,90]

Method, Materials, Environment
• Use sterile collection tools and containers
• Proper training of personnel involved in

sample collection

Sample collection;
nucleic acid extraction

Host DNA
contamination/cross-contamination

of samples

• Influence the accuracy and
reliability of sequencing
results [91]

• Reduced sensitivity to detect
microbial reads [92]

• Inaccurate classification of
pathogenic communities [93]

• Misidentification of DNA samples
and compromised experimental
results [94,95]

Method, Machine,
Materials, Environment

• Reduce contamination by evaluating host
depletion and extraction methods [83]

• Ensure sequence distribution and individual
sequence errors are addressed with quality
control measures [96]

• Calibration and decontamination of
the machine

Nucleic acid extraction Inadequate lysis of cells or
tissues/non-verified reagent

• Suboptimal DNA yield and
compromised quality [97,98] Materials

• Implementing methods that selectively lyse
host cells and/or separate specific organisms
from clinical samples [99,100]
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Table 2. Cont.

mNGS Procedure Error/Risk Consequence 5M1E Means of Minimizing Risk

Nucleic acid extraction;
library preparation

Improper sample preparation, such as
incorrect sample loading or

inadequate mixing

• Inaccurate biological interpretations
and impact on the reliability of the
sequencing data [89,101]

• Affecting downstream
application [102]

Methods
• Proper training of personnel involved in

the procedure

Nucleic acid extraction Inhibitory Substances Interfere with the downstream analysis and
application [103] Methods

• Optimization of DNA extraction and purification
procedures minimizes co-extraction of inhibitory
substances with DNA [104]

• Evaluate the DNA preservation methods to avoid
co-extraction of inhibitory substances [105]

Library preparation High levels of DNA fragmentation
• Reduced DNA yield and inaccurate

quantitation, impacting the reliability
of subsequent analyses [102,106]

Methods • Evaluate the incubation time for fragmentation

Library preparation Index hopping
• Erroneous conclusions and

misinterpretations of the microbial
community composition [107]

Methods
• Incorporating unique dual-indexing strategies that

assign unique index sequences to each sample [108]

Sequencing Systematics error/sequencing error

Overestimation of gene and taxon
abundance [109]

Inaccurate gene prediction on short
reads [110]

Machine, Methods

• A simulation tool that incorporates error models
based on explicit errors and coverage bias can help
address sequencing errors [111]

• The development of a statistical method for
functional profiling can allow sequencing errors to
be estimated and possible functions to be detected
in metagenomic data [112]

Bioinformatics analysis

Misinterpretation of results [113,114];
inadequate data preprocessing [115];

incorrect taxonomic or functional
annotation [116];

failure to account for batch effects [117];
inadequate validation of findings [118];

lack of reproducibility [119];
overfitting or underfitting of models [120];

inadequate training data [121]

Impact the accuracy and reliability of
the results

Manpower,
Machine, Methods

• Integrate comprehensive databases and update
them regularly to incorporate newly discovered
microbial species.

• Developing novel taxonomic classification
algorithms and tools [122]

• Conduct of rigorous quality control measures as
well as benchmarking and standardizing
bioinformatics workflows

• Using validated statistical methods, coupled with
careful consideration of data normalization and
bias correction [123]

• Proper training of personnel
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4.6. Defining the Quality Control Metrics

Quality control is a critical aspect of mNGS to ensure the accuracy and reliability of the
data. It is necessary to establish quality control measures and to apply them to every run
of the assay. Specimen acceptability, nucleic acid quantification, and library qualification
and quantification should be monitored since libraries with inadequate fragment sizes and
underloading can result in reduced coverage [124]. A quality control (QC) process should
be carried out on raw mNGS data to ensure that the data are clean. The QC metrics and
follow-up actions are summarized in Table 3 following ISO24420:2003, ISO20397-1:2022,
Clause 4 and 8.3, ISO20397-2:2021, 4.3, and different metagenomics studies.

Table 3. Indicators of validation and QC metrics.

Measurement Indicators of Validation QC Metrics Follow-Up Actions

Nucleic acid quality DNA Purity
High DNA purity [125]:
A260/A280: 1.88–1.94

Low DNA purity: A260/A280 < 1.6

Perform additional purification step,
such as phenol-chloroform extraction

or silica-column-based
purification kits

Optimize the extraction protocols to
minimize contamination and improve

the purity and quantity
Perform additional purification step,

such as DNase treatment or RNA
cleanup kits

Re-extraction

RNA Purity

RNA quality acceptable range [126]:
A260/A280: around 2

A260/A230: 2-2.2
RNA integrity number (RIN) analysis
depending on different sample types

Acceptable range 7–8

Nucleic acid quantity DNA/RNA concentration

Depend on the library preparation
approaches:

DNA:
20ug [127]

50–250 ng [128]
RNA [129]:

standard (1 ug);
low (10 ng–100 ng); ultra-low (<1 ng)

Library quality
and quantity

Library size distribution and
quality patterns

Library concentration

For short-read sequencing
Size distribution: 250–350
For long-read sequencing

Size distribution:
10–25 kb (PacBio®HiFi

sequencing) [130]
250 bp to 50 kbp (Nanopore

sequencers (MinION, GridION, and
PromethION) [131]

Ensure that fragment sizes within the
narrow range of expected molecular

weight match the measured fragment
sizesPrevent adapter dimers, primer

dimers (~150 bp), and molecular
weight outside the expected range

Sequencing quality

Total run yield (Gb), sequencing
cluster density (K/mm2),

% reads passing filter, % bases
≥Q30, sequencing error rate,

sequencing read length

For short-read sequencing:
the sample base mass value shall be
more than 20 if Q20 is greater than

90%; and the sample base mass value
shall be more than 30 if Q30 is greater

than 80% [42]

Resequencing should be conducted if
sequencing QC cannot be achieved

Coverage depth

Sequence depth should be
evaluated before sequence

assembly, taking the sample
complexity into consideration [42]

A sufficient level of sensitivity and
specificity must be achieved in the

regions of interest
Short read: at least 30× coverage

Reanalysis of samples should be
conducted if coverage thresholds

exceed the validated range; an
alternate method may be used if only

local regions are affected
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Table 3. Cont.

Measurement Indicators of Validation QC Metrics Follow-Up Actions

GC bias GC content No specific threshold for GC bias
GC content <70% [132]

Optimization of library preparation [133]
Implement filtering strategies [133]

GC content correction [134]
Evaluation of sequencing bias with

different library preparation kit [135]
Normalization techniques [136]

Base call accuracy Phred quality score (Q), where
Q = −10 log10(P) [137]

Good base call quality scores
Phred score > 30 [138]

Base calling:
Short-read sequencing: >99.9%
Long-read sequencing: ~90%

Each run should be monitored for quality
scores and signal-to-noise ratios

The results of low-quality scoring can lead
to more false positive variant calls;

therefore, repeat testing may be necessary

Duplication rate Duplication rate Maximum duplication rate should be
defined for each assay.

Optimization of library preparation
Adjust PCR conditions [42,43]

Unique molecular identifiers (UMIs) [139]
Filtering duplicate reads [140]

Error correction algorithms [134]

Mapping quality Mapping quality scores

Map quality parameters must be
established during validation in order

to filter out reads that map to
nontargeted regions (insertion or

indel) and uncertain bases
(N characters) [42]

The mapping quality of each run must be
monitored as non-specific amplification,

off-target DNA capture, or contamination
may result in poor results

5. Assay Integration and Optimization

After defining the assay and describing its components, the next crucial step in the
workflow is the integration and optimization of the entire process. This involves stream-
lining the various stages of the assay, from sample collection to data analysis, to ensure
efficiency and accuracy.

5.1. Choice of Sample Type

The presence of low pathogen abundance is one of the challenges in detecting and
identifying pathogens in complex microbiomes [141]. Microorganisms that live in the envi-
ronment or serve as commensals may make it more difficult to identify true pathogens [141].
Therefore, it is important to select the right sample type based on the type of microorganisms
to be studied. Multiple factors should be considered when determining the appropriate
sample type for metagenomic sequencing. There are several factors to consider, including
the research objectives, the target microbes, and the resources and technologies available.
For instance, if viral genomes are of interest, blood or respiratory samples may be ap-
propriate [142]. In contrast, for bacterial infections, samples from the lower respiratory
tract or clinical specimens may be more suitable [143]. Data from mNGS should also be
used for the intended purpose. In outbreak investigations, the source of infection and its
spread can be determined by sample collection from affected individuals or environmental
sources [15,144]. Similarly, contaminated food samples or samples from affected individuals
can be tested for pathogens in foodborne outbreak investigations [144]. The use of mNGS
for AMR surveillance can be carried out with samples from sewage or wastewater [145],
fecal samples [146,147], or respiratory samples, such as nasopharyngeal swabs or sputum
samples from human populations. It is possible to obtain valuable information from these
types of samples regarding how antimicrobial resistance genes are prevalent, diverse, and
transmitted within populations. For instance, fecal samples can provide insight into the
gut microbiota and its role in the development and transmission of AMR [147]. The gut
microbiota has been altered in patients with COVID-19, and the abundance of specific
species of bacteria has been correlated with the severity of the disease [147].
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5.2. Sample Preparation

Preparation of samples is the first and most important step in any metagenomics
analysis. Ideally, metagenomic sampling aims to collect enough biomass to perform
sequencing while minimizing contamination. Samples from the same environment can
have varying microbial content, making it more difficult to detect statistically significant
and biologically relevant differences between them. To ensure sufficient statistical power,
it is crucial to design experiments appropriately, especially for small samples [148]. The
conditions under which samples are collected and preserved can affect the quality and
accuracy of metagenomic data, and they are also important confounders when analyzing
data from different studies [148]. In addition, optimizing processing conditions for all types
of samples is extremely important, and methods validated for one type of sample cannot
automatically be adapted for other types [148]. Besides that, it is important to keep track
of and consider conditions such as the length of time between sampling, freezing, and
thawing that can affect the microbial community during the experiment [148].

5.3. DNA/RNA Extraction

The DNA/RNA extraction methodology can influence downstream sequencing data.
Bead-based and column-based are the two main nucleic acid extraction approaches. For
infective disease diagnosis, nucleic acid extraction methods should be selected based on
their advantages and limitations, as well as the specific diagnostic requirements. Compared
with conventional liquid-phase extraction methods, the bead-based extraction method
is more suitable for mNGS in the context of infectious disease diagnosis because of the
higher yield, purity, and reproducibility. According to McEvoy et al. (2020), the use of
solid-phase reversible immobilization beads (SPRI) in DNA purification is favored by many
protocols because of its ease of use, cost-effectiveness, size selectability, and automation
capability [149]. Among the many methods of extracting nucleic acids from host samples,
bead-based extraction was shown to be the best suited for depletion of host nucleic acids for
diagnostic metagenomics of infectious diseases [150]. In diagnostic settings, column-based
methods are demonstrated to be versatile and effective in detecting pathogens such as
herpes simplex virus and parvovirus B19 [151,152]. However, column-based methods may
result in DNA loss and lower recovery rates, highlighting the superiority of bead-based
extraction for mNGS in capturing the comprehensive and high-quality metagenomic profile
essential for accurate infectious disease diagnosis [153].

As mentioned before, each sample type should have unique extraction methods
according to the guidelines from the FDA. Due to the differences in the composition of
cell walls among plants, animals, bacteria, and fungi, the extraction of DNA and RNA
for mNGS requires distinct and tailored methods. Plants with rigid cellulose-based cell
walls may require methods like cetyltrimethylammonium bromide (CTAB) or using a plant-
specific kit, such as the DNeasy Plant Mini Kit from Qiagen [154], while animals lacking
cell walls but containing other cellular components may benefit from phenol-chloroform
extraction and a column-based purification kit, such as the DNeasy Blood & Tissue Kit from
Qiagen. Bacteria, with unique cell wall structures in Gram-positive and Gram-negative
species, may necessitate enzymatic lysis or bead beating methods to disrupt the cell wall
and membrane, in order to extract DNA and RNA [155]. Fungi with chitin-based cell walls
may require enzymatic digestion for efficient nucleic acid extraction [156].

The choice of lysis approaches is also the main factor to affect the downstream se-
quencing result. For example, some cells are less susceptible to lysis techniques, resulting in
the under-representation of DNA from these organisms [157–160]. Therefore, the extraction
method must be effective for different microbial species to prevent easy-to-lyse bacteria
from dominating the sequencing results. A variety of lysis approaches can be used to
extract DNA, including mechanical and chemical methods. Using mechanical methods,
such as bead beating, can result in DNA fragmentation and loss during library preparation
methods involving fragment size selection. Hence, it is necessary to use the appropriate
extraction technique, to ensure that a sample is representative of all cells present with high
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quality and sufficient quantity. On the other hand, contamination occurring during the
sample extraction and library preparation also can affect the quality of the downstream
sequencing data. There are several sources of contamination, including the environment,
personnel, machines, as well as laboratory reagents [161]. It is particularly problematic
for samples with low biomass, as there is less signal to compete with low contamination
levels [91]. As a precaution, ultraclean reagents are recommended and no template se-
quencing controls are included [91]. In RNA extraction, to get better yields from in vitro
transcription reactions, degradation during RNA purification protocols, and lower yields
from RNA extraction, decontamination with the RNase decontamination solution is crucial.
It is also possible to obtain RNA from total nucleic acid by treating it with DNase. Carrier
RNA should not be used for RNA mNGS, since it will be sequenced along with the sample
RNA and affect the viral sequencing depth [162].

5.4. Fragmentation

Before library preparation, some sequencing methods, such as short-read sequencing,
require fragmenting the template DNA, cDNA, or RNA. As a result of fragmentation, DNA
or RNA can be made into a size range suitable for the particular method and sequencing
platform. It can be either mechanical or enzymatic fragmentation. Long RNA fragments are
typically fragmented chemically. It is important to consider how fragmentation methods
impact library coverage, to avoid GC biases introduced by specific fragmentation methods.
Consideration should also be given to the amount of starting material and the potential
sample loss associated with each method. In mNGS, fragment size can affect sequencing
depth and the ability to assemble complete genomes from data [163]. For instance, small
microbial genome size and limited fragment size necessitate a higher number of fragments
for metagenomic sequencing [163]. Nevertheless, mNGS presents a substantial challenge
due to the complexity of the data, which may consist of sequence fragments from many
different genomes [164]. Due to the unassembled nature of most mNGS, conventional meth-
ods of gene discovery are not relevant [165]. To address this issue, metagenomic approaches
involve the sequencing of randomly sheared fragments, known as shotgun sequencing, to
provide a potentially more accurate characterization of microbial diversity [166].

5.5. Library Preparation

The choice of library preparation method can significantly influence downstream
sequencing quality issues, and choosing the right library preparation methods for different
sample inputs is crucial for ensuring robust data quality across samples in different preser-
vation conditions [128]. Sequencing bias in library preparation kits is important in mNGS,
which involves a wide variety of microbes with varying GC contents [135,167]. Addition-
ally, some studies have also demonstrated that library preparation procedure and sample
characteristics influence metagenomic profile accuracy, which is important in choosing
the best preparation method for metagenomic libraries based on sample characteristics,
including community types, compositions, and DNA amounts [168,169]. According to
Wang et al. (2022), different sequencing library preparation methods were evaluated to get
efficient and high-fidelity metagenomic data from samples with low microbial biomass,
emphasizing how library preparation is crucial for overcoming challenges associated with
low biomass samples [170]. Similarly, Jones et al. (2015) found significant differences
in taxonomy between next-generation sequencing library preparations, highlighting the
significance of library preparation methodology for predicting genomic and functional
outcomes [171].

5.6. Sequencing Platform

When selecting a sequencing platform for integrating assays in mNGS, it is cru-
cial to consider various factors, such as cost, the amount of sample input, and required
concentration and fragmentation size ranges. The sequencing depth required often influ-
ences the choice of platform, as different platforms come with distinct advantages and
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challenges [172,173]. Third-generation sequencing platforms, such as Oxford Nanopore
Technologies (ONT), have demonstrated potential in offering precise species resolution
compared to Illumina sequencing [174,175]. Parameters like read length, sequencing
coverage, and sequencing errors play a significant role in the efficiency and accuracy of
metagenomic sequence assembly [42,176]. Therefore, a thoughtful evaluation of the se-
quencing platform is necessary to ensure optimal performance and dependable outcomes
in metagenomic studies.

Bioinformatics Analysis for Metagenomics

For metagenomic data analysis, it is often difficult to determine which sequences
belong to a given pathogen in mNGS datasets, as the majority of sequences come from
the host, and only a very small fraction of sequences come from the pathogen. There-
fore, according to ISO24420:2023 Clause 5.2.3, it is recommended that host reads from
all organisms be removed by mapping them to a genome reference such as UniRef or
the Unified Human Gastrointestinal Protein Catalog [42,128]. mNGS involves a series of
bioinformatics steps to analyze raw data effectively, including preprocessing of sequencing
reads, de novo metagenome assembly, genome binning, taxonomic and functional analysis
of genomes, fragment recruitment to reference genomes, and metagenomic assembly and
analysis (Table 4). In dealing with metagenomic datasets, there are three main approaches,
including marker gene analysis, binning, and assembly [115,165].

Table 4. Software tools involved in bioinformatics analysis for metagenomics.

Bioinformatic Step Software Function Reference

Preprocessing of
Sequencing Reads

FastQC (v0.12.0) Assesses the quality of raw sequencing data

Trimmomatic (v0.4) Trimming and filtering reads to eliminate low-quality bases and
adapter sequences [177]

Cutadapt (v3.4) Efficiently removes adapter sequence [178]

DUST (v0.9) De-replication of reads

QIIME (v2023.2) Noise removal

Fragment Recruitment to
Reference Genomes

Bowtie2 (v2.5.3) Mapping preprocessed reads to reference genomes,
contamination removal [179]

BWA (v0.7.12) Mapping low-divergent sequences against a large reference genome

BWA-SW (v0.7.12) and
BWA-MEM (v0.7.12)

Mapping longer sequences (70 bp to 1 Mbp), share similar features
such as long-read support and split alignment [180]

SAMtools (v1.19.2) Manipulating and analyzing sequence alignment data, crucial for
post-processing and downstream analysis of metagenomic data

[181,
182]

De Novo Metagenome
Assembly

MEGAHIT (v1.2.9)
Assembly of large and intricate metagenomic datasets using

succinct de Bruijn graphs, providing a single-node solution for
complex assemblies

[183,
184]

IDBA-UD (v1.1.3)
A specialized de Bruijn graph-based assembler designed for

metagenomic sequencing data, aiding in the reconstruction of
microbial genomes

[185]

MetaSPAdes (v.3.13.0) Advanced metagenomic assemblers that integrate information from
multiple samples to improve accuracy and congruency [186]

QUAST (v5.0.2) Evaluates genome/metagenome assemblies [187]

Genome Binning

MaxBin (v2.0)
Binning tool that clusters contigs based on

expectation-maximization algorithms, facilitating metagenomic
data organization

[188]

CONCOCT (v1.1.0)
The recovery of metagenome-assembled genomes in situations
where the reference genome for a species of interest within a

metagenome is unknown
[189]

MetaBAT (v2.15) Binning metagenomic contigs into genome bins based on sequence
composition and abundance [189]
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Table 4. Cont.

Bioinformatic Step Software Function Reference

Taxonomic and Functional
Analysis of Genomes

Kraken 2 (v2.0.8 beta)
A highly accurate classifier for taxonomic sequences that rapidly

assigns taxonomic labels to metagenomic sequences, allowing
precise taxonomic analysis

[190]

HUMAnN 3 (v3) The tool provides insights into the functional potential of microbial
populations based on metagenomic sequencing data [191]

MetaPhlAn 4 (v4) This tool aids in taxonomic analysis of metagenomic shotgun
sequencing data by profiling microbial communities [192]

Metagenomic Assembly
and Analysis

Anvi’o (v.2.1.0) Analyze and visualize complex metagenomic datasets using an
interactive platform for metagenomic analysis and visualization [193]

MEGAN-LR (v6.19.1)
A long-read version of MEGAN for taxonomic analysis and
functional annotation of metagenomic data generated from

long-read sequencing technologies
[194]

The marker gene analysis compares each sequence with a database of taxonomi-
cally and phylogenetically informative sequences called marker genes. The sequences
are then taxonomically annotated after the similarities are assessed [165]. According to
ISO24420:2003, for obtaining a higher-level taxonomy profile (e.g., species, genus, order, or
phylum), including metagenomic linkage groups (MLGs), metagenomic clusters (MGCs),
and metagenomic species (MGS), the best taxonomy profile method should be selected
based on the data and the application needs [128]. The concept of binning refers to the
clustering of sequences according to taxonomic groups, such as species, genus, or higher
taxa [165]. Assembly is to combine the small sequences from your sample to make longer se-
quences represent genomes [165]. In the absence of a reference genome dataset, such as soil
or ocean samples, sequence assembly should be used [128]. In de novo assemblies, contigs
or scaffolds are derived without any reference from sequence fragments [128]. The choice of
sequence assembly software should take into account the extent to which accuracy, contig
size, input data type, and computational resources are important [128]. Therefore, different
profiles, such as phylogenetics/taxonomic abundance and contigs/genome coverage, are
able to provide valuable indications for function annotation and taxonomic classification.

5.7. The Choice of Reference Database

Additionally, one of the limitations of metagenomics is the quality and availability of
reference databases. The choice of a reference database has a significant impact on taxo-
nomic classification results [195]. Reference databases should contain all relevant genome
sequences covering the entire genetic diversity of organisms and ensure that no artificial,
low-quality, or incorrectly named genome sequences are included [196]. The incorrect
assignment of ambiguously mapped/aligned reads or k-mers in poorly curated databases
may lead to false positive results [196]. False negative results can be caused by insufficient
databases that do not include newly discovered viral strains or uncommon strains [197]. In
pathogen detection, compressing a database by removing duplicate sequences will reduce
performance, but it is an effective way of saving storage space [198]. Generally, larger
databases allow for better sub-typing/classification at the isolate level [196].

The National Center for Biotechnology Information (NCBI) is a popular database for
metagenomic analysis [199]. However, a biased collection of isolated viruses may be present
in the NCBI database [200]. Hence, researchers have manually identified metagenomic
viral contigs to supplement the viral protein families found in the NCBI [200]. Through
this approach, viral genome diversity can be expanded and viral communities can be better
represented in metagenomic studies. The FDA-ARGOS database and the FDA Reference
Viral Database (RVDB) are examples of databases that have been developed for diagnostic
use and regulatory science [201], and which provide quality-controlled reference genomes
for various pathogens. For instance, by using the MEGARes V3.0 database, antimicrobial
resistance genes can be identified from mNGS data [118], while the Microba Commu-
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nity Profiler can be used to identify taxonomic groups from metagenomic datasets [202].
According to ISO24420:2023, taxonomy profiling should be conducted using reference
datasets, such as the RefSeq complete genomes (RefSeq CG) for microbes, and the BLAST
database for high-quality nucleotide and protein sequences [42]. The other databases,
such as ICTV Virus Metadata Resource (VMR) (VMR_MSL38_v2, https://ictv.global/vmr
(accessed on 20 January 2024), Reference Viral DataBase (RVDB) (v28.0, 22 November 2023),
Reference Viral DataBase (RVDB, protein version 28, https://rvdb-prot.pasteur.fr/ (ac-
cessed on 20 January 2024), SIB Viral reference sequences, UniProt Virus proteomes, VirMet
(v1.2), Virosaurus, and Virus Pathogen Resource (ViPR), are available for pathogen/viral
mNGS [196]. There is also a list of simulated datasets and synthetic datasets publicly
available for analysis of this type [203]. However, there may be differences between these
databases when it comes to availability and coverage, and it is important to standardize
data quality and representation [172]. Since reference genome databases for microorgan-
isms are constantly updated, laboratories must pay attention to the exact versions being
used as well as possible mis-annotations in reference databases [30]. A metagenomic profile
can be annotated at various levels according to the reference annotation, e.g., species, genus,
or higher [42].

5.8. Reporting

Several key findings should be reported to doctors as part of the metagenomic analy-
sis. Firstly, the methods, limitations, and quality, including the depth of coverage of the
assay, must be reported. Secondly, it is essential to report whether specific pathogens are
present in the sample since this information can be used to guide treatment decisions [25].
Additionally, comparing abundances of microorganisms can help assess microbiome com-
position and dysbiosis [204]. Furthermore, antibiotic resistance genes and virulence factors
should be reported as part of the analysis, as this information may inform treatment strate-
gies [205]. A functional analysis should also include information from the microbiome,
such as metabolic pathways or genes that play a key role in the microbiome [206]. Finally,
clinical interpretation of results should be conveyed concisely and clearly, which will enable
accurate diagnosis, guide treatment decisions, optimize antimicrobial therapy, and lead to
improved patient outcomes [206]. For instance, the results of mNGS can give patients and
clinicians confidence that unnecessary empirical treatments can be stopped and can tell
them when coinfections should be ruled out, and when infectious syndromes should be
diagnosed [25]. Furthermore, it may be possible to expedite or defer the escalation of em-
pirical therapy based on mNGS results, resulting in a more timely and effective treatment
for patients [207]. Through mNGS, pathogens and antimicrobial resistance determinants
can also be identified. This helps tailor therapy to the specific infectious agent and poten-
tially reduces antimicrobial resistance selection [208]. The presence of viruses of unknown
pathogenicity or seldom-detected viruses may not have caused a specific disease in the past,
but at a later stage could lead to a specific syndrome, which is why it is recommended to
have these viruses reported [196]. An interpretation of an unknown metagenomic finding
can be discussed subsequently with the clinician or noted in the report as well.

6. Assay Validation

According to ISO2037-1:2022 Clause 6, before accumulating validation data, a vali-
dation protocol for intended use shall be developed, implemented, and documented [43].
Through the validation process, potential failures should be identified systematically. It
is also important to validate assays using samples of the type intended for use in the test,
so that the test results are representative of the larger sample population [43]. Validation
can be carried out with known positive and spiked specimens throughout the workflow,
including pathogens that are exclusive to a particular region and those that are common
colonizers, as well as microorganisms that are found as contaminants in the environment
at high levels [209]. In each matrix, the limits of detection (LODs) for reference microorgan-
isms should be determined [209]. It is important to keep in mind that sequencing depth can

https://ictv.global/vmr
https://rvdb-prot.pasteur.fr/
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affect the LOD; therefore, it is necessary to provide similar sequencing depths for all sam-
ples, which can fall into an acceptance range of sequencing depths [209]. Through repeated
measurements of samples with low concentrations of analytes, the limit of quantity (LOQ)
can also be used to evaluate the sensitivity and reliability of an analytical method. Besides
that, for tNGS, gene- and disease-specific aspects must be included in test validations for
disease-specific targeted gene panels. To ensure that the most common causes of disease
are detectable, common pathogenic variants must be included in the validation set, even
though sequence-specific context can affect its detection [210]. Additionally, negative con-
trols are essential to eliminate possible contamination, which can occur at any stage from
sampling to sequencing. Sample blanks, nucleic acid extraction blanks, and/or no-template
controls can be used as negative controls.

Considering the complexity of NGS, thorough investigation and root cause analysis are
essential for ensuring assay quality, safety, and efficacy; therefore, performance validation
and verification are important steps in bioinformatics analysis for mNGS. Through error-
based design and optimization, potential failure points can be identified, and the level of
validation and quality control can be determined. As part of “dry lab” validation, validation
of the metagenomic bioinformatics software pipeline is essential. The pipeline should be
validated before being used for analytical purposes, including all tools, code, environment,
and network connections [42]. The in-house bioinformatics pipelines were compared with
popular metagenomics pipelines using simulated in silico datasets and published raw
patient datasets [211]. On the other hand, wet lab validation ensures the accuracy and
reliability of mNGS results as it involves experimentally verifying the sequencing results
with various laboratory techniques and reagents based on ISO15189 and ISO20397 [46,211].
In both dry and wet labs, mNGS validation should be based on the 5M1E methodology
to enhance problem-solving capabilities, optimize procedures, and maintain high-quality
assurance standards.

6.1. Reference Materials

The problem is exacerbated by the lack of reference standards in many clinical scenar-
ios [25]. For instance, the FDA advises that when comparing results with non-reference
standards, specificity and sensitivity should be expressed as negative and positive percent
agreement, respectively, according to their statistical guidance on reporting results from
studies evaluating diagnostic tests [212]. If no virus-positive residual clinical material is
available, then mock samples can be manufactured using reference material or purchased
commercially [213]. For instance, the National Institute for Standards and Technology
(NIST) is developing whole-genome microbial reference standards [43]. Through genome
assembly, base-level analysis, genomic purity, and genomic stability evaluations, four
clinically important microbial species are being characterized by NIST [43]. To validate a
microbial NGS-based diagnostic test, these reference materials (RM 8375, a 4 bacteria panel,
and RM 8376, a 19 bacteria + 1 human panel) can be used in appropriate steps [43], or the
reference controls also can be obtained from UK-NIBSC, the European virus archive, or the
ATCC [37].

As part of accuracy studies, the choice of samples is very important. A reference control
material should contain multiple viruses that have different relative loads so that specificity
can be determined, or separately prepared mixtures of viral strains with different viral
concentrations so that sensitivity can be assessed [37]. An evaluation of a sample analyzed
with a previously analyzed or another platform, such as Sanger sequencing, should be
conducted as part of mNGS validation [210]. Typically, residual samples are spiked at
levels exceeding the sensitivity of the test (e.g., 10 times the LOD) after evaluation [48].
However, it may not be practical to establish clinically and analytically relevant LODs
for all potential targeted organisms due to the complexity of metagenomic tests [48].
Representative and positive patient specimens for the relevant specimen type can be
used as spiking sources [48,209]. By doing this, one can measure background matrix
effects on a larger number of independent specimens than can be done using test-positive
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specimens [48]. In this step, the test needs to demonstrate its analytical performance
for different microorganisms so that maximum confidence can be placed in its ability to
distinguish targeted microorganisms from common microorganisms.

6.2. Proficiency Testing and External Quality Assessment (EQA)

To ensure the consistency and reliability of the sequencing process, quality control
measures are implemented. For example, it is crucial to assess sample quality before
sequencing, including DNA/RNA integrity, concentration, and potential contaminants.
During library preparation, the right protocol and strategies need to be selected to minimize
bias and ensure representative sequencing of the microbial community [31]. Besides that, it
is important to participate in EQA programs which compare the laboratory’s performance
with other laboratories to ensure accuracy. The following qualitative characteristics may
be addressed by EQAs of mNGS methods for viral pathogen detection: (i) accurate iden-
tification of pathogen species, (ii) quantitative parameters, and (iii) logistic performance
(turnaround time) [37]. In addition to real sequencing data, the College of American Pathol-
ogists recommends that proficiency testing be combined with silico-generated sequences
or modified sequences [48]. This enables the examination of algorithms and sequence
databases in greater depth. In silico specimen generation and critical data analysis steps
can be performed with fewer resources because a wide variety of specimens can be gener-
ated [48,209]. In some cases, clinical samples were used to verify the conclusions drawn
from in silico and contrived samples [209]. During data analysis, a minimum threshold
should be established based on the diagnostic approach [210]. To determine data quality,
additional metrics might include the percentage of reads aligned to the human genome,
the percentage of unique reads (before duplicates are removed), the proportion of bases
matching the target sequences, the uniformity of coverage, and the proportion of bases
uncovered [210].

6.3. Enhancement of Data Analysis

Typically, NGS platforms generate complex data that need to be handled and processed
in multiple stages. Due to the use of separate tools for data analysis, independent of
wet laboratory procedures, and the likelihood that these tools may be customized in the
laboratory, a separate validation process for the analytical pipeline should be conducted
during the initial test development stage. After that, the pre-validated pipeline can be used
to validate both the wet laboratory and the analytical pipeline within the end-to-end test
validation. The laboratory should also document any validation data provided by vendors
when using commercially developed software, but an independent validation should also
be performed [210]. Therefore, it is necessary to determine the parameters and thresholds
for determining whether the overall sequencing run is successful, such as the number of
reads aligned, the number of duplicates, the average coverage depth, and the range of
insert sizes.

Meanwhile, identifying the threshold for coverage is very important to ensure that
sufficient coverage and allelic fraction are achieved for variant calling and the sensitivity
and specificity of analytical tests. The success of mNGS is influenced by various fac-
tors, including genetic diversity, sequencing depth, and coverage. Metagenomic contigs
are normally categorized at the species level based on their sequencing depth and cov-
erage [214]. Additionally, algorithms for estimating coverage in metagenomic datasets
can help inform decision-making about which assembling approach to use, especially
with uneven distributions of coverage depth [215]. The extent of coverage is important
for recovering microbiome information, and it directly affects metagenomic processing
fidelity [216]. Furthermore, metagenomics coverage theory emphasizes the importance of
adequate coverage for meaningful results, defining what depth of sequencing is needed
within an experiment [217]. Further, it is important to understand the microbial ecology
and gene diversity within diverse environments for the impact of sequencing depth on
the characterization of the microbiome and resistome [218]. Metagenomic datasets can be
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interpreted in a straightforward manner based on robust statistical frameworks, which can
be used to assess the completeness of mNGS by determining how much of the genome is
covered by sequencing reads [219]. It is also crucial to estimate the metagenome coverage to
ensure high sensitivity in the detection of antimicrobial resistance genes or other functional
elements [220]. As mentioned before, metagenomic analyses are directly impacted by
sequencing coverage depth. As a guideline for best practices in shotgun metagenomics,
1 Gb of sequencing depth per sample should be used [221]. Nevertheless, mNGS coverage
requirements can vary depending on the complexity of the microbiota and the specific
research objectives. To successfully sequence metagenomic samples, a minimum coverage
depth is needed to identify minor variations within viral quasispecies [8]. Additionally, a
15X genome coverage limit has been determined for an assembly-based method of detecting
antimicrobial resistance genes [220], which highlights the importance of detecting specific
genetic elements within metagenomes with adequate coverage.

6.4. Performance Characteristics

During the test validation, performance characteristics such as precision reproducibil-
ity and repeatability, analytical specificity and false positive rate, analytical sensitivity and
false negative rate, and LODs should be determined to provide enough evidence on the
accuracy of the test. The final analytical parameters must reflect the entire testing process.

6.4.1. Precision Reproducibility and Repeatability

Various instruments, reagents, and techniques can introduce random imprecision at
each step in multistep and complicated procedures. To minimize variation, instruments,
reagents, and personnel must be qualified and verified. Assay validation should quantify
variations that can occur. Because there are many sources of variation, it is not practical
to evaluate each source separately. To ensure quality, it is recommended to assess a
minimum of 3 to 20 samples with known concentration or series dilution across all steps
and over a long period, including all instruments, testing personnel, and multiple lots of
reagents [124,209]. Quantitative precision testing should be performed both within runs
(repeatability) and within laboratories (reproducibility) by using defined LOD samples.
Before acquiring validation data, acceptance criteria must be established as well. Duplicate
analyses of the same sample should be performed to verify reproducibility and calculate
the coefficient of variation (CV%). In addition, results from different laboratories can be
compared to evaluate interlaboratory performance. A laboratory’s intermediate precision is
the degree to which results of tests performed on the same test items over a long period are
closely aligned, considering differences in laboratory conditions such as different operators,
equipment, or days [222]. Analysis and comparison of sequencing data should be carried
out throughout the validation process using appropriate bioinformatics tools as well [223].
Besides that, a PCR-based approach can be used to verify the quantitative accuracy [209].

6.4.2. Analytic Sensitivity and Analytical Specificity

Analytic sensitivity refers to how accurately the mNGS assay can detect and identify
target microorganisms [48]. The analytical sensitivity of mNGS refers to the method’s ability
to detect and identify pathogens accurately, directly impacting its reliability. False negative
rates are the rate at which true positive results are incorrectly classified as negative results.
Both parameters are critical for determining metagenomic sequencing’s effectiveness in
diagnosing infectious diseases. Several variables determine the sensitivity and specificity
of pathogen detection, such as nucleic acid extraction efficiency, size of the pathogen
genome, quality of library preparation, number of sequencing reads derived from a given
specimen (coverage), the composition of samples, background noise sequences, reference
sequence availability, sequencing depth, the precision of classification algorithms, and
the confidence required to identify pathogens [48]. To maximize the sensitivity of mNGS
assays, it is critical to extract nucleic acids efficiently and prepare libraries in a quality
manner, because the number of pathogens may change the total nucleic acid yield, resulting
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in a sequence library containing both patient nucleic acid as well as microbial nucleic acid.
There is evidence that mNGS can enhance pathogen detection in clinical samples, especially
when low pathogen titers or high nucleic acid backgrounds may yield false negative
results [30]. For example, mNGS has a high false negative rate when identifying pathogens
such as Streptococcus agalactiae in infectious native valve endocarditis [212]. Hence, it is
imperative to interpret negative results carefully, especially in samples that have a high
host background, since they are at higher risk of false negative results [25]. There are other
protocols available for enriching pathogen nucleic acids [81,224], depleting host nucleic
acids [225], or removing part of sequencing libraries [82] to increase sensitivity.

Analytic specificity in the context of mNGS refers to the ability of the sequencing
method to accurately identify and distinguish specific microbial species or genetic elements
within a complex sample [204], while the false positive rate represents the percentage of
negative results that are incorrectly identified as positive [226]. The analytical specificity of
clinical metagenomic testing can be influenced by several factors that are not taken into
account in traditional validation guidelines. These include DNA fragments contaminating
reagents and consumable surfaces from a variety of microorganisms, genome sequence
similarity among microorganisms, incorrect reference genome sequences, and the difference
between clinical isolates and reference strains. Limited analytic specificity can occur as
a result of the misclassification of microorganisms or nucleic acids or the contamination
of reagents, which can be attributed to algorithms used or to reference databases [48].
The identification and mitigation of problems can be assisted by extensive in silico val-
idation with particular emphasis on microbes with sequence homologies with relevant
pathogens [48].

6.4.3. Limit of Detection

The LOD refers to the lowest concentration or abundance of pathogens or genetic
material that can reliably be detected and quantified in mNGS. It is crucial to assess the
accuracy and sensitivity of mNGS in identifying pathogens in clinical samples based on
this parameter. For instance, Greninger et al. (2010) demonstrated that mNGS can detect
pathogens near the limits of detection for RT-PCR assays even at low concentrations. This
illustrates what mNGS can achieve at low concentrations, allowing pathogens that would
be difficult to identify using traditional techniques to be detected [227]. By incorporating
computational approaches and modeling techniques, LODs for mNGS have been refined.
Serial dilutions of a clinical sample or external controls with a known, quantifiable pathogen
can be analyzed to determine the LOD, or a set of calibrated internal controls can be used.
For example, receiver operating characteristic (ROC) curves have been used to refine
similarity searches, and a reliable, fixed bitscore value has been calculated across the
sequence of the target gene to maximize sensitivity and specificity in the detection of short-
gene fragments within metagenomes [228]. To determine the LOD, cut-off thresholds are
defined for coverage and sequence depth that are used in decision-making in the context of
sample composition, since the host nucleic acid burden can rapidly alter this LOD [37].

7. Future Perspectives and Challenges for Implementing mNGS in Infectious
Disease Diagnosis

The future of mNGS holds a lot of promise and potential applications in a range
of fields. It has the potential to provide significant new insights into the pathogenesis
of new and emerging infectious diseases, as well as immunopathological phenomena
relating to host–pathogen interactions [229]. In the future, deeper insights into genetic
responses, mechanisms, and genetic variation may be possible due to the technology’s
ability to interrogate increasingly complex microbial communities [230]. However, several
challenges need to be considered for successful integration (Table 5).
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Table 5. Challenges and strategies for implementing NGS in infectious disease diagnosis.

Challenges Strategies Future Perspectives References

Turnaround Time and Costs Cost and turnaround
time reduction

Development of more cost-effective
NGS platforms

Optimization of bioinformatics pipelines
[30,31]

Standardization and
Quality Control

Develop universally accepted
protocol or standard

Development of consensus standards through
cooperation among researchers, industry

stakeholders, and regulatory bodies
[34,35]

Integration of automation Integration of automation into the whole
mNGS workflow [231,232]

Proficiency testing and
reference materials

Expansion of proficiency testing programs
for mNGS [233]

Standards and developments
in bioinformatics

Availability and accessibility of rapidly
evolving software to users

Usage of metabarcoding and
metagenomic bioinformatics

[140,234–236]

Collaboration and
open sharing

Supporting open science initiatives through
funding mechanisms and academic recognition [237]

Technological advancements The standardization and quality control
of mNGS [238]

Bioinformatics and
Data Analysis

User-friendly tools Development of user-friendly software
and databases [239,240]

Data storage and privacy Implementation of robust data privacy and
security measures [239,240]

7.1. Turnaround Time and Costs

NGS can be costly, requiring specialized equipment and expertise. Clinical settings
with limited resources may be unable to afford sequencing and high-performance com-
puting infrastructure [30]. In the clinical setting, providing timely results from mNGS is
crucial to rapid diagnosis in clinical settings and is also challenging. Data analysis pipelines
and sequencing technologies need to be improved to reduce turnaround time [25]. Future
perspectives involve enhancing the cost-effectiveness of NGS platforms and optimizing
bioinformatics pipelines to achieve cost reduction. For example, the RAPIDprep assay was
introduced as a simple and fast protocol for the RNA mNGS of clinical samples which
provides a cause-agnostic laboratory diagnosis of infection within 24 h of sample collection
by sequencing ribosomal RNA-depleted total RNA [31].

7.2. Standardization and Quality Control

The standardization and quality control of mNGS are crucial for ensuring data accu-
racy and comparability. Standardizing laboratory procedures to ensure the quality and
interoperability of Big Data generated by sequencing remains a crucial issue [34]. In 2011,
Field et al. noted the Genomic Standards Consortium (GSC) as driving community-based
standardization activities that aimed at improving the quality and quantity of contextual
data associated with public collections of genomes and metagenomes [241]. The GSC has
set out a minimum level of information for a metagenomic sample, emphasizing the impor-
tance of standardizing the context [242]. However, it is challenging to standardize mNGS
because there are no universally accepted protocols and standards. The development of
consensus standards should be the focus of future efforts through collaboration between
researchers, industry stakeholders, and regulatory bodies. The process may involve the
formation of international working groups or consortiums that set standards for sample
preparation, library preparation, sequencing, and bioinformatics analysis [35]. Automated
technologies can also increase reproducibility and reduce human-induced variability in
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metagenomics sequencing workflows [243]. For instance, PacBio collaborated with an
automation partner to create fully automated protocols to prepare samples for sequenc-
ing [244]. Besides that, it is important to launch proficiency testing programs for mNGS to
help the standardization and implementation of mNGS [233]. With the bioinformatics field
continuing to evolve, efforts should be focused on the establishment of standardized data
formats, ontologies, and metadata definitions for metagenomic sequencing data. In this
way, data sharing will be facilitated, and integration and meta-analysis will be improved,
ultimately resulting in better reproducibility and comparability of results [141,236,243,244].
The standardization and quality control of mNGS will be enhanced by future technolog-
ical advancements through collaboration and open sharing, including novel sequencing
platforms, improved bioinformatics tools, and innovative quality control assays [237,238].

7.3. Bioinformatics and Data Analysis

Bioinformatics tools and sequencing technologies will improve the sensitivity, speci-
ficity, and speed of sequencing. Validation studies and standardization efforts will establish
WGS and mNGS as an effective and reliable diagnostic method [141]. The use of WGS
can improve patient outcomes and guide targeted therapies by helping to identify ge-
netic variants associated with treatment response, disease susceptibility, and adverse drug
reactions [239]. Technological advancements, such as nanopore sequencing, will enable
point-of-care sequencing and expand the accessibility of WGS in a variety of clinical set-
tings while improving its speed, accuracy, and cost-effectiveness [240]. Ultimately, mNGS
and WGS are set to transform research, diagnostics, and environmental monitoring with
ongoing advancements and applications across diverse fields. Therefore, the development
of secure and scalable data storage solutions and user-friendly software and databases to
identify pathogens, predict antimicrobial resistance, and analyze outbreaks makes these
tools more accessible to healthcare professionals [236,237].

8. Conclusions

In conclusion, the strategies and challenges of implementing mNGS are discussed
in this review. The validation under different ISO standards, as discussed in this review,
is important to minimize any errors in the workflow and to ensure the accuracy and
reliability of NGS in infectious disease diagnosis. As the field of clinical mNGS continues to
evolve, standard protocols, bioinformatics pipelines, and reference databases are essential
for addressing the challenges and facilitating the wide adoption of mNGS in clinical
microbiology laboratories. In the future, the development of reference standards and
guidelines will be crucial to ensuring the accuracy, reproducibility, and reliability of mNGS.
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